Linear Classifiers

CS178
Intro to Machine Learning & Data Mining
Prof. Alexander Ihler

Lecture 07
Gaussian class-conditional models

- Model for each class is a Gaussian
- Fit the model to the data

\[
\alpha = \frac{m_1}{m} = \hat{p}(y = c_1)
\]

\[
\hat{\mu} = \frac{1}{m} \sum_j x^{(j)}
\]

\[
\hat{\Sigma} = \frac{1}{m} \sum_j (x^{(j)} - \hat{\mu})^T (x^{(j)} - \hat{\mu})
\]

(c) Alexander Ihler 2010-11
Gaussian models

- Bayes optimal decision boundary
 - \(p(y=0 \mid x) = p(y=1 \mid x) \)
 - Transition point between \(p(y=0\mid x) >/\!/< p(y=1\mid x) \)
- Assume Gaussian models with equal covariances

\[
\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{-1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

\[
0 < \log \frac{p(x \mid y = 0)}{p(x \mid y = 1)} \frac{p(y = 0)}{p(y = 1)} = \log \frac{p(y = 0)}{p(y = 1)} + \\
-.5(x \Sigma^{-1} x - 2\mu_0^T \Sigma^{-1} x + \mu_0^T \Sigma^{-1} \mu_0) + .5(x \Sigma^{-1} x - 2\mu_1^T \Sigma^{-1} x + \mu_1^T \Sigma^{-1} \mu_1) = (\mu_0 - \mu_1)^T \Sigma^{-1} x + \text{constants}
\]
Gaussian example

- Spherical covariance: $\Sigma = \sigma^2 I$
- Decision rule $=(\mu_0 - \mu_1)^T \Sigma^{-1} x + \text{constants}$

$$(\mu_0 - \mu_1)^T x < C$$

$$C = .5(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1) - \log \frac{p(y = 0)}{p(y = 1)}$$

(c) Alexander Ihler 2010-11
Non-spherical Gaussian distributions

- Still a linear decision rule
 - May be “modulated” by variance direction
 - Scales; rotates (if correlated)

Ex:
Variance
\[
\begin{bmatrix} 3 & 0 \\ 0 & 0.25 \end{bmatrix}
\]
Gaussian example

\[
\text{Mu0} = [0\quad 0]; \quad \text{Sigma0} = [1,0;0,1]; \\
\text{X0} = \text{randn}(100,2) \times \text{Sigma0} + \text{repmat}(ext{Mu0}, [100,1]); \\
\text{Mu1} = [1.5\quad 1.5]; \quad \text{Sigma1} = [1,.25;.25,1]; \\
\text{X1} = \text{randn}(100,2) \times \text{Sigma1} + \text{repmat}(ext{Mu1}, [100,1]); \\
\text{plot}(\text{X0}(:,1),\text{X0}(:,2),'bo',\text{X1}(:,1),\text{X1}(:,2),'r^'); \\
\text{plotGaussian}(ext{Mu0},\text{Sigma0}); \\
\text{plotGaussian}(ext{Mu1},\text{Sigma1}); \\
\]

\[
\text{Mu0Hat} = \text{mean} (\text{X0}); \\
\text{Sigma0Hat} = \text{cov} (\text{X0}); \\
\text{Mu1Hat} = \text{mean} (\text{X1}); \\
\text{Sigma1Hat} = \text{cov} (\text{X1}); \\
\text{plotGaussian} (\text{Mu0Hat},\text{Sigma0Hat}); \\
\text{plotGaussian} (\text{Mu1Hat},\text{Sigma1Hat}); \\
\]
Gaussian class boundaries

Equal covariance => linear classification boundary

\[p(y=0) \ p(x|y=0) \quad \text{vs} \quad p(y=1) \ p(x|y=1) \]

Adjust \(p(y=0)/p(y=1) \) – boundary shifts
Gaussian class boundaries

General covariance => quadratic classification bdr

alpha = .50

alpha = .15
Class posterior probabilities

• Useful to also know class probabilities

• Some notation
 – $p(y=0)$, $p(y=1)$ – class prior probabilities
 • How likely is each class in general?
 – $p(x \mid y=c)$ – class conditional probabilities
 • How likely are observations “x” in that class?
 – $p(y=c \mid x)$ – class posterior probability
 • How likely is class c given an observation x?

