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Abstract

In this paper, we cast natural-image segmentation as a problem of clustering texture features as multivariate mixed data. We model the
distribution of the texture features using a mixture of Gaussian distributions. Unlike most existing clustering methods, we allow the mixture
components to be degenerate or nearly-degenerate. We contend that this assumption is particularly important for mid-level image segmen-
tation, where degeneracy is typically introduced by using a common feature representation for different textures in an image. We show that
such a mixture distribution can be effectively segmented by a simple agglomerative clustering algorithm derived from a lossy data compres-
sion approach. Using either 2D texture filter banks or simple fixed-size windows to obtain texture features, the algorithm effectively segments
an image by minimizing the overall coding length of the feature vectors. We conduct comprehensive experiments to measure the performance
of the algorithm in terms of visual evaluation and a variety of quantitative indices for image segmentation. The algorithm compares favor-
ably against other well-known image-segmentation methods on the Berkeley image database.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Natural-image segmentation is one of the classical prob-
lems in computer vision. It is widely accepted that a good seg-
mentation should group image pixels into regions whose
statistical characteristics (of the color or texture) are homo-
geneous or stationary, and whose boundaries are ‘‘simple’’
and ‘‘spatially accurate’’ [11]. Nevertheless, from a statistical
viewpoint, natural-image segmentation is an inherently

ambiguous problem for at least the following two technical
reasons:1
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1 It is arguably true that human perception of an image is itself
ambiguous. However, here we are only concerned with ambiguities in
computing image segmentation.
(1) The statistical characteristics of local features (e.g.,
color, texture, edge, and contour) of natural images
usually do not show the same level of homogeneity
or saliency at the same spatial or quantization scale.
This is not only the case for different natural images,
but also often the case for different regions within the
same image. Thus, one should not expect the segmen-
tation result to be unique [34], and instead should
prefer a hierarchy of segmentations at multiple scales.

(2) Even after accounting for variations due to the scale,
different regions or textures may still have different
intrinsic complexities, making it a difficult statistical
problem to determine the correct number of segments
and their model dimensions. For instance, if we use
Gaussian distributions to model the features of differ-
ent textures, the Gaussian for a simple texture obvi-
ously has a higher degree of degeneracy (or a lower
dimension) than that for a complex texture.
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In the literature, many statistical models and methods
have been proposed to address some of these difficulties.
In this paper, we are interested in unsupervised image seg-
mentation. Popular methods in this category include fea-
ture-based Mean-Shift [1], graph-based methods [31,6],
region-based split-and-merge techniques [26,39], and global
optimization approaches based on either energy functions
[41] or minimum description length (MDL) [13]. Recent
developments have mainly focused on the problem of
how to integrate textural information at different scales.
For example, one can use more sophisticated region-grow-

ing or split-and-merge techniques [11,33,4,9] to partition
inhomogeneous regions; or one can use Markov random

fields to model textures or other image cues [19,26,34].
For a more detailed survey of these methods, the reader
is referred to [42,15,8,27].
1.1. Motivations and contributions

Although the reported performance of image-segmenta-
tion algorithms has improved significantly over the years,
these improvements have come partly at the price of ever
more sophisticated feature selection processes, more com-
plex statistical models, and more costly optimization tech-
niques. In this paper, however, we aim to show that for
texture features as simple as fixed-size cut-off windows
(Fig. 3), with the choice of a likely more relevant class of
statistical models (Fig. 1) and its associated agglomerative
clustering algorithm (Algorithm 1), one can achieve equally
good, if not better, segmentation results as many of the
above sophisticated statistical models and optimization
methods. Our approach relies on the following two
assumptions about how to segment natural images:

(1) The distribution of texture features in a natural image
is (approximately) a mixture of Gaussians that may
be degenerate and of different dimensions (see Fig. 1
right), one for each image segment.

(2) At any given quantization scale, the optimal segmenta-
tion is the one that gives the most compressed represen-
tation of the image features, as measured by the
number of binary bits needed to encode all the features.

It is evident that we have chosen to measure the ‘‘good-
ness’’ of image segmentation in terms of a coding-theoretic
Fig. 1. Mixture of regular (left) or degenerate (right) Gaussians.
criterion: minimum coding length.2 Our earlier work in [16]
revealed a strong relationship between lossy data compres-
sion and clustering of mixed data. We derived an effective
clustering algorithm for mixtures of degenerate or non-
degenerate Gaussian distributions. By minimizing the over-
all coding length of the given mixed data subject to a given
distortion, the algorithm automatically merges the data
points into a number of Gaussian-like clusters.

