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Abstract

Financial engineering such as trading decision is an emerging research area and also has great commercial potentials. A successful
stock buying/selling generally occurs near price trend turning point. Traditional technical analysis relies on some statistics (i.e. technical
indicators) to predict turning point of the trend. However, these indicators can not guarantee the accuracy of prediction in chaotic
domain. In this paper, we propose an intelligent financial trading system through a new approach: learn trading strategy by probabilistic
model from high-level representation of time series – turning points and technical indicators. The main contributions of this paper are
two-fold. First, we utilize high-level representation (turning point and technical indicators). High-level representation has several advan-
tages such as insensitive to noise and intuitive to human being. However, it is rarely used in past research. Technical indicator is the
knowledge from professional investors, which can generally characterize the market. Second, by combining high-level representation
with probabilistic model, the randomness and uncertainty of chaotic system is further reduced. In this way, we achieve great results (com-
prehensive experiments on S&P500 components) in a chaotic domain in which the prediction is thought impossible in the past.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The stock market is a complex and dynamic system with
noisy, non-stationary and chaotic data series (Peters, 1994).
Stock movement is affected by the mixture of two types of
factors: determinant (e.g. gradual strength change between
buying side and selling side) and random (e.g. emergent
affairs or daily operation variations). Generally, the ran-
dom factors are regarded as noise in stock data.

Due to complication and uncertainty of stock market,
stock prediction is one of the most challenging problems.
Along with the development of artificial intelligence, espe-
cially machine learning and data mining, more and more
researchers try to build automatic decision-making systems
to predict stock market (Kovalerchuk & Vityaev, 2000).
Among these approaches, soft computing techniques such
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as fuzzy logic, neural networks, and probabilistic reasoning
draw most attention because of their abilities to handle
uncertainty and noise in stock market (Vanstone & Tan,
2003, 2005).

However, most of them just utilize low-level price data
as their training set in classification or rule induction (Van-
stone & Tan, 2003). Though soft computing can somewhat
reduce the impact of random factors, low-level data are so
uncertain that they even behave purely randomly at some
time (Peters, 1994).

High-level representation integrates human understand-
ing of stock market into representative model, which can
largely reduce the randomness embedded in the low-level
data. A financial time series moves generally in fluctuant
way because of continuous changes of strength between
buying side and selling side. Therefore, data series is com-
prised of a series of turning points. Good investors will sell
stocks at the top of the range and buy stocks at the bottom
of the range within the stock trends. Obviously, the top and
the bottom are near the turning points. We make use of
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Fig. 2. Probabilistic structure.
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this high-level representation by predicting or confirming
turning points at the time close to its occurrence instead
of predicting the precise price in the future. Another kind
of high-level representation is technical indicators, which
are some statistics derived from recent price data. In tech-
nical analysis (Pring, 2002), the central idea is to look for
peaks, bottoms, trends, and indicators to estimate the pos-
sibility of current trend reversal and then making buy/sell
decisions based on those factors. In fact, technical indica-
tors and turning point representation are consistent. In this
paper, we combine these two high-level representations
together to make buy/sell decision.

However, there still exists uncertainty in high-level rep-
resentations. For example, single indicator generally can-
not predict trend reversal with high accuracy. More
effectively they should be viewed in probabilistic manner,
i.e. more indicators indicate the same reversal, and more
probable it will occur. Thus, the probability model is used
to further integrate two representations, and parameters of
the model are learned from historical data.

In Section 2, the architecture of our system is presented.
Then, we describe the details of training and testing of
probabilistic model in Section 3. The experiments in Sec-
tion 4 show the promising of our system. Finally, we
conclude.
2. Architecture of our system

Due to fluctuation, there are many local maximal/mini-
mal points in stock data series (we will call them critical
points for simplicity). Some of them are real trend reversal
points and others are just noise. The high-level representa-
tion is to represent the time series as well as training exam-
ples by these real turning points. Moreover in technical
analysis, all indicators can produce signals at certain time
to indicate the reversal of current trend. The signals of
most technical indicators occur after turning point (of
course, they are close to the turning point and still in the
top or bottom range of the trend). Therefore, in our model,
we use technical indicators to confirm whether a critical
point is real turning point of current trend along with the
movement of price.

The architecture of our system is shown in Fig. 1. Like
most machine learning algorithms, there are training and
testing phase. The purpose of training is parameter selec-
tion for our probabilistic model from historical data. Then,
Fig. 1. Architecture of the trading system.
in testing phase, we use our model to make buy/sell
decision.