• We can compute posterior using Bayes’ rule
 – $p(y=c \mid x) = p(x\mid y=c) \cdot p(y=c) / p(x)$

• Compute $p(x)$ using sum rule / law of total prob.
 – $p(x) = p(x\mid y=0) \cdot p(y=0) + p(x\mid y=1)p(y=1)$
Class posterior probabilities

- Consider comparing two classes
 - $p(x \mid y=0) \cdot p(y=0)$ vs $p(x \mid y=1) \cdot p(y=1)$
 - Write probability of each class as
 - $p(y=0 \mid x) = \frac{p(y=0, x)}{p(x)}$
 - $= \frac{p(y=0, x)}{p(y=0, x) + p(y=1, x)}$
 - $= \frac{1}{1 + \exp(-a)}$ (**)

- $a = \log \left[\frac{p(x \mid y=0) \cdot p(y=0)}{p(x \mid y=1) \cdot p(y=1)} \right]$
- (***) called the logistic function, or logistic sigmoid.

(c) Alexander Ihler 2010-11
Gaussian models

• Return to Gaussian models with equal covariances

\[
\mathcal{N}(\underline{x} ; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} (\underline{x} - \mu)^T \Sigma^{-1} (\underline{x} - \mu) \right\}
\]

\[
0 < \log \frac{p(x|y = 0) p(y = 0)}{p(x|y = 1) p(y = 1)} = (\mu_0 - \mu_1)^T \Sigma^{-1} x + \text{constants}
\]

(***)

Now we also know that the probability of each class is given by:

\[
p(y=0 \mid x) = \text{Logistic}(**) = \text{Logistic}(a^T x + b)
\]

We’ll see this form again soon…

(c) Alexander Ihler 2010-11
Linear Classifiers

- Linear Classifiers
 - a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
 - separates the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data

Linearly non-separable data
Linear Classifiers: Parametric Form

- Let: feature 1 = “X1”, feature 2 = “X2”

- Linear classifier is a linear function of features X1 and X2, i.e.,
 - $f(X1,X2) = a*X1 + b*X2 + c$
 - Coefficients $[a,b,c]$ are the “weights” / “parameters” of the classifier
 - In general, $d + 1$ coefficients (one for each feature, plus offset)

- Output of the classifier is a class, $\{-1, 1\}$:
 - $T(f) = -1$ if $f < 0$, $T(f) = +1$ if $f > 0$

- Decision boundary
 - Transition from one class decision to another at $f(X1,X2) = 0$
 - Decision boundary is: $a*X1 + b*X2 + c = 0$ — Linear

- In higher dimensions, equation is a “hyperplane”
Perceptron Classifier (2 features)

\mathbf{x}_1 \mathbf{x}_2 $\mathbf{1}$

w_1 w_2 w_0

$\text{Classifier} \quad f = w_1 \mathbf{x}_1 + w_2 \mathbf{x}_2 + w_0$

weighted sum of the inputs

Threshold Function

$T(f)$

$f(\mathbf{X}, \mathbf{Y})$$\hat{C}(\mathbf{x})$

output = class decision

\{-1, +1\}
Perceptrons

• Perceptron = a linear classifier
 – The w’s are the weights (denoted as a, b,c, earlier)
 • real-valued constants (can be positive or negative)
 – Define an additional constant input “1” (allows an intercept in decision boundary)

• A perceptron calculates 2 quantities:
 – 1. A weighted sum of the input features
 – 2. This sum is then thresholded by the T function

• A simple artificial model of human neurons
 • weights = “synapses”
 • threshold = “neuron firing”
Notation

- **Inputs:**
 - \(x_1, x_2, \ldots, x_d, x_{d+1} \)
 - \(x_1, x_2, \ldots, x_{d-1}, x_d \) are the values of the \(d \) features
 - \(x_{d+1} = 1 \) (a constant input)
 - \(\mathbf{x} = (x_1, x_2, \ldots, x_d, x_{d+1}) \)