Be aware that, although we have adopted the lossy data
compression paradigm for image segmentation, we are not
suggesting compressing the image per se. Instead of pixel val-
ues, we compress and segment texture features extracted
from the image. Our method bears resemblance to some glo-
bal optimization approaches, such as using region-merging
techniques to minimize a (lossless) MDL cost function [13].
However, the new method significantly differs from existing
maximum-likelihood (ML) or MDL-based image segmenta-
tion algorithms in the following two main aspects:

(1) We allow the distributions to be degenerate, and
introduce a new clustering algorithm capable of han-
dling the degeneracy. Extant image-segmentation
methods that segment features based on the cluster
centers (e.g., K-Means) or density modes (e.g.,
Mean-Shift) typically work well for low-level segmen-
tation using low-dimensional color features with
blob-like distributions (Fig. 1 left) [31]. But for mid-
level segmentation using texture features extracted
at a larger spatial scale, we normally choose a feature
space whose dimension is high enough that the struc-
tures of all textures in the image can be genuinely rep-

resented.3 Such a representation unavoidably has
redundancy for individual textures: The cluster of
features associated with one texture typically lies in
a low-dimensional submanifold or subspace whose
dimension reflects the complexity of the texture
(Fig. 1 right). Properly harnessed, such low-dimen-
sional structures can be much more informative for
distinguishing textures than the centers of the
clusters.

(2) We consider lossy coding of the image features, up to
an allowable distortion. Varying the distortion pro-
vides a simple but effective means of considering tex-
tural information at different quantization scales.4

Compressing the image features with different distor-
tions, we naturally obtain a hierarchy of segmenta-
2 It is debatable whether this is how humans segment images. Coding
length is an objective measure while human segmentation is highly
subjective – much prior knowledge is incorporated in the process. Later we
will quantitatively evaluate the extent to which our segmentation results
emulate those of humans, in fair comparison with other unsupervised
image-segmentation techniques.

3 Here a genuine representation means that we can recover every texture
with sufficient accuracy from the representation.

4 In this paper, we do not consider varying the spatial scale as we will
always choose a fixed-size window as the feature vector. Nevertheless, as
we will demonstrate, excellent segmentation can already be obtained.



5 For a theoretical characterization and comparison of (lossy) ML
estimate and (lossy) MDL estimate, one may refer to [17].

6 Strictly speaking, the rate-distortion function for the Gaussian source
Nðl;RÞ is RðeÞ ¼ 1

2 log2 detðDe2 RÞ when e2

D is smaller than the smallest
eigenvalue of R. However, when e2

D is larger than some eigenvalues of R, the
rate-distortion function becomes more complicated [2]. Nevertheless, the
approximate formula RðeÞ ¼ 1

2 log2 detðI þ D
e2 RÞ can be viewed as the rate

distortion of the ‘‘regularized’’ source that works for all range of e.
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tions: the smaller the distortion, the more refined the
segmentation is (see Fig. 7). In a way, the distortion
also plays an important role in image segmentation
as a measure of the saliency of the segments in an
image: First, how small the distortion needs to be in
order for certain regions to be segmented from the
background, and second, how much we can change
the distortion without significantly altering the seg-
mentation (see Fig. 7 again). Thus, lossy compression
offers a convenient framework for diagnosing the sta-
tistics of a natural image at different quantization
scales for various segmentation purposes. This fea-
ture is absent in applications of traditional (lossless)
MDL to image segmentation.

Through a thorough evaluation, we will demonstrate that
lossy coding provides a much more relevant tool for extract-
ing low-dimensional/degenerate structures than traditional
(lossless) ML/MDL. The classical likelihood or coding
length functions are typically not well-defined for such
degenerate structures. While lossy coding, up to an allowable
distortion, has been shown to induce a regularization effect
that renders the decision rule well-defined, and it also
improves finite-sample performance [38]. This ability to
seamlessly handle both generic and degenerate distributions
renders our approach especially appropriate for segmenting
image textures.

1.2. Organization

This paper is organized as follows: Section 2 briefly
reviews the coding-based clustering algorithm [16], which
minimizes the coding length of data drawn from a mixture
of (possibly degenerate) Gaussians. Section 3 introduces
the proposed image-segmentation algorithm. Particularly,
we discuss how to adaptively select the distortion threshold
to achieve good segmentation over a large image database.
Section 4 gives experimental results on the Berkeley segmen-
tation database, and compares to other existing algorithms.
Finally, Section 5 concludes the paper. We have made all the
algorithms public for peer evaluation at: http://www.eecs.
berkeley.edu/~yang/software/lossy_segmentation/.

2. Segmentation of mixtures of Gaussians via lossy

compression

Once one adopts the assumption that image feature vec-
tors are drawn from a mixture of (possibly degenerate)
Gaussians, the problem of image segmentation reduces to
that of segmenting such mixed data into multiple Gauss-
ian-like clusters. A popular statistical method for segment-
ing mixed data is the expectation-maximization (EM)
algorithm [3,21], which is essentially a greedy descent algo-
rithm to find the maximum-likelihood (ML) estimate of the
mixture of Gaussian distributions [7,10,32].

However, notice that here we might be dealing with
degenerate Gaussians with unknown dimensions, and fur-
thermore, we do not even know how many of them. Con-
ventional EM-based clustering algorithms do not address
these problems, and must be modified to perform well in
this domain [16]. In this paper, we adopt a new but simple
clustering method introduced in [16], which is especially
adept at handling unknown number of possibly degenerate
Gaussians. For completeness, in this section, we give a brief
overview of this method and the associated clustering algo-
rithm. Readers who are already familiar with [16] may skip
this section without loss of continuity.

The new clustering method follows the principle of lossy

minimum description length (LMDL):5

Principle 1 (Data segmentation via lossy compression). We
define the optimal segmentation to be the one that
minimizes the number of bits needed to code the segmented
data, subject to a given distortion.