The probabilistic model is a simplified Markov Network
(Pearl, 1988) with one node as predictor variable and other
nodes as evidence variables shown in Fig. 2. Parameter vec-
tor - = {x1, . . .xn}is assigned to every link between pred-
icator and evidence.

Every evidence node represents a technical indicator and
the predicator represents whether current candidate turn-
ing point is the real trend reversal point (true/false). When
an indicator produce signal, its corresponding node will
take true, or else take false. The result of the model is prob-
abilities of predicator taking true and false.

In Markov Network, parameters on the link between
evidence and predicator are learned from database with
discrete positive and negative instances. We take a real
turning point and signals of indicators near it as a positive
instance (vector) in the training set. Real turning point is
selected depending on investors’ trading cycle and strategy
(long term or short term investment, etc). In our training
process, we measure the cycle by the duration and
Fig. 3. Stock time series with thin lines as original data and bold lines as
trend.
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oscillation between a local maximal point and a local min-
imal point. Then, if these two parameters exceed some
thresholds determined by trading cycle between two con-
secutive critical points, these two points will be the turning
points of the current trend and previous trend, as shown in
Fig. 3.
3. Training and testing of the model

3.1. Measure criteria of turning points

As shown in Fig. 4, the criterion is defined as follows
(Perng, Wang, Zhang, & Parker, 2000): Given a sequence
of critical points (x1,y1), . . . (xn,yn), (xi and yi are the time
point and price data of the ith critical point, respectively),
a minimal time interval T and a minimal vibration percent-
age P, (we call them together as distance), remove (xi,yi)
and (xi+1,yi+1) if
Fig. 4. Criterion

Fig. 5. (a) Positive instance (b) negative in
xiþ1 � xi < T and
jyiþ1 � yij
ðyi þ yiþ1Þ=2

< P :

The thresholds of P and T have intuitive meaning. For
example, if a stock trader trades once a week (5 business
days) and regards a 5% gain or loss as significant, then
he/she simply uses P = 0.05 and T = 5 to recognize turning
point. In our experiment, we assign different thresholds for
different stocks in terms of the volatility of historical
data.
3.2. Positive and negative instances selection

As stated in previous section, we define positive instance
(i.e. turning point) as critical point that exceeds specified
threshold and negative instance as critical points, which fail
to exceed the given threshold. However, directly following
this definition will make the number of negative instances
of the model.

stance (c) modified negative instance.
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far more than that of positive ones and make the parameter
learning algorithm invalid.

To address such problem, suppose we move along all
critical points in training set to select critical point one after
another like realistic trading process (testing). In Fig. 5a,
the current candidate critical point is a real turning point
and previous trend is downtrend. We cannot confirm this
reversal until we reach the critical point with the oscillation
and time interval between it and candidate turning point
exceeding threshold. Note that a local maximal point and
a minimal point act as turning point alternately. Hence,
any local maximal/minimal point between these two points
cannot be regarded as candidate reversal points (i.e. neither
as positive or negative instances) without previous candi-
date point confirmation. In other words, no critical point
will be regarded as candidate turning point (positive or
negative instance) until distance between current critical
point and candidate turning point exceeds threshold (if it
is the real turning point). On the other hand, in Fig. 5b if
current candidate turning point A (current is downtrend)
is a false turning point (we have not known that at current
point), then never can we find another critical point satisfy-
ing above conditions in the future. In such case, it will be
regarded as ‘‘false’’ turning point, i.e. negative instance,
when we get to the critical point higher (for uptrend rever-
sal) or lower (for downtrend reversal) than it (new candi-
date is more higher or lower in the neighborhood. Before
new candidate, current trend is not reversed).

However, even by such disposal, negative instances out-
number positive ones a lot. In practice, we generally do not
concern whether a critical point is a turning point, when it
does not behave ‘‘like’’ a turning point, i.e. has oscillation
and time interval to next critical point to some extent. This
means there is another threshold (thres’) between a certain
future opposite critical point before next candidate turning
point and the current point, which should be exceeded
(Fig. 5c). Then only critical point meeting this extra condi-
tion will be regarded as negative instance.

3.3. Signal recognition

In our system, we adopt 4 common technical indicator
systems including 30 indicators (we can enhance our system
by more indicator systems in the future), they are:

Moving average system.
RSI oscillator system.

Stochastic slowK–slowD crossover/oscillator system.

Trendline system.