- **Weights:**
 - \(w_1, w_2, \ldots, w_d, w_{d+1} \)
 - we have \(d+1 \) weights
 - one for each feature + one for the constant
 - \(\mathbf{w} = (w_1, w_2, \ldots, w_d, w_{d+1}) \)
Perceptron Operation

- Equations of operation:

\[
\begin{align*}
\text{o}[x_1, x_2, \ldots, x_{d-1}, x_d] & = 1 \quad \text{(if } w_1 x_1 + \ldots + w_d x_d + w_0 > 0) \\
& = -1 \quad \text{(otherwise)}
\end{align*}
\]

Note that
\[
\underline{w} = (w_1, \ldots, w_{d+1}) \quad \text{the “weight vector” (row vector, 1 x d+1)}
\]
and \(\underline{x} = (x_1, \ldots, x_{d+1}) \), the “feature vector” (row vector, 1 x d+1)

\[=> \quad w_1 x_1 + w_2 x_2 + \ldots + w_{d+1} x_{d+1} = \underline{w} \cdot \underline{x}' \]

and \(\underline{w} \cdot \underline{x}' \) is the vector inner product (w*x' or “sum(w.*x)” in MATLAB)
Perceptron Decision Boundary

- Equations of operation (in vector form):

 \[o(x_1, x_2, ..., x_d, x_{d+1}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x}' > 0 \\ -1 & \text{otherwise} \end{cases} \]

The perceptron represents a hyperplane decision surface in d-dimensional space,
 e.g., a line in 2d, a plane in 3d, etc

The equation of the hyperplane is
\[\mathbf{w} \cdot \mathbf{x}' = 0 \]

This is the equation for points in x-space that are on the boundary
Example, Linear Decision Boundary

\[\mathbf{w} = (w_1, w_2, w_0) \]
\[= (1, -1, 0) \]
Example, Linear Decision Boundary

\[\mathbf{w} = (w_1, w_2, w_0) = (1, -1, 0) \]

\[\mathbf{w} \cdot \mathbf{x}' = 0 \]

\[\Rightarrow 1 \cdot x_1 - 1 \cdot x_2 + 0 \cdot 1 = 0 \]

\[\Rightarrow x_1 - x_2 = 0 \]

\[\Rightarrow x_1 = x_2 \]
Example, Linear Decision Boundary

\[
\mathbf{w} = (w_1, w_2, w_0) \\
= (1, -1, 0)
\]

This is the equation for the decision boundary $\mathbf{w} \cdot \mathbf{x}' = 0$

$=> 1 \cdot x_1 - 1 \cdot x_2 + 0.1 = 0$

$=> x_1 - x_2 = 0$

$=> x_1 = x_2$

This is the equation for the decision boundary
Example, Linear Decision Boundary

\[\mathbf{w} \cdot \mathbf{x}' < 0 \]

\[\Rightarrow x_1 - x_2 < 0 \]

\[\Rightarrow x_1 < x_2 \]

(this is the equation for decision region -1)

\[\mathbf{w} = (w_1, w_2, w_0) \]

\[= (1, -1, 0) \]

\[\mathbf{w} \cdot \mathbf{x}' = 0 \]
Representational Power of Perceptrons

What mappings can a perceptron represent perfectly?
- A perceptron is a linear classifier
- thus it can represent any mapping that is linearly separable
- some Boolean functions like AND (on left)
- but not Boolean functions like XOR (on right)
Linear classifier is one of the “simplest” parametric forms
 - Can be easily extended to more complex decision boundaries

Imagine a “quadratic” classifier
 - \(f(X,Y) = aX^2 + bY^2 + cX + dY + e \)
 - Decision boundary can be: parabola, ellipse, …

Notice: \(f(X,Y) \) is quadratic in \(X, Y \)
 - but linear in \([X^2, Y^2, X, Y]\)

Equivalence by “artificially” increasing the number of features:
 - Nonlinear method in original feature space
 - Linear method in higher dimensional feature space

We saw this before in regression…
Representational Power of Perceptrons

• What mappings can a perceptron represent perfectly?
 – A perceptron is a linear classifier
 – thus it can represent any mapping that is linearly separable
 – some Boolean functions like AND (on left)
 – but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?
Effect of dimensionality

• Data are increasingly separable in high dimension – is this a good thing?