To apply this principle to our problem, we require an
accurate measure of the coding length of data drawn from
a mixture of Gaussians. We begin by examining the coding
length of data from a single Gaussian. Suppose we are
given a random vector v 2 RD with a multivariate Gaussian
distribution Nðl;RÞ, which we wish to encode such that
the original vector can be recovered up to a given distortion
e2, i.e., E½kv� v̂k2� 6 e2. From information theory [2], the
average number of bits needed to code v is given by the
rate-distortion function of the Gaussian, which is well
approximated as

RðeÞ ¼ 1

2
log2 det I þ D

e2
R

� �
; ð1Þ

where I is an identity matrix, and R is the covariance.6

Now consider a set of N i.i.d. samples V ¼ ðv1; v2;
. . . ; vNÞ 2 RD�N drawn from the Gaussian distribution. Let
l¼: 1

N

PN
i¼1vi, and V¼: V � l � 11�N . As bR ¼ 1

N V V T is an
estimate of R, an estimate of the rate-distortion function
R(e) is

Rðe; V Þ¼: 1

2
log2 det I þ D

e2N
V V T

� �
: ð2Þ

Encoding the N vectors in V therefore requires N Æ R(V)
bits. Since the codebook is adaptive to the data V, we must
also represent it with D ÆR(V) bits, which can be viewed as
the cost of coding the D principal axes of the data covari-
ance 1

N V V T. As the data are in general not zero-mean, we
need additional D

2
log2ð1þ lTl

e2 Þ bits to encode the mean vec-
tor l. This leads to the following estimate of the total num-
ber of bits needed to encode the data set V:

http://www.eecs.berkeley.edu/yang/software/lossy_segmentation/
http://www.eecs.berkeley.edu/yang/software/lossy_segmentation/
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LðV Þ¼: N þ D
2

log2 det I þ D
e2N

V V T

� �

þ D
2

log2 1þ lTl
e2

� �
:

Furthermore, although the above formula is derived for
a Gaussian source, the same formula gives an upper bound
of the coding length for any finite number of samples
drawn from a subspace, i.e., a degenerate Gaussian. A
detailed proof is provided in [16].

Now let us consider the given data set V as drawn from
a mixture of Gaussians. In this case, (3) no longer gives an
accurate estimate of the minimum coding length for V. It
may be more efficient to code V as the union of multiple
disjoint subsets: V = W1 [W2 [ � � � [WK. If each subset
is sufficiently Gaussian, the total number of bits needed
to code V is at most

LsðW 1; . . . ;W KÞ¼:
XK

i¼1

LðW iÞ � jW ijlog2ðjW ij=NÞf g: ð4Þ

Here the second term counts the number of bits needed to
code (losslessly) the membership of the N samples in the
K groups, e.g., using the Huffman coding [2]. Notice that
the Huffman coding of the membership is optimal only
when the membership of the vectors in the K segments
is totally random. However, in image segmentation, the
membership of pixels is not random – adjacent pixels
have higher probability of being in the same segment.
In this case, Huffman coding only gives a loose upper
bound. Nevertheless, we will demonstrate that minimizing
such a function leads to a very simple and effective seg-
mentation algorithm.

To find the optimal segmentation, one essentially needs
to compute the coding length for all possible segmentations
of the data V, which is combinatorially expensive. To make
the optimization tractable, we make use of a pairwise steep-

est descent procedure to minimize the coding length: In the
initialization step, each vector vi is assigned as its own
group. At each iteration a pair of groups Si and Sj is
merged such that the decrease in the coding length due to
coding Si and Sj together is maximal. The algorithm termi-
nates when the coding length can no longer be reduced by
merging any pair of groups.

Algorithm 1 (Pairwise Steepest Descent)
1:
 input: the data V ¼ ðv1; v2; . . . ; vN Þ 2 RD�N and a
distortion e2.
2:
 initialize S :¼ fSi ¼ fvigji ¼ 1; . . . ;Ng:

3:
 while jSj > 1 do
4:
 choose distinct groups S1; S2 2S such that
Ls(S1 [ S2) � Ls(S1,S2) is minimal.
5:
 if Ls(S1 [ S2) � Ls(S1,S2) P 0 then break;

6:
 else S :¼ ðS n fS1; S2gÞ [ fS1 [ S2g.
7 It may be possible to improve the convergence by using more
7:
 end

complicated split-and-merge strategies [35].

8

8:
 output: S
Notice that the greedy merging process in Algorithm 1 is
similar in concept to classical agglomerative clustering
methods, especially Ward’s method [37,12]. However, by

using the coding length as a new distance measure between
groups, Algorithm 1 significantly improves these classical
methods particularly when the distributions are degenerate
or the data contain outliers. Nevertheless, as a greedy des-
cent scheme, the algorithm does not guarantee to always
find the globally optimal segmentation for any given
(V, e2).7 In our experience, the main factor affecting the glo-
bal convergence of the algorithm appears to be the density
of the samples relative to the distortion e2.