The signals of the indicator system are recognized and
then assigned to their closest positive or negative instances
according to the properties of indicators, i.e. leading or lag-
ging. A leading signal will be assigned to next instance
while a lagging signal will be assigned to previous instance.
Then, every instance can be represented as a Boolean
vector.
A comprehensive discussion of technical analysis and
indicator computation can be found in the book by Pring
(2002).

3.4. Probabilistic model

In Markov Network, for each clique Ci (namely the
maximal subgraphs, whose nodes are all adjacent to each
other) assign a nonnegative and real-valued potential func-
tion (also called compatibility function) gi(ci), where ci is an
assignment to the variables in Ci. Then the joint distribu-
tion of the Markov Network is given by

P ðX ¼ xÞ ¼ 1

Z

Y
i

giðciÞ; ð1Þ

where partition function is Z ¼
P

x2v
Q

igiðciÞ. P(X = x) is
normalized product P over all possible value combinations
of the variables in the system. Richardson and Domingos
(2004) represent the joint distribution in log-linear form,
with each clique potential function replaced by an expon-
entiated weighted sum of features of the state, leading to

P ðX ¼ xÞ ¼ 1

Z
exp

X
i

xifiðxÞ
 !

: ð2Þ

Comparing Eq. (1) with Eq. (2), we get
loggi (ci) = xifi(x).

A feature fi(x) may be any real-valued function of the
state. In fact, our model defines fi(x) in logic (hence
fi(x) 2 {0,1}), i.e. we regard connections between nodes as
propositional rules Li1! Li2 (�Li1 _ Li2) and each rule
corresponds to one clique.

If x 2 {TRUE,FALSE}2 in each clique makes the corre-
sponding rule take TRUE value, then fi(x) = 1, or else
fi(x) = 0.
3.4.1. Inference
Inference in Markov networks equals to answer arbi-

trary queries of the form: What is the probability that set
of variables V1 holds given that another set of variables
V2 does? That is

P ðV 1jV 2Þ ¼
P ðV 1 ^ V 2Þ

P ðV 2Þ
¼
P

x2vV 1
\vV 2

P ðX ¼ xÞP
x2vV 2

P ðX ¼ xÞ ; ð3Þ

where vV i
is the set of truth values, whereVi holds, and

P(X = x) is given by Eq. (2).
In our problem, the conditional probabilities required to

calculate take only one form, according to Eq. (3):

PðY ¼ yjX 0 ¼ TRUEÞ

¼

P
x;y2V X 0¼TRUE\V Y¼y

PðY ¼ y;X ¼ xÞ
P

x;y2V X 0¼TRUE\V Y¼TRUE

PðY ¼ TRUE;X ¼ xÞ þ
P

x;y2V X 0¼TRUE\V Y¼FALSE

PðY ¼ FALSE;X ¼ xÞ ;

ð4Þ

where X
0 � X.
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However, computing Eq. (4) directly is intractable.
Some approximation algorithms should be taken. Gibbs
sampling, a special Monte Carlo Markov Chain (MCMC)
algorithm is adopted. A more detailed introduction to
Gibbs sampling and MCMC can be found in lecture note
by Walsh (2002).

3.4.2. Parameter learning

The dependency parameter learning is carried out on all
instances. By closed world assumption, we assume that any
variable without explicit assignment will be considered as
FALSE.

In probabilistic model parameter estimation, the usual
method is maximum likelihood estimation. For our model,
the log-likelihood function can be written as

LðW Þ ¼ log
Yn

j¼1

PxðX ¼ xjÞ

¼
Xn

j¼1

X
i

xifiðxjÞ � n log Z; ð5Þ

where W is weight vector W = (x1,x2, . . .xjnj), n is the
number of all instances.

The derivative of the log-likelihood with respect to its
weight is

o

oxi

LðW Þ ¼
Xn

j¼1

fiðxjÞ � n
Xn

j¼1

PxðX ¼ xjÞ � fiðxjÞ; ð6Þ

where the sum is over all possible instances, and Px(X = xj)
is P(X = xj) computed using the current weight vector.
Unfortunately, due to Richardson and Domingos (2004),
calculating the second item in Eq. (6), which requires infer-
ence over the model is intractable.

An alternative is proposed by Singla et al. (2005) called
discriminative training. The parameter estimation through
optimizing conditional likelihood function is more conve-
nient than optimizing likelihood function according to
the structure of our model. The conditional likelihood
function of Y given X isYn

j¼1

P ðY ¼ yjjX ¼ xjÞ

¼
Yn

j¼1

1

Zx
exp

X
i2V y

xi � fiðxj; yjÞ
 !