 • “Good”
 – Separation is easier in higher dimensions (for fixed N)
 – Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!

 • “Bad”
 – Remember training vs. test error? Remember overfitting?
 – Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data…

![Graph showing Predictive Error vs. Complexity with Ideal Range, Overfitting, and Underfitting regions identified.]
Learning the Classifier Parameters

• Where do the parameters (weights) of the classifier come from?
 – If we know a lot about the problem, we could “design” them
 – Typically we don’t know ahead of time what the values should be

• Learning from Training Data:
 – training data = labeled feature vectors
 – i.e., a set of N feature vectors each with a class label
 – we can use the training data to try to find good parameters
 – “good” parameters are ones which provide low error
 • error is estimated on the training data
 • “true” error will be on future test data
 – Statement of the Learning Problem:
 • given a classifier, and some training data, find the values for the classifier’s parameters which maximize training accuracy
Learning the Weights from Data

An Example of a Training Data Set

<table>
<thead>
<tr>
<th>Example</th>
<th>x_1</th>
<th>x_2</th>
<th>....</th>
<th>x_d</th>
<th>true class label, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(1)$</td>
<td>3.4</td>
<td>-1.2</td>
<td>.....</td>
<td>7.1</td>
<td>1</td>
</tr>
<tr>
<td>$x(2)$</td>
<td>4.1</td>
<td>-3.1</td>
<td>.....</td>
<td>4.6</td>
<td>-1</td>
</tr>
<tr>
<td>$x(3)$</td>
<td>5.7</td>
<td>-1.0</td>
<td>.....</td>
<td>6.2</td>
<td>-1</td>
</tr>
<tr>
<td>$x(4)$</td>
<td>2.2</td>
<td>4.1</td>
<td>.....</td>
<td>5.0</td>
<td>1</td>
</tr>
<tr>
<td>$x(n)$</td>
<td>1.2</td>
<td>4.3</td>
<td>.....</td>
<td>6.1</td>
<td>1</td>
</tr>
</tbody>
</table>
Learning as a Search Problem

- The objective function:
 - the accuracy of the classifier (for a given set of weights \mathbf{w} and labeled data)

- Problem:
 - maximize this objective function

- Equivalent to an optimization or search problem
 - i.e., think of the vector (w_1, w_2, w_0)
 - this defines a 3-dimensional “parameter space”
 - we want to find the value of (w_1, w_2, w_0) which maximizes the objective function
 - So we could use hill-climbing, systematic search, etc., to search this parameter space
 - many learning algorithms = hill-climbing with random restarts
Classification Accuracy

• Say we have N feature vectors (training data) for which we know the true class label of each feature vector

• We can measure how accurate a classifier is by how many feature vectors it classifies correctly

• Procedure:
 – accuracy = 0
 – For each of the N feature vectors:
 • calculate the output of the classifier for this vector
 • if the class label agrees with the true label
 – ++ accuracy
 • continue
 – Percentage Accuracy = (accuracy/N) * 100%
Training Data and Learning

• We have N examples
 – an example consists of a feature vector and a class label (target)
 – the ith feature vector is denoted \(x(i) \)

• Learning on the Training Data
 – Let \(\hat{y}(i) = \hat{y}(x(i)) \) be the output of a perceptron for the ith feature vector \(x(i) \)
 – Let \(y(i) \) be the target value (true class)
 – goal is to find perceptron weights such that
 • \(\hat{y}[i] \) is close to \(y(i) \) for as many examples as possible
 • i.e., the output matches the desired target as often as possible

\[
\text{TrainingAccuracy}(w) = \frac{1}{N} \sum \delta(\hat{y}(i) = y(i))
\]

where \(\delta(\hat{y}(i) = y(i)) = 1 \) if \(\hat{y}(i) = y(i) \), and 0 otherwise
Equivalent Parameter Settings?