Extensive simulations have verified that this algorithm is
consistently effective in segmenting data that are drawn
from a mixture of Gaussian or degenerate subspace distri-
butions. In addition, the algorithm tolerates significant
amounts of outliers, and requires no prior knowledge of
the number of groups nor their dimensions. In case that
the data structures are nonlinear manifolds, the algorithm
further provides an effective way of fitting nonlinear struc-
tures with mixture Gaussian/subspace models. Fig. 2 shows
a few segmentation results of this algorithm on synthesized
data sets. For more detailed analysis of Algorithm 1, the
reader is referred to [16].

In the above experiment, the distortion parameter e2 was
selected to be close to the true noise variance to achieve
best results. In practice, there is no universal rule for choos-
ing a good e for all practical data sets. To apply Algorithm
1 to image segmentation, we need to be able to adaptively
choose e for each image based on its unique texture distri-
bution. We will carefully examine this issue in the next
section.

3. Image segmentation via lossy compression

In this section, we describe how the lossy compression-
based method in Section 2 is applied to segmenting natural
images. We first discuss what features we use to represent
textures and why. We then describe how a low-level seg-

mentation is applied to partition an image into many small
homogeneous patches, known as superpixels. The superpix-
els are used to initialize the mid-level texture-based segmen-

tation, which minimizes the total coding length of all the
texture features by repeatedly merging adjacent segments,
subject to a distortion e2. Finally, we study several simple
heuristics for choosing a good e for each image.

3.1. Constructing feature vectors

We choose to represent a 3-channel RGB color image in
terms of the L*a*b* color metric, which was specially
designed to best approximate perceptually uniform color
spaces.8 While the dependence of the three coordinates
Equivalently, one can also use the L*u*v* metric.



Fig. 2. Simulation results (in color) of Algorithm 1 on four different mixture distributions. Left: Three Gaussian distributions in R2. Middle left: Three
affine subspaces of dimensions (2,2,1) in R3. Middle right: Three linear subspaces of dimensions (2,1,1) in R3 with 12% outliers; the algorithm groups all
the outliers into one extra Gaussian cluster, in addition to the three subspaces. Right: Approximation of a nonlinear sphere manifold using multiple
subspace models; each subspace model locally fits the nonlinear data up to the distortion e2. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. The construction of texture features: A w · w window of each of
the three L*a*b* channels is convoluted with a Gaussian and then all
channels are stacked into a single vector v.
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on the traditional RGB metric is nonlinear [1], the L*a*b*

metric better facilitates representing texture via mixtures
of Gaussians. Perceptual uniformity renders the allowable
distortion e2 meaningful in terms of human perception of
color differences, tightening the link between lossy coding
and our intuitive notion of image segmentation.

In the literature, there have been two major types of fea-
tures used to capture local textures. The first type considers
responses of a 2D filter bank as texture features [18,40].
The second directly uses a w · w cut-off window around
each pixel and stacks the color values inside the window
into a vector [25,24]. Each texture window is usually
smoothed by convolving with a 2D Gaussian kernel before
stacking. Fig. 3 illustrates this process.

Although texture features were traditionally extracted
through large-scale 2D filter banks, more recent study
has suggested that the texture features from simple cut-
off windows may give better performance in terms of image
segmentation [36]. We have experimented with using both
simple window features and two classical filter banks,
namely, the Leung-Malik set [18] and the Schmid set [30],
in conjunction with our clustering algorithm. We found
the difference in the segmentation result is small despite
the fact that filter-bank features are more computationally
expensive as they involve convolutions of the image with
large number of filters. One likely reason for the similar
performance is that the compression-base clustering algo-
rithm is capable of automatically harnessing the low-
dimensional linear structures of the features, despite noise
and outliers (see Fig. 2 and additional evidence in [16]).

For simplicity, we choose to use the window features in
this paper. We find that a 7 · 7 window provides satisfac-
tory results, although other similar sizes also work well.9

Finally, to reduce the computational cost, we project the
feature vectors into an eight-dimensional space by PCA.
This operation preserves all linear structures of dimension
9 We did not test window sizes larger than 9 pixels, as the current
MATLAB implementation cannot store all such texture vectors from a
typical 320 · 240 color image. However, this problem can be alleviated by
sampling a subset of the texture features from an image.
less than 8 in the feature space. Experimentally, we found
an eight-dimensional space to be sufficient for most tex-
tures from natural images.
3.2. Initialization with superpixels

Given the feature vectors extracted from an image, one
‘‘naive’’ approach would be to directly apply Algorithm 1,
and segment the pixels based on the grouping of the feature
vectors. Fig. 4 shows one such result. Notice that the result-
ing segmentation merges pixels near the strong edges into a
single segment. This should be expected from the compres-
sion perspective, since windows across the boundary of two
segments have significantly different structures from the
(homogeneous) textures within those segments [13]. How-
ever, such a segmentation does not agree well with human
perception.

In order to properly group edge pixels, appropriately,
we preprocess an image with a low-level segmentation
based on local cues such as color and edges. That is, we
oversegment the image into (usually several hundred)
small, homogeneous regions, known as superpixels. This
preprocessing step has been generally recommended for
all region merging algorithms in [13]. Such low-level seg-
mentation can be effectively computed using K-Means or
Normalized-Cuts (NCuts) [31] with a conservative homo-
geneity threshold. In this paper, we use a publicly available
superpixel code [23].