; ð7Þ

where VY is the set of cliques that contains at least one var-
iable in Y.

The gradient of the conditional log-likelihood (CLL) is

o

oxi

log
Yn

j¼1

PxðY ¼ yjjX ¼ xjÞ

¼
Xn

j¼1

fiðxj; yjÞ � n �
X

y02V Y

PxðY ¼ y0jX ¼ xjÞ � fiðxj; y0Þ
" #

;

ð8Þ

where VY is the set of all possible values of Y.
Despite of its reduction of dimension, the CLL cannot
be calculated precisely in general case. However, the CLL
and its gradient can be transformed into tractable form
because there is only one query variable and two possible
values in our model. Then the gradient of CLL becomes

o

oxi

log
Yn

j¼1

PxðY ¼ yjjX ¼ xjÞ

¼
Xn

j¼1

fiðxj; yjÞ �
Xn

j¼1

½PxðY ¼ TRUEjX ¼ xjÞ

� fiðxj; yj ¼ TRUEÞ þ PxðY ¼ FALSEjX ¼ xjÞ
� fiðxj; yj ¼ FALSEÞ�; ð9Þ

where

PxðY ¼ TRUEjX ¼ xjÞ

¼
expð

P
i

xifiðxj;yj¼ TRUEÞÞ

expð
P

i
xifiðxj;yj¼ TRUEÞÞþ expð

P
i

xifiðxj;yj¼ FALSEÞÞ ;

PxðY ¼ FALSEjX ¼ xjÞ

¼
expð

P
i

xifiðxj;yj¼ FALSEÞÞ

expð
P

i
xifiðxj;yj¼ TRUEÞÞþ expð

P
i

xifiðxj;yj¼ FALSEÞÞ :

(derived under close world assumption).
The gradient of CLL can be obtained with ease and no

approximating algorithm is required. Then, with condi-
tional likelihood function and its gradient we can use any
unconstrained optimization algorithm (e.g. Quasi-Newton
method) to achieve optimized xi.
4. Experiment

We test our system on two main aspects: probabilistic
model computing cost and trading result.
4.1. Computing cost of probabilistic model

The cost for learning and inference is low. Parameter
learning (with 1000 iterations in local searching) with train
set of 30 years (7800 daily points, around 500 instances)
takes only about 75 s. Inference on a candidate turning
points takes average 73.188 s on a P4 2.4G computer.
Though there is no benchmark for this problem, the time
cost is much lower than other approaches. The reason for
this efficiency is that we take high-level representation for
the learning and inference.
4.2. Test on automatic stock trading

A simple trading rule is adopted: when we confirm cur-
rent reversal with certain probability, we sell/buy, i.e. when
current turning is from uptrend to downtrend, sell and vice



Fig. 8. Trade log of AES CP INC for 2 years, with probability set to 0.8
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versa. Suppose $1000 initial fund and trade all funds/stocks
at each operation.

4.2.1. Typical stock movements and their trades

In this experiment, each stock will be trained and tested
individually. We employ all historical price of one stock,
and all data are partitioned into train set and test set (only
dealing with stock with over 3000 points).

Fig. 6 shows a movement in a fluctuant and overall loss
market and long period trade (4 years). In such market, our
trading system is still able to profit up to 71.2% while the
stock loss is about 31.6%.

Movement in Fig. 7 is an overall bull market and short
period trade (2 years). In such market, our trading system
is able to profit up to 79% while the market gains about
61.3%. In other word, our system can outperform buy-
and-hold strategy in bull market.
Fig. 6. Trading log (black: sell, grey: buy) of ALCOA INC for 4 years,
with probability set to 0.8 and profit 71.2%.

Fig. 7. Trade log of AMERISOURCEBERGEN CP for 2 years, with
probability set to 0.8 and profit 79%.

and profit 104%.

Fig. 9. S & P500c from May 3, 2002 to November 25, 2005 (900 points).

Fig. 10. Average profit rate of S & P500 components on different
probabilities.



