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ABSTRACT
We present a new algorithm for automatically solving jigsaw puz-
zles by shape alone. The algorithm can solve more difficult puz-
zles than could be solved before, without the use of backtracking
or branch-and-bound. The algorithm can handle puzzles in which
pieces border more than four neighbors, and puzzles with as many
as 200 pieces. Our overall strategy follows that of previous algo-
rithms but applies a number of new ideas, such as robust fiducial
points, “highest-confidence-first” search, and frequent global reop-
timization of partial solutions.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling; I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement

General Terms
Algorithms

Keywords
Shape matching, fiducial points, mesh smoothing

1. INTRODUCTION
Automatic solution of jigsaw puzzles by shape alone goes back at

least to 1964 [7]. Although numerous papers have been written on
this subject since then, there are still no published algorithms that
can solve large puzzles reliably and efficiently. In this paper we in-
troduce a few new ideas that extend the reach of what can be done
to a wider class of puzzles and to puzzles with more pieces.

Papers on this subject traditionally justify the work by citing re-
lated problems. Related problems include reconstructing archeo-
logical artifacts [8, 10, 11, 12, 13], mating surface patches of scanned
objects [14], and even fitting a protein with known amino acid se-
quence to a 3D electron density map [19]. The real interest in jigsaw
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puzzle solving, however, is simply that it is a natural and challeng-
ing problem that catches people’s imaginations.

The apictorial jigsaw problem has two main difficulties. One is
combinatorial: there are a very large number of ways that pieces can
be assembled. The other is geometric: it is difficult to detect if a pair
of complementary pieces really match. When solved by hand, a per-
son can usually feel a snap when making a true match, but scanned
piece shapes (both ours and those of previous researchers) are not
precise enough for such a determination. Evidently a robot can feel
a snap too: Burdea and Wolfson [4] used this sort of force feedback
“matching oracle” in robotic solution of jigsaw puzzles.

Standard toy-store jigsaw puzzles obey certain rules that make
the problem more tractable that it would otherwise be. Standard
rules include: (1) the puzzle has a rectangular outside border; (2)
pieces form an overall rectangular grid so that each interior piece
has four primary neighbors (left, right, above, and below); and (3)
pieces interlock with their primary neighbors by tabs, consisting of
an “indent” on one piece mating with an “outdent” on its neighbor.
Another rule is optional: (4) each piece has no neighbors except
its primary neighbors, that is, the cutting lines between pieces meet
only at +-junctions rather than a mix of +-, T-, and Y-junctions.
Our algorithm can solve reasonably big apictorial jigsaw puzzles
(100 or more pieces), even if they do not obey rule (4).

We know of only one other automatic jigsaw puzzle solver that
can handle large puzzles: the algorithm given by Wolfson et al. [21].
Our algorithm follows the same overall approach as that of Wolf-
son et al., that is, first solving the border and then filling in interior
“pockets”, but our algorithm differs in many substeps. We make
more use of global geometry, for example, at all times maintaining a
geometric embedding of the best partial solution; whereas Wolfson
et al. [21] use only local geometry, the pairwise matching of sides
of pieces.

Our algorithm appears to be more capable, solving a 204-piece
puzzle, the largest puzzle solved automatically to date. Our algo-
rithm also solves a 100-piece puzzle that grossly disobeys rule (4).
Because Wolfson et al. rely on pieces having four well-defined sides,
their algorithm cannot solve puzzles that significantly disobey rule
(4). (Although our 204-piece puzzle obeys rule (4), our algorithm
does not take advantage of this property. We did not realize the im-
portance of rule (4) at the time we bought the puzzles!) We have
not yet tried our program on an independent “test puzzle”, not used
in the development of the algorithm. This experiment would be a
more rigorous criterion for success.
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Figure 1: This 100-piece puzzle presents a difficulty for previous algorithms: pieces do not have four well-defined sides.