Since the superpixel segmentation respects strong edges
in an image (see Fig. 5 middle), it does not suffer from the



Fig. 4. Two segmentation results of the left original using Algorithm 1 with different e’s. Notice that the pixels near the boundaries of segments are not
grouped correctly.

Fig. 5. The segmentation pipeline. Left: Original. Middle: Superpixels obtained from low-level oversegmentation. Right: Segments obtained by
minimizing the coding length with e = 0.2.
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misassignment of edge pixels seen in Fig. 4. All feature vec-
tors associated with pixels in each superpixel are initialized
as one segment, forcing the subsequent merging process to
group boundary pixels together with the interior pixels. An
additional benefit from the superpixel preprocessing is a
significant reduction in the computational cost. Using
superpixel segments as initial grouping, the algorithm only
needs to search amongst several hundred of superpixels for
the optimal pair to merge, instead of searching amongst all
feature vectors (the number of vectors is on the order of
tens of thousands).

One may further consider sampling only a portion of the
feature vectors associated with each superpixel. For
instance, feature vectors at the boundary of a superpixel
represent a combination of textures from two adjacent
superpixels, and their distribution can be rather compli-
cated compared to the distribution of the feature vectors
in the interior of the superpixel. Thus, one may use only
feature vectors from the interior of each superpixel.10
10 If a superpixel only consists of boundary pixels, these pixels are used
anyway.
Our experiments show that, under the same distortion
parameter e, this modification tends to partition an image
into smaller texture segments. This phenomenon will be
discussed in more detail in Section 4.3. For clarity, all seg-
mentation results presented in this paper will use both inte-
rior and boundary feature vectors of every superpixel
unless stated otherwise.

3.3. Enforcing connected segments

Notice that in the definition of the overall coding length
function (4), we use the Huffman coding length to upper
bound the number of bits required to encode the member-
ship of the feature vectors. This obviously overestimates
the coding length since it does not take into account the
fact that in natural images, adjacent pixels have higher
probability of belonging to the same segment.

In order to enforce that the resulting segmentation
respects spatial continuity and consists of only connected
segments, we impose an additional constraint that two seg-
ments Si and Sj can be merged together only if they are spa-
tially adjacent in the 2D image. To this end, we need to



Fig. 6. Singular values of the feature vectors drawn respectively from two image segments in Fig. 5 right. The segment plotted on the left is on the woman’s
clothes, and the other is from the background.
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construct and maintain a region adjacency graph (RAG) G

in the clustering process. RAG is popularly used in other
merge-and-split type segmentation methods [15]. We repre-
sent an RAG using an adjacency list G{i} for each segment
Si. Index j is in the set G{i} if the segment Sj is a neighbor
of Si. At each iteration, the algorithm searches for a pair of
adjacent segments Si and Sj which leads to maximal
decrease in the total coding length. Note, however, that
in some applications such as image compression, discon-
nected regions may be allowed to be grouped as the same
segment. In this case, one can simply discard the adjacency
constraint in our implementation.

Fig. 5 shows an example of the two-step segmentation
process. For this image, we find that all feature vectors
approximately lie in a 6D subspace in the 8D feature space
(i.e., the first 8 principal components of the Gaussian win-
dows). Furthermore, feature vectors of each segment can
be well modeled as a 1D to 4D subspace. Fig. 6 plots the
singular values of two representative segments. This vali-
dates our initial assumption that the distributions of tex-
ture features are typically (close to) degenerate.
11 In general, EMD is equivalent to the Mallows distance when the sums
of the probabilities in two clusters are normalized to be equal. In case that
the probabilities in two clusters are not normalized, EMD and the
Mallows distance behave differently [14].
3.4. Choosing the distortion

As discussed in the introduction, the distortion e effec-
tively sets the quantization scale at which we segment an
image. Fig. 7 shows the segmentation of several images
under different values of e. As the figure suggests, a single
e will not give good performance across a widely varying
data set such as the Berkeley image-segmentation database.
Differences in the contrast of the foreground and back-
ground, lighting conditions, and image category cause the
distribution of the texture features to vary significantly
from image to image.

There are several ways to adaptively choose e to achieve
good segmentation for each image. For example, if a
desired number of segments is known a priori, we can
search a range of e values for the one that gives the desired
number of segments. When such information is not avail-
able a priori, as is the case for image segmentation, a formal
way in information theory to estimate the distortion
parameter is to minimize a cost function such as the follow-
ing one:

e�¼: min
e2E
fLsðV ; eÞ þ kNDlog2ðeÞg; ð5Þ
where k is a parameter provided by the user that weighs the
two terms Ls(V, e) and ND log2(e). Notice that the first term
Ls(V, e) decreases as e increases, as opposed to the second
term ND log2(e). Hence, the expression essentially seeks a
balance between the coding length of the data and the com-
plexity of the model measured as ND log2(e). It is studied in
[16] that (5) can accurately recover the true value of e for
the simulated Gaussian mixture models by simply setting
k = 1. However, when applied to image segmentation on
real natural images, the so-estimated e* tends to overseg-
ment the images. One reason for this discrepancy between
simulation and experiment is that the noise associated with
different texture segments can have different covariance.

