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ABSTRACT

We present a new algorithm for automatically solving jigsaw puz-
Zles by shape aone. The algorithm can solve more difficult puz-
Zles than could be solved before, without the use of backtracking
or branch-and-bound. The algorithm can handle puzzles in which
pieces border more than four neighbors, and puzzles with as many
as 200 pieces. Our overall strategy follows that of previous algo-
rithms but applies a number of new ideas, such as robust fiducial
points, “ highest-confidence-first” search, and frequent global reop-
timization of partial solutions.

Categories and Subject Descriptors

1.3.5[Computer Graphics]: Computational Geometry and Object
Modeling; 1.4.7 [Image Processing and Computer Vision]: Fea
ture Measurement

General Terms
Algorithms

Keywords
Shape matching, fiducial points, mesh smoothing

1. INTRODUCTION

Automatic solution of jigsaw puzzles by shape alone goes back at
least to 1964 [7]. Although numerous papers have been written on
this subject since then, there are till no published algorithms that
can solve large puzzlesreliably and efficiently. In this paper wein-
troduce afew new ideas that extend the reach of what can be done
to awider class of puzzles and to puzzles with more pieces.

Papers on this subject traditionally justify the work by citing re-
lated problems. Related problems include reconstructing archeo-
logicd artifacts[8, 10, 11, 12, 13], mating surface patches of scanned
objects [14], and even fitting a protein with known amino acid se-
quencetoa3D electron density map [19]. Thereal interestinjigsaw
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puzzle solving, however, is simply that it is anatural and challeng-
ing problem that catches peopl€'s imaginations.

The apictorial jigsaw problem has two main difficulties. Oneis
combinatorial: thereareavery largenumber of waysthat piecescan
be assembled. Theother isgeometric: itisdifficult to detect if apair
of complementary piecesreally match. When solved by hand, aper-
son can usualy feel a snap when making atrue match, but scanned
piece shapes (both ours and those of previous researchers) are not
precise enough for such adetermination. Evidently arobot can feel
asnap too: Burdea and Wolfson [4] used this sort of force feedback
“matching oracle” in robotic solution of jigsaw puzzles.

Standard toy-store jigsaw puzzles obey certain rules that make
the problem more tractable that it would otherwise be. Standard
rules include: (1) the puzzle has a rectangular outside border; (2)
pieces form an overall rectangular grid so that each interior piece
has four primary neighbors (left, right, above, and below); and (3)
pieces interlock with their primary neighbors by tabs, consisting of
an “indent” on one piece mating with an “outdent” on its neighbor.
Another rule is optional: (4) each piece has no neighbors except
its primary neighbors, that is, the cutting lines between pieces meet
only at +-junctions rather than a mix of +-, T-, and Y-junctions.
Our agorithm can solve reasonably big apictoria jigsaw puzzles
(100 or more pieces), even if they do not obey rule (4).

We know of only one other automatic jigsaw puzzle solver that
can handlelargepuzzles: thealgorithm given by Wolfson et al. [21].
Our algorithm follows the same overall approach as that of Wolf-
son et a., that is, first solving the border and then filling in interior
“pockets’, but our agorithm differs in many substeps. We make
more use of global geometry, for example, at all timesmaintaining a
geometric embedding of the best partial solution; whereas Wolfson
et a. [21] use only local geometry, the pairwise matching of sides
of pieces.

Our agorithm appears to be more capable, solving a 204-piece
puzzle, the largest puzzle solved automatically to date. Our ago-
rithm also solves a 100-piece puzzle that grossly disobeys rule (4).
Because Wolfson et al. rely on pieceshaving four well-defined sides,
their algorithm cannot solve puzzles that significantly disobey rule
(4). (Although our 204-piece puzzle obeys rule (4), our algorithm
does not take advantage of this property. We did not realize theim-
portance of rule (4) at the time we bought the puzzles!) We have
not yet tried our program on an independent “test puzzl€”, not used
in the development of the algorithm. This experiment would be a
more rigorous criterion for success.
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Figure 1. This 100-piece puzzle presents a difficulty for previousalgorithms: pieces do not have four well-defined sides.