2. OVERVIEW
As in the work of Wolfson et al. [21], our algorithm first assem-

bles the border pieces using a heuristic for the Traveling Salesman
Problem. We depart from previous work in how we place the inte-
rior pieces. Because we do not assume that pieces have well-defined
sides, we require a more global matching technique. At all times,
we maintain an optimized planar embedding of the current partial
solution. We fit a piece into a pocket not by independent pairwise
fitting with top and side neighbors as in [21], but by fitting it into the
embedded partial solution, thus allowing for any number of neigh-
bors around the pocket. Wolfson et al. rejected global embedding
because of the possibility of accumulated errors, but we found to
the contrary that global embedding gave more accurate results than
pairwise matching, enabling a greedy placement algorithm—without
any backtracking or branch-and-bound—to solve the jigsaw puz-
zles. (For more complicated puzzles, we could easily add backtrack-
ing or branch-and-bound.)

We used fiducial points (specifically the centers of ellipses fit to
the indents and outdents) to find the best translation and rotation
of a piece to match a pocket. An alternative would be to use the
Schwartz-Sharir curve-to-subcurve matching algorithm [16, 21], or
Wolfson’s subcurve-to-subcurve matching algorithm [22]. Yet more
possibilities include a string matching approach [3] or a dynamic
programming energy minimization approach [8, 17]. The fiducial
points approach, however, worked quite well and is significantly
faster, because it does not need to test all subcurve or substring start-
ing points. Another advantage of fiducial points is that they are more
robust to scanning noise than some of the other techniques. For ex-
ample, the Schwartz-Sharir algorithm picks points pi along the bound-
ary of one piece and qi along the boundary of another piece. Then
it finds a rigid motion that carries the pi’s to p0i’s and minimizesP

(p0i � qi)
2. This only works well if the pi and qi points can be

brought into alignment. If the points are equally spaced by arc length,
then scanner noise that introduces a bump into one of the pieces will
throw the two sequences out of synchronization.

We filled pockets in highest-confidence-first order. Call an empty
position an eligible pocket if it has at least two primary neighbors
that have already been placed. Initially, when only the border pieces
have been placed, there are four eligible pockets; later there may
be quite a few eligible pockets as shown in Figure 2. At each step
we fill the eligible pocket that has the highest ratio of the score of
best fitting piece to the second best fitting piece. This order turned
out to be more reliable than best-first order, which has been used
before [3].

After fitting a piece, we reoptimize the global embedding of all
pieces. We do this by minimizing the squares of the distances be-
tween corresponding points on neighboring pieces, for all neigh-
boring pieces at once. Global optimization distributes the matching
inconsistencies throughout the partial solution, and in our experi-
ments outperformed a smoothing procedure that moved one piece
at a time.

3. DETAILED DESCRIPTION
We now describe the algorithm in more detail, starting from data

acquisition. We used two jigsaw puzzles purchased at the local toy
store: a 100-piece puzzle made by Milton-Bradley (Figure 1) and
a 204-piece puzzle made by Ravensburger (Figure 5). The puzzle
pieces are about a millimeter thick and cast shadows when scanned,
making it difficult to accurately extract the boundaries of the pieces.
We found that a color copier produced less shadow than a flatbed
scanner, so we first copied the pieces—copying the blank, back sides
of well-separated pieces against a red background—and then scanned
the copy at 300 dpi.

To extract the pieces from the scans, we used a color histogram
to determine the color range of the back sides of pieces, and then
defined the background to be the pixels not falling within this color
range, in order that shadows be considered background. The pieces
are then the largest connected components of the foreground (com-
plement of the background). We smoothed piece boundaries using
morphological operations: we switched any foreground pixel to back-
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Figure 2: There are 8 eligible pockets at this step.

ground if it had three or more background neighbors, or if it was
in a row or column with two or fewer foreground pixels. We then
took every other pixel around the boundary as a vertex, and per-
formed some Gaussian smoothing on these points, in order to ob-
tain a polygonal representation of the boundary. The polygons, each
with about 600 vertices with floating-point coordinates, seemed to
be accurate to about .5 mm tolerance. Sources of error included
piece shadows, scanner noise, specks of color on the back sides of
pieces, and most ominously “hanging chad”. We manually num-
bered the polygons according to their positions in the solved puzzle,
in order that we could check the computer’s solution.

3.1 Finding Indents, Outdents, and Flat Sides
Many previous algorithms, including that of Wolfson et al. [21],

simply divided piece boundaries into four sides by finding sharp cor-
ners. In order to handle puzzles such as Figure 1, however, we need
a somewhat more sophisticated classification of boundary “parts”.