In this work, we choose to adaptively select the distor-
tion e by stipulating that feature distributions in adjacent
texture regions must be sufficiently dissimilar. In the litera-
ture, the similarity measure between two texture distribu-
tions has been extensively studied. In information theory,
the Kullback–Leibler (KL) divergence measures the relative
entropy between two arbitrary distribution functions p(x)
and q(x) [2]:

dKL ¼
X
x2X

pðxÞ log
pðxÞ
qðxÞ : ð6Þ
However, the KL divergence is ill-posed for distributions
functions p(x) and q(x) that have different supports, where
q(x) may be equal to zero as the denominator in the log func-
tion. Unfortunately, this is often the case to compare two
degenerate distributions (e.g., texture vectors from images).

In computer vision, the heuristic Earth Mover’s Distance
(EMD) is a metric to measure the similarity of two image dis-
tributions [29,28]. Levina and Bickel [14] further show that
EMD is equivalent to the Mallows distance when applied
to probability distributions.11 In this paper, since texture seg-
ments are modeled by Gaussian distributions, their EMD/
Mallows similarity distance has a closed-form expression [5]:

dMðNðh1;R1Þ;Nðh2;R2ÞÞ2

¼ ðh1 � h2ÞTðh1 � h2Þ þ TrðR1 þ R2 � 2ðR1R2Þ
1
2Þ; ð7Þ



Fig. 7. Segmentation results under different e’s. Left: Originals. Middle left: e = 0.1. Middle right: e = 0.2. Right: e = 0.4.
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where the two texture regions are parameterized by Gauss-
ian distributions N(h1,R1) and N(h2,R2).

Finally, as a reasonable approximation to the Mallows
distance, one can measure the similarity of N(h1,R1) and
N(h2,R2) using their mean vectors:

dmðNðh1;R1Þ;Nðh2;R2ÞÞ2 ¼ ðh1 � h2ÞTðh1 � h2Þ: ð8Þ
For a given e and a fixed distance measure that can be
either the Mallows distance dM or the mean distance dm,
the minimal distance d(e) of an image is calculated between
all pairs of adjacent segments after the compression-based
merging. The selection process gradually increases the
value of e from a list E of candidate values until the mini-
mal distance d(e) is larger than a preselected threshold c:

e� ¼ minfe : dðeÞP cg: ð9Þ
The final segmentation result then gives the most refined
segmentation which satisfies the above constraint. We note
that increasing e typically causes the number of segments to
decrease and results in a shorter coding length. We may
therefore use the segmentation computed with a smaller e
to initialize the merging process with a larger e, allowing
us to search for the optimal e more efficiently.

It may seem that we have merely replaced one free
parameter, e, with another, c. This replacement has two
strong advantages, however. Experimentally we find that
even with a single fixed value of c the algorithm can effec-
tively adapt to all image categories in the Berkeley data-
base, and achieve segmentation results that are consistent
with human perception. Furthermore, the appropriate c
can be estimated empirically from human segmentations,
whereas e cannot. This heuristic thresholding method is
similar in spirit to several robust techniques in computer
vision for estimating mixture models, e.g., the Hough
transform and RANSAC.

The complete segmentation process is specified as
Algorithm 2. In terms of speed, on a typical 3 GHz Intel
PC, the MATLAB implementation of the CTM algorithm
on a 320 · 240 color image takes about two minutes to
preprocess superpixels, and less than one minute to search
for the optimal e* and minimize the coding length of the
features.



Fig. 10. Examples in category water. Left: Original. Middle: CTMc=0.1. Right: CTMc=0.2.

Fig. 8. Segmentation results on certain animal images. CTM+ represents the CTM algorithm applied to all texture vectors including those at the
boundaries. CTM� represents the same algorithm without sampling the texture vectors at the boundaries.

Fig. 9. Examples in category landscape. Left: Original. Middle: CTMc=0.1. Right: CTMc=0.2.
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Fig. 11. Examples in category urban. Left: Original. Middle: CTMc=0.1. Right: CTMc=0.2.

Fig. 12. Examples in category animals. Left: Original. Middle: CTMc=0.1. Right: CTMc=0.2.
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4. Experiments

In this section, we demonstrate the segmentation results
of Algorithm 2 (CTM) on natural images in the Berkeley
segmentation database [20], which also contains bench-
mark segmentation results obtained from human subjects.
4.1. Visual verification

We first visually verify the segmentation results on the
Berkeley database. Representative segmentation results of
the CTM algorithm with c = 0.1 and c = 0.2 are shown
in Figs. 9–14. The mean distance dm defined in (8) is used
to measure the texture similarity between adjacent seg-
ments.12 For better visual evaluation, we have partitioned
the database into six different image categories, each of
which consists of images that are more relevant, namely,
Landscape (Fig. 9), Water (Fig. 10), Urban (Fig. 11), Ani-

mals (Fig. 12), People (Fig. 13), and Objects (Fig. 14). By
comparing the segmentation results with the two c values,
we conclude that smaller c’s tend to generate more seg-
ments and oversegment the images, and larger c’s tend to
generate less segments and hence undersegment the images.
12 The segmentation using the Mallows distance dM is slightly different.
However, using the quantitative segmentation measures in Section 4.2, the
segmentations using the two distances are very close in terms of the
performance.
Algorithm 2 (CTM: Compression-based Texture Merging)
input: I
mage I 2 RH�W�3 in L*a*b* metric, reduced
dimension D, window size w, distortion range E,
and minimum mean distance c.
1: P
artition I into superpixels S1, . . . ,SK. For pixel
pi 2 Sj, initialize its label li = j.
2: C
onstruct RAG G{1}, . . . ,G{K} for the K segments
S1, . . . ,SK.
3: S
ample w · w windows, and stack the resulting
values into a feature vector vi 2 R3w2

.