- Which decision boundary is “better”?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- How can we quantify “better”, and learn the “best” parameter settings?
More on Classifier Quality

- Examples of measuring classifier quality

- Mini-max approaches
 - Maximize the min. distance to decision boundary
 - Example: Support Vector Machines (SVM)
 - Very popular method
More on Classifier Quality

• Average behavior approaches
 – This is what we’ll use for now
 – “Approximate” the threshold function
 – Usually some smooth function of distance
 • Example: “sigmoid”, looks like an “S”

 – Now, measure average similarity to true class labels
 – Example: Mean squared error
 \[E_{\sigma(w)} = \frac{1}{N} \sum_i (\sigma(f(x_i)) - t(i))^2 \]

 – Far from the decision boundary: |f(.)| large, small error
 – Nearby the boundary: |f(.)| near zero, larger error

 – Notice: this is a “smooth” error function
 • Easier to train / optimize the choice of parameters…
Linear Classifier (2 features)

$\mathbf{x}_1 \quad w_1$

$\mathbf{x}_2 \quad w_2$

$1 \quad w_0$

$\mathbf{f} = w_1 \mathbf{x}_1 + w_2 \mathbf{x}_2 + w_0$

weighted sum of the inputs

Threshold Function

output $\{0, 1\}$

decision = class

$T(\mathbf{f}) = 0$ if $f < \frac{1}{2}$

$T(\mathbf{f}) = 1$ if $f > \frac{1}{2}$

Decision boundary = “x such that $T(w_1 x + w_0)$ transitions”
Training a linear classifier

• How should we measure error?
 – Natural measure = “fraction we get wrong”
 – If we only guess 0/1, this is also the MSE…

• But, hard to train via gradient descent
 – Not continuous
 – As decision boundary moves, errors change abruptly

• Bonus HW: use linear regression, MSE
 – Easy to train by gradient descent
 – But, not optimizing the right error – e.g., outliers in HW

1D example:

\[T(f) = 0 \text{ if } f < \frac{1}{2} \]
\[T(f) = 1 \text{ if } f > \frac{1}{2} \]
Training a linear classifier

- One solution is to use a “smooth” threshold
 - This is what we’ll use for now
 - “Approximate” the threshold function
 - Usually some smooth function of distance
 - Example: “sigmoid”, looks like an “S”

- Now, measure e.g. MSE
 \[
 E_{\sigma}(\mathbf{w}) = \frac{1}{N} \sum_i \left(\sigma(f(x_i)) - t(i) \right)^2
 \]
 - Far from the decision boundary: |f(.)| large, small error
 - Nearby the boundary: |f(.)| near 1/2, larger error

- Notice: this is a “smooth” error function
 - Easier to train / optimize the choice of parameters…
Training a linear classifier

- How should we measure error?
 - Natural measure = “fraction we get wrong”
 - If we only guess 0/1, this is also the MSE…

- But, hard to train via gradient descent
 - Not continuous
 - As decision boundary moves, errors change abruptly

- Using linear regression & MSE
 - Easy to train by gradient descent
 - But, not optimizing the right error – e.g., outliers

1D example:

Classification error = MSE = 2/9

MSE = \[(0^2 + 1^2 + 0.2^2 + 0.25^2 + 0.05^2 + \ldots)/9\]
Training the Classifier

• Once we have a smooth measure of quality, we can find the “best” settings for the parameters of
 \[f(X_1, X_2) = aX_1 + bX_2 + c \]

• Example: 2D feature space \(\leftrightarrow\) parameter space

\[\text{MSE} = 1.9 \]
Training the Classifier

• Once we have a smooth measure of quality, we can find the “best” settings for the parameters of $f(X_1, X_2) = aX_1 + bX_2 + c$

• Example: 2D feature space \Leftrightarrow parameter space $\text{MSE} = 0.4$
Training the Classifier

- Once we have a smooth measure of quality, we can find the “best” settings for the parameters of $f(X_1,X_2) = aX_1 + bX_2 + c$
- Finding the minimum MSE in parameter space…

-best point

[min MSE] $\text{MSE} = 0.1$

- $[a \ b \ c] = ?$
- $[\arctan(A/B), \ c] = [-\pi/4, \ 1]$
Training the Classifier

• Once we have a smooth measure of quality, we can find the “best” settings for the parameters of
 \[f(X_1, X_2) = aX_1 + bX_2 + c \]
• Finding the minimum MSE in parameter space…

\[[a \ b \ c] = ? \]

\[[\arctan(A/B), c] = [-\pi/4, 1] \]
Finding the Best MSE

• As in linear regression, this is now just optimization

• Methods:
 – Gradient descent
 • Improve MSE by small changes in parameters ("small" = learning rate)
 – Or, substitute your favorite optimization algorithm…
 • Coordinate descent
 • Stochastic search
 • Genetic algorithms
Gradient Equations