Our algorithm searches for tabs, which are either indents or out-
dents. Finding the tabs requires some care. For example, if we de-
fine an outdent as a region that touches the convex hull of the piece
and has a “neck” that will interlock with a neighboring piece, then
the piece in Figure 3(a) would be incorrectly classified as having
five outdents. It turns out to be easier to find the indents first.

In order to find the indents, we first find inflection points, edges at
which the turning of the polygon changes direction. Because straight
parts of the boundary may have many spurious inflection points, we
reject inflection points unless the turning after each end totals at least
10Æ before turning back. Figure 6(a) shows inflection points along
an indent and an outdent. The precise locations of inflection points
are not very robust, because piece boundaries are often quite straight
near their inflection points; however, the mere existence of inflec-
tion points on either side of an indent is quite reliable. Indents are
identified by finding points p along the boundary that locally maxi-
mize the distance to the convex hull of the piece, finding the inflec-
tion points on either side of p, and finally testing whether the tangent
lines through the inflection points cross outside the piece. This last
test embodies the assumption that tabs interlock.

Before finding outdents, our algorithm finds straight sides. Even
this step is nontrivial. For example, the piece in Figure 3(b) has long
straight stretches of the boundary that are not straight sides. To han-
dle the situations shown in this figure, the algorithm finds straight

Figure 3: (a) The piece on the left illustrates the importance
of identifying indents before outdents. Of the five possible out-
dents, only 2 and 3 are genuine. (b) The piece on the right has
some long straight stretches that are not straight sides.

Figure 4: For pieces that fit perfectly, the lengths of the bold
parts of horizontal lines should be equal.

sides by first finding straight stretches of boundary, but rejecting a
stretch unless it turns “inward” at each end, and neither inward turn
is part of a previously identified indent.

The algorithm finds outdents along stretches of the boundary that
have not yet been assigned to indents or straight sides. More pre-
cisely, an indent claims the boundary on either side up until the bound-
ary comes sufficiently close (� 10 pixels) to the convex hull and
then falls off the hull again. Symmetric to the procedure for identi-
fying indents, outdents are identified by finding points p along the
boundary that locally minimize the distance to the convex hull of
the piece, finding the inflection points on either side of p, and fi-
nally testing whether the tangent lines through the inflection points
cross inside the piece.

3.2 Ordering the Border
As in previous algorithms [3, 21], we begin by placing the border

pieces. First we find the order of the border pieces, then we actually
embed the border pieces in the plane. Each border piece has a right
and left side, unambiguously defined by orienting the piece with its
straight side down. In the case of a corner piece, we orient the two
straight sides to be down and to the right. We define a score s(A;B)
measuring how well the right side of piece A fits the left side of
piece B. Finding the best ordering is now an asymmetric traveling
salesman problem with s(A;B) serving as the distance from “city”
A to city B. It is asymmetric in that s(A;B) 6= s(B;A). We solve
this NP-hard problem using the assignment problem heuristic.

If the number of border pieces is n, imagine n workers and n

machines where the cost of assigning worker A to machine B is
s(A;B). In polynomial time we can find the best assignment of
workers to machines. To convert this to a path, pick any piece P
to start the path. If worker P is assigned to machine Q, we set the
second element of the path to be Q. If worker Q is assigned to R,
then set R to be the third element of the path, and so on. This may
not give a traveling salesman tour because the path may return to P
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Figure 5: This 204-piece puzzle is the largest one solved automatically to date. Wolfson et al. solved two intermixed 104-piece puzzles,
but the two-puzzle problem is somewhat easier because there is more border and near-border.

in less than n steps. For our test puzzles we obtained either a single
n-long cycle or two cycles. In the latter case it requires only O(n2)
steps to test all possible ways to stitch the two cycles together. Tak-
ing the optimal stitched cycle will find the correct border ordering
provided that there were no more than two errors in the initial or-
dering. One of the advantages of starting with border pieces is that
the four corner pieces provide a natural check on the solution, since
they must be symmetrically placed. Thus if the assignment problem
heuristic made more than two errors, we would detect this failure at
this early stage, and go on to consider more complicated ways of
stitching together cycles.