4: R
eplace vi with their first D principal components.

5: f
or all e 2 E in ascending order do
6:
 for all initial segments Si, i = 1, . . . ,K do
7:
 Compute Ls(Si, e).

8:
 for all j 2 G{i} do
9:
 Uij „ Ls(Si, e) + Ls(Sj, e) � Ls(Si [ Sj, e)

10:
 end for
11:
 end for

12:
 while Uij „ max{U} > 0 do
13:
 Merge Si and Sj. Update arrays l, G, L, and U.

14:
 Segment number K ‹ K � 1.

15:
 end while
16:
 if c 6 mini,j2G(i){d(Si,Sj, e)} then
17:
 break.

18:
 end if
19: e
nd for

output: F
inal pixel labels l1, . . . , lH · W.



Fig. 13. Examples in category people. Left: Original. Middle: CTMc=0.1. Right: CTMc=0.2.

Original. Middle: CTMc=0.1. Right: CTMc=0.2.
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4.2. Quantitative verification
Fig. 14. Examples in category objects. Left:
We now quantitatively compare CTM against three
unsupervised algorithms that have been made available
publicly: Mean-Shift [1], NCuts [31], and Felzenszwalb
and Huttenlocker (FH) [6]. The comparison is based on
four quantitative performance measures:

(1) The Probabilistic Rand Index (PRI) [27] counts the
fraction of pairs of pixels whose labels are consistent
between the computed segmentation and the ground
truth, averaging across multiple ground truth segmen-
tations to account for scale variation in human
perception.

(2) The Variation of Information (VoI) metric [22]
defines the distance between two segmentations as
the average conditional entropy of one segmentation
given the other, and thus roughly measures the
amount of randomness in one segmentation which
cannot be explained by the other.
(3) The Global Consistency Error (GCE) [20] measures
the extent to which one segmentation can be viewed
as a refinement of the other. Segmentations which
are related in this manner are considered to be consis-
tent, since they could represent the same natural
image segmented at different scales.

(4) The Boundary Displacement Error (BDE) [8] mea-
sures the average displacement error of boundary pix-
els between two segmented images. Particularly, it
defines the error of one boundary pixel as the dis-
tance between the pixel and the closest pixel in the
other boundary image.

Since all methods are unsupervised, we use both the
training and testing images for the evaluation. Due to
memory issues with the NCuts implementation in MAT-
LAB, all images are normalized to have the longest side
equal to 320 pixels. We ran Mean-Shift [1] with parameter
settings (hs,hr) chosen at regular intervals of [7,16] · [3, 23],
and found that on the Berkeley database, (hs,hr) = (13,19)



Table 1
Average performance on the Berkeley Database (bold indicates best of all
the algorithms)

PRI VoI GCE BDE

Humans 0.8754 1.1040 0.0797 4.994
CTMc=0.1 0.7561 2.4640 0.1767 9.4211

CTMc=0.15 0.7627 2.2035 0.1846 9.4902
CTMc=0.2 0.7617 2.0236 0.1877 9.8962
Mean-Shift 0.7550 2.477 0.2598 9.7001
NCuts 0.7229 2.9329 0.2182 9.6038
FH 0.7841 2.6647 0.1895 9.9497

PRI ranges between [0,1], higher is better. VoI ranges between [0,1),
lower is better. GCE ranges between [0,1], lower is better. BDE ranges
between [0,1) in the unit of pixel, lower is better.
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gives a good overall tradeoff between the above quantita-
tive measures. We therefore use this parameter choice for
our comparison. For NCuts [31], we choose the number
of segments K = 20 to agree with the average number of
segments from the human subjects. For the FH algorithm,
we choose the Gaussian smoothing parameter R = 0.5, the
threshold value k = 500, and the minimal region size to be
200 pixels, as suggested by the authors [6].

Table 1 gives the quantitative comparison of CTM
against the other three algorithms on the Berkeley segmen-
tation benchmark. In the experiment, three c values are
tested for CTM, namely, c = 0.1,0.15, 0.2. The texture dis-
tance is the mean distance dm. The distortion range E for
the e value is between 0.01 and 0.5, which are relative scales
in terms of the normalized texture vectors.

Table 1 shows that quantitatively, CTM outperforms
Mean-Shift, NCuts, and FH in terms of most indices: At
c = 0.15, CTM is better than Mean-Shift and NCuts in
terms of all four indices; and for all chosen c’s, CTM is bet-
ter than FH except for the PRI index. It is perhaps not sur-
prising that CTM significantly outperforms the other three
algorithms in terms of the VoI index, since we are optimiz-
ing an information-theoretic criterion. Comparing with the
indices of the results by humans, these numbers show that
minimizing the coding length leads to segmentation that is
closer to human segmentation. It suggests that perhaps
human perception also approximately minimizes some
measure of the compactness of the representation.