- MSE (note, depends on function $\sigma(.)$)

$$C(w = [a, b, c]) = \frac{1}{N} \sum_i \left(\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)} \right)^2$$

- What’s the derivative with respect to one of the parameters?

$$\frac{\partial C}{\partial a} = \frac{1}{N} \sum_i 2(\sigma(w \cdot x) - y^{(i)}) \partial \sigma(w \cdot x) x_1^{(i)}$$

Error between class and prediction

Sensitivity of prediction to changes in parameter “a”

- Similar for parameters b, c [replace x_1 with x_2 or 1 (constant)]
Saturating Functions

- Many possible “saturating” functions

- “Logistic” sigmoid (scaled for range [0,1]) is

 \[\sigma(x) = \frac{1}{1 + \exp(-x)} \]

- Derivative is

 \[\partial \sigma(x) = \sigma(x) \ (1-\sigma(x)) \]

- Matlab Implementation:

  ```
  function s = sig(x)
  % value of [0,1] sigmoid
  s = 1 ./ (1+exp(-x));

  function ds = dsig(x)
  % derivative of (scaled) sigmoid
  ds = sig(x) .* (1-sig(x));
  ```
Gradient Decent Algorithm (BATCH)

- Algorithm outline
 - Initialize the weights (e.g., randomly)
 - Loop “until convergence”
 - for each example calculate the output
 - calculate the difference between the output and the target
 - update each of the d+1 weights using the gradient update rule
 \[w_j \leftarrow w_j - \eta \left(\frac{\partial E}{\partial w_j} \right) \]
 - Convergence condition:
 - when change in MSE is sufficiently small, stop iterating
 - Halt and return weights
Incremental Training Algorithm

- “Incremental Gradient Descent” – online version
- Often faster than batch gradient algorithm
- Algorithm outline
 - initialize the weights (e.g., randomly)
 - loop through all N examples (this is 1 iteration)
 - for each example calculate the output
 - calculate the difference between the output and the target
 - update each of the d+1 weights using the single example gradient update rule
 - Like the full gradient, but only involves one training example
 - after all N examples are gone through
 - check if the overall error (MSE) has decreased significantly since the previous iteration
 - if not, then perform another iteration through all N examples
 - if so, then halt and return weights
Gradient Descent Learning Rule

- Online (single-example) weight update rule:
 \[
 w_j \leftarrow w_j + \eta \left(t(i) - \sigma(f(i)) \right) \frac{\partial \sigma(f(i))}{\partial x_j(i)} x_j(i)
 \]

 - \(t(i) \) is the target class of the \(i \)th training example
 - \(f(i) \) is the weighted sum (respectively) for the \(i \)th example
 - \(w_j \) is the \(j \)th input weight
 - \(x_j(i) \) is the \(j \)th input feature value, for the \(i \)th example
 - \(\eta \) is called the learning rate: a small positive number, \(0 < \eta < 1 \)

- An example of how this works:
 - Say \(w_j \) and \(x_j(i) \) are both positive:
 - say \(t(i) > f(i) \) => we increase the value of the weight
 - say \(t(i) < f(i) \) => we decrease the value of the weight
 - \(\eta \) controls how quickly we increase or decrease the weight
Pseudocode for Logistic Regression

Initialize each weight (e.g., randomly)

iteration=0;
While (convergence_criterion not achieved)
 for i=1:N
 calculate the output of the network for example i
 for j = 1: d+1
 update weight j using the update rule
 end
 end
 calculate convergence_criterion
 ++ iteration
 (optional) plot current location of decision boundary
end
Summary

• Linear classifier ⇔ perceptron

• Visualizing the decision boundary

• Measuring quality of a decision boundary
 – MSE criterion

• Learning the weights of a linear classifier from data
 – Reduces to an optimization problem
 – For MSE (and some others) we can do gradient descent
 – Batch gradient descent vs. Incremental gradient descent
 – Gradient equations & update rules