It is relatively easy to come up with a scoring function s(A;B)
for border pieces, since such pieces must be aligned at their straight
sides. The score we use is computed by positioning the pieces with
their straight sides along a common supporting line, and then exam-
ining lines parallel to the supporting line, as shown in Figure 4. For
each such line, we compute the length “between” the two pieces (to-
tal length outside both pieces). If the pieces fit perfectly, the distri-
bution of lengths should cluster tightly about the median, and hence
we compute the score as the average difference to the median of the
between lengths.

3.3 Planar Embedding
The next step is to embed the border pieces in the plane, that is,

to give them x- and y-coordinates. First, we place one piece ar-
bitrarily. From the solution to the traveling salesman problem, we
can find two neighboring pieces. Although we could place the sec-

ond piece by aligning its straight side to the straight side of the first
piece, instead we use a more general method that we shall reuse for
placing pieces in the interior of the puzzle.

We use fiducial points—canonical locations—to align adjacent
pieces. We define one fiducial point per tab, both indents and out-
dent. One possible choice for a fiducial point is an inflection point
near the neck of a tab, but this choice is rather poor, because the pre-
cise location of inflection points is quite sensitive to scanner noise.

We instead compute fiducial points by fitting an ellipse to each
tab (using least squares) and defining the center of the ellipse to be
a fiducial point, as seen in Figure 6(a). We fit the ellipse to polygon
points from one inflection point to another. Although the positions
of the inflection points are not robust, small variations in their posi-
tions have little effect on the fitted ellipse.

We use the fiducial points in turn to place a sequence of points
along the tab that should match well with corresponding points on
the tab of the neighboring piece. Rather than taking points equally
spaced by some measure of arc length as in previous work [3, 21],
we found that synchronization was more robust with points that are
equiangular as viewed from the ellipse center. In order to align two
neighboring pieces, we then use a least-squares fit to find the rigid
motion (rotation and translation) that minimizes the sum of squares
of distances between corresponding points.

The method just described performs quite well locally, but is in-
sufficient to compute a good global embedding. The last boundary
piece will fit well with the next-to-last piece, but typically will be
quite far from the first piece and hence will not form a closed frame.
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Figure 6: (a) The algorithm uses three feature points on a tab: inflection points, ellipse centers, and tangent points. (b) The matching
score of a piece to a pocket is computed using the path between the two tangent points marked by dots.

We perform a global relaxation that distributes the total error evenly
among all the border pieces. This relaxation will later be used for
the interior pieces as well.

For the global relaxation, we pick k pairs (k = 30 worked well)
of corresponding points along each common border between neigh-
boring pieces. We then minimize the sum of the squares of all intra-
pair distances in order to find new positions for all n pieces at once.
The adjustment of piece P is a rigid motion given by

x
0 = x cos �P � y sin �P + cP

y0 = x sin �P + y cos �P + dP :

We want to find the values of the 3n variables f�P ; cP ; dP g that
minimize the distance between pairs of corresponding points

X

P;Q

kX

j=1

d(z0
P
j ; z

0Q
j )

where z0Pj , z0Qj are the pairs of points along the adjusted common
border of neighboring pieces P and Q. This minimization prob-
lem is not linear. But since the relaxation only moves pieces a small
amount, �P is small and we can linearize using

x
0 � x� y�P + cP

y
0 � x�P + y + dP :

A similar global relaxation has been proposed as a method for
repositioning vertices in finite-element meshes in order to improve
the shapes of elements [5], but the idea has not gained much popu-
larity because one-at-a-time repositioning seems to be just as effec-
tive and much more efficient (see for example [2]). The superiority
of global relaxation for jigsaw puzzles thus came as a bit of a sur-
prise to us. We now expect that global relaxation would be better
than one-at-a-time repositioning for the problem of distributing er-
rors smoothly over a surface scanned in nearly-rigid patches, a prob-
lem that arises in the Digital Michelangelo project [14].

3.4 Placing Interior Pieces
As we mentioned in Section 2, we use a simple greedy algorithm,

without backtracking or branch-and-bound, to place interior pieces.
There are three ingredients to the algorithm: a score measuring how
well a piece fits into an eligible pocket, a strategy for the order in
which we place pieces, and an optimization step to readjust the em-
bedding after each new piece is placed.