Table 1
Three periods profit of 10 arbitrary selected stock in S & P500

Symbol 2000–2002 (%) 2002–2004 (%) 2004–2006 (%)

ASN 15.2 64.9 14.5
BHI 71.6 45.4 5.4
CMVT 34.3 35.7 229.5
CVS 9.2 58.4 70.3
HAS 20.8 5.7 201.3
LEN 48.3 37.2 �20.7
LPX 7.0 55.6 12.9
MUR 20.7 32.1 64.4
PGL �5.9 13.3 33.3
PHM �26.8 77.8 24.8
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Movement in Fig. 8 is an overall bull market and short
period trade (2 years). In such market, our trading system
achieves excellent result up to 104%.
Table 2
Missed opportunities and false operation of IBM

Probabilities 0.5 0.55 0.6 0.65 0
Actual opportunity 36 36 36 36 36
Missed opportunity 4 4 4 4 4
Missed % 11.1 11.1 11.1 11.1 11
Total operation 16 16 16 16 16
False operation 7 7 5 5 5
F.O % 43.8 43.8 31.3 31.3 31
Profit % 24.4 23.3 93.7 92.8 98

Table 3
Missed opportunities and false operation of microsoft

Probabilities 0.5 0.55 0.6 0.65
Actual opportunity 48 48 48 48
Missed opportunity 4 4 6 8
Missed % 8.3 8.3 12.5 16.7
Total operations 22 22 21 20
False operation 9 9 7 5
F.O % 40.9 40.9 33.3 25
Profit % �27.1 �23.6 69.5 87.5

Fig. 11. Trading log (buy: grey sell
4.2.2. Overall market performance

Most trading systems evaluate their performance on
selected stock. However, such test is unreliable to prove
effectiveness due to lack of generalization. To validate
our system extensively, we test gain or loss of 500 stocks
(S & P500 components) and check whether their average
profit outperform S & P500c index.

Fig. 9 shows S & P500c index over three years (900
points), it gains about 18.15%.

The system performs simulated trading on 454 stocks
(with over 3000 daily data for training and testing) and
gets profits on 416 stocks. The average profit rates with
different probabilities in trading rule are exhibited in
Fig. 10. The maximal profit rate is up to 43.6%. On aver-
age, the profit is improved with more certainty on trend
reversal.
.7 0.75 0.8 0.85 0.9 0.95
36 36 36 36 36

4 4 10 14 18
.1 11.1 11.1 27.8 38.9 50

16 16 13 11 9
3 3 4 3 3

.3 18.8 18.8 30.8 27.3 33.3

.9 145.1 160.3 63.0 34.9 53.1

0.7 0.75 0.8 0.85 0.9 0.95
48 48 48 48 48 48

8 8 14 24 34 42
16.7 16.7 29.2 50 70.8 87.5
20 20 17 12 7 3

5 5 5 3 2 1
25 25 29.4 25 28.6 33
75.9 74.3 36.0 21.1 �9.2 �26.9

: black) of IBM and Microsoft.
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Second, we pick 10 stocks in random and examine their
profit on three periods of time (two years (252 * 2 points)
each) with probability 0.8. The results are listed in Table 1.

According to Table 1, most stocks can profit with only
few loss (due to the overall downtrend during that period).

4.2.3. Experiments on individual stock

We test the system on three specified criteria: missed
opportunity, false operation and profit. The experiment is
carried out on the common selected IBM and Microsoft
of many papers.

Missed opportunity is defined as the number of real tun-
ing point without trading operation. False operation is the
number of loss operations (buy high and sell low) in total
operations (one operation contains a buy and a sell).
Tables 2 and 3 list the results of IBM and Microsoft stock
tested from January 3, 2000 to December 30, 2005 with dif-
ferent probabilities. Trading logs of IBM and Microsoft
are shown in Fig. 11. Though there are some losses of
Microsoft at some probabilities, the overall price of Micro-
soft drops about 77.5% during the period. In addition, our
raw trading rule is not so elaborate as to adapt to different
probabilities. We can see IBM also experienced drastic
decrease (�29.1%), but we can still profit a lot even by
our simple trading rule. Moreover, two criteria: missed

opportunityand false operation are satisfactory.

5. Conclusion

In this paper, we present a novel implementation of
stock trading system, which combines high-level represen-
tations with probabilistic model. We regard the financial
market as a dynamic system with uncertainty. Therefore
a high-level representation and probabilistic model are
more robust to such problem. Some simulated experi-
ments are carried out to test the efficiency of our system,
showing the universally profitability for most stocks in the
market.

Further work includes augmenting the system with other
soft computing techniques and developing more reasonable
trading rules. The applicability of our system is to facilitate
people in trading decision by providing them with high-
level decision.
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