One may also interpret the results in terms of the differ-
ences among the four segmentation indices. The GCE and
BDE indices penalize undersegmentation more heavily
than oversegmentation. In particular, GCE does not penal-
ize oversegmentation at all, i.e., the highest score is
achieved by assigning each pixel as an individual segment.
As a result, CTMc=0.1 has returned the best GCE and BDE
values among all the results in Table 1, but its VoI value is
one of the worst in the table. From our experience (also
shown in Figs. 9–14), PRI and VoI seem to be more corre-
lated with human segmentation in term of visual
perception.

To summarize both visual and quantitative compari-
sons, we notice that on one hand, if we tune the algorithms
to give the visually best match with human segmentation,
none of the algorithms with different parameters is a clear
winner in terms of all four indices; on the other hand, none
of the indices seems to be a better indicator of human seg-
mentation than others, which suggests that human segmen-
tation uses much more comprehensive cues. Nevertheless,
the extensive visual demonstration and quantitative com-
parison does serve to validate our hypotheses that the dis-
tribution of texture features of natural images can be well
approximated by a mixture of (possibly degenerate) Gaus-
sians. As a result, the compression-based clustering algo-
rithm as a powerful tool exploits the redundancy and
degeneracy of the distributions for good texture
segmentation.

4.3. Difficulties and possible extensions

To fairly assess an image-segmentation algorithm, we
also need to investigate examples for which the algorithm
has failed to produce good results. In this subsection, we
will show a handful of such examples from the Berkeley
database, and discuss several possible extensions to the
CTM algorithm to further improve the segmentation
results.

A particular category that CTM has trouble with is a set
of images of animals with very severe camouflage. Fig. 8
shows some representative examples. For these examples,
it is difficult for CTM to segment an animal from the back-
ground even with very small distortion e. Comparing with
Fig. 7, human figures often endure a larger e, as human
complexion and clothes stand out from the (man-made)
surroundings. Thus, in a way, the distortion e can be inter-
preted as a measure for how ‘‘salient’’ an object is in an
image and how much ‘‘attention’’ is needed to segment
the object.

In order to extract severely camouflaged animals from
their surroundings, a straightforward extension of the
CTM algorithm is to exclude texture vectors at the bound-
aries of the superpixels. A texture vector, say the Gaussian
window, at the boundary contains pixels from the two
adjacent superpixels that share the common boundary.
By excluding these texture vectors, the set of texture vectors
from the superpixel become more homogeneous. Hence,
the compression-based algorithm can more effectively dis-
tinguish the texture of the animal from that of the back-
ground. This variation of CTM is denoted as CTM�
while the original version is denoted as CTM+. Fig. 8 dem-
onstrates the improvement of the CTM� algorithm on
these images. But notice that it still failed to segment out
the body of the crocodile from the background; in this case
the camouflage is effective enough to fool even human eyes.

We also observe another limitation of CTM from the
results in Fig. 8. As an example, for the Leopard image,
the algorithm needs to use a relatively small e to extract
the image segment of the leopard from the background.
Nevertheless, under the same e, the background textures
are oversegmented. At a fixed c, the CTM algorithm
searches for the best distortion parameter e value to code
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the feature vectors of the entire image, despite the fact that
these textures may have different noise variances (e.g., fore-
ground versus background).

A possible solution to this problem is to assign different e
values to different image regions in a supervised scenario.
Given a set of training images that are segmented by a human
subject, one can learn the distribution of e of all the textures.
Then, given a new image, one needs to infer the appropriate e
to use for different regions in a Bayesian fashion.

Such an extension may give more relevant segmentation
results for several important applications, such as salient
object detection. For instance, saliency is arguably a sub-
jective notion, as people have their own preference of
which region in an image is the most salient one. We have
shown through extensive experiments in this paper that
whether an image region can be segmented from its sur-
roundings is closely related to the distortion allowed in
the lossy coding. Therefore, it is possible to learn a com-
pression-based saliency detector through a set of examples.
The segmentation results will most likely resemble the
results of the individual human subject who has provided
the training examples.

5. Discussion and conclusion

In this paper, we have proposed that texture features of
a natural image should be modeled as a mixture of possibly
degenerate distributions. We have introduced a lossy com-
pression-based clustering algorithm, which is particularly
effective for segmenting degenerate Gaussian distributions.
We have shown that the algorithm can be customized to
successfully segment natural images by harnessing the nat-
ural low-dimensional structures that are present in raw tex-
ture features such as Gaussian windows.

In addition, the lossy compression-based approach
allows us to introduce the distortion as a useful parameter
so that we can obtain a hierarchy of segmentations of an
image at multiple quantization scales. We have proposed
a simple heuristic criterion to adaptively determine the dis-
tortion for each image if one wants to match the segmenta-
tion with that of humans.

In this paper, we have studied only unsupervised seg-
mentation of natural images. However, the proposed
framework can also be extended to supervised scenarios.
We believe that it is of great importance to better under-
stand how humans segment natural images from the lossy
data compression perspective. Such an understanding
would lead to new insights into a wide range of important
problems in computer vision such as salient object detec-
tion and segmentation, perceptual organization, and image
understanding and annotation. These are some of the chal-
lenging problems left open for future investigation.
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