Recall that an unfilled piece location is called an eligible pocket
if it is adjacent to at least two existing pieces (Figure 2). We score
how well a piece P fits into an eligible pocket in two steps. First
we calculate the position P would have if it really belongs in that
pocket, and then we compute a score using this position. The po-
sition for P is the one that minimizes the sum of squares of dis-
tances between corresponding fiducial points, those on P ’s tabs and
those on the pocket’s tabs. The score for P is computed by walk-
ing along the boundary of P , and for each vertex of P , finding the
closest boundary point on any of the neighboring pieces defining the
pocket. (Here we measure vertex-to-edge distances rather than the
simpler, but less robust, vertex-to-vertex distances.) As can be seen
in Figure 6(b), a piece bordered on two sides with already placed
pieces can share a third border with a diagonally adjacent piece. The
score is the average of the cubed distances between vertices of P
and their closest pocket points. We do not really know why the cubes
of distances worked better than the more usual squares of distances
(for the 100-piece puzzle either one worked); evidently true matches
are distinguished by close distances everywhere.

Because we do not assume that pieces have well-defined sides,
we need to know how far to extend the walk along the boundary of
P . We accomplish this using tangent points, points on the neck of
the tab that are tangent to a radius emanating from the ellipse center,
as shown in Figure 6(a). As shown in Figure 6(b), the operative part
of the boundary of P lies between two tangent points, one on each
of the tabs of the eligible pocket.

The part of the boundary not included between the two tangent
points also contains valuable information on how well pieces fit to-
gether. This information was not needed for the 100-piece puzzle,
but became important for the larger 204-piece puzzle. To incorpo-
rate this information into the scoring for a piece P , we use one step
of lookahead. PlacingP creates some new eligible pockets adjacent
to P . For each of these pockets we find the best fitting piece. Then
we recompute the score for P using the (temporarily) newly fitted
neighbors. In other words, the score is recomputed using a path that
includes much more of the boundary of P .

As mentioned in Section 2, we place pieces with highest confi-
dence first, whether or not we are using one-step lookahead. The
highest-confidence placement fills the eligible pocket with the largest
ratio between the first and second-best scores. After placing each
piece, we reoptimize the embedding using the global least-squares
relaxation described in Section 3.3.
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4. DISCUSSION
Our implementation includes a few simple speed-up tricks. For

example, we cache the computation of scores, and we only perform
the one-step lookahead mentioned above for pieces whose score is
within a factor of two of the best scoring piece. Overall it took about
3 minutes to solve the 100-piece puzzle and 20 minutes to solve the
204-piece puzzle on a Sun Ultra-60 workstation. This includes the
time needed to process each scan, as well as the actual placement of
each piece.

Many parts of our algorithm do not use any hand-tuned param-
eters. Examples are the computation of fiducial points and the re-
laxation calculation. Other steps will probably have to be modified
slightly to work properly on a wide range of test puzzles. For exam-
ple the identification of straight sides involves some parameters that
are hand-tuned. The most serious example of ad hoc tuning occurs
in the scoring function used to place interior pieces. As mentioned
above, we computed scores as a sum of cubes of distances (rather
than the usual squares) in order to solve our 204-piece test case.

In summary, we were attracted to the jigsaw puzzle problem be-
cause it presents an interesting combination of combinatorial and
geometric challenges, and because no completely satisfactory al-
gorithms have yet been published. We believe our algorithm per-
forms better than previous algorithms for this “toy problem”. More
speculatively, we think that some of our techniques could be appli-
cable to other problems. First, we use a feature-based method, fo-
cusing on tabs, to match sides of pieces. We expect that analogous
problem-specific features (color, texture, thickness, etc.) would be
more powerful than generic curve-subcurve matching for many re-
alistic assembly problems, such as those arising in archeology. Sec-
ond, we use a global optimization step to readjust the positions of all
the pieces after fitting each new piece. This step seems especially
important when the boundary curves themselves hold little informa-
tion, for example, in the case of broken glass with relatively straight
fracture lines. Finally, we fit pieces in order of confidence. For as-
sembling broken objects, the power of this idea could perhaps be
magnified by a probabilistic model of the breaking process and use
of log-likelihood for scoring matches.
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