2. OVERVIEW

Asin the work of Wolfson et al. [21], our algorithm first assem-
bles the border pieces using a heuristic for the Traveling Salesman
Problem. We depart from previous work in how we place the inte-
rior pieces. Becausewe do not assumethat pieceshave well-defined
sides, we require a more global matching technique. At all times,
we maintain an optimized planar embedding of the current partial
solution. We fit a piece into a pocket not by independent pairwise
fitting with top and side neighbors asin [21], but by fitting it into the
embedded partial solution, thus allowing for any number of neigh-
bors around the pocket. Wolfson et a. rejected global embedding
because of the possibility of accumulated errors, but we found to
the contrary that global embedding gave more accurate results than
pai rwise matching, enabling agreedy placement al gorithm—uwithout
any backtracking or branch-and-bound—to solve the jigsaw puz-
zles. (For more complicated puzzles, we could easily add backtrack-
ing or branch-and-bound.)

We used fiducial points (specifically the centers of ellipses fit to
the indents and outdents) to find the best trandation and rotation
of a piece to match a pocket. An aternative would be to use the
Schwartz-Sharir curve-to-subcurve matching algorithm [16, 21], or
Wolfson's subcurve-to-subcurve matching algorithm [22]. Yet more
possihilities include a string matching approach [3] or a dynamic
programming energy minimization approach [8, 17]. The fiducial
points approach, however, worked quite well and is significantly
faster, because it does not need to test all subcurve or substring start-
ing points. Another advantage of fiducial pointsisthat they aremore
robust to scanning noise than some of the other techniques. For ex-
ample, the Schwartz-Sharir algorithm picks pointsp; along the bound-
ary of one piece and ¢; along the boundary of another piece. Then
it finds a rigid motion that carries the p;'s to p}’s and minimizes
S (9 — ¢;)?. Thisonly works well if the p; and ¢; points can be
brought into alignment. If the pointsareequally spaced by arclength,
then scanner noisethat introduces abump into one of the pieceswill
throw the two sequences out of synchronization.
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Wefilled pocketsin highest-confidence-first order. Call an empty
position an eligible pocket if it has at least two primary neighbors
that have already been placed. Initially, when only the border pieces
have been placed, there are four eligible pockets; later there may
be quite afew eligible pockets as shown in Figure 2. At each step
we fill the eligible pocket that has the highest ratio of the score of
best fitting piece to the second best fitting piece. This order turned
out to be more reliable than best-first order, which has been used
before [3].

After fitting a piece, we reoptimize the global embedding of all
pieces. We do this by minimizing the squares of the distances be-
tween corresponding points on neighboring pieces, for all neigh-
boring pieces at once. Global optimization distributes the matching
inconsistencies throughout the partial solution, and in our experi-
ments outperformed a smoothing procedure that moved one piece
at atime.

3. DETAILED DESCRIPTION

We now describe the algorithm in more detail, starting from data
acquisition. We used two jigsaw puzzles purchased at the local toy
store: a 100-piece puzzle made by Milton-Bradley (Figure 1) and
a 204-piece puzzle made by Ravensburger (Figure 5). The puzzle
pieces are about amillimeter thick and cast shadows when scanned,
making it difficult to accurately extract the boundaries of the pieces.
We found that a color copier produced less shadow than a flatbed
scanner, so wefirst copied the pieces—copying the blank, back sides
of well-separated pieces against ared background—and then scanned
the copy at 300 dpi.

To extract the pieces from the scans, we used a color histogram
to determine the color range of the back sides of pieces, and then
defined the background to be the pixels not falling within this color
range, in order that shadows be considered background. The pieces
are then the largest connected components of the foreground (com-
plement of the background). We smoothed piece boundaries using
morphological operations. we switched any foreground pixel to back-



Figure2: Thereare 8 eligible pockets at this step.

ground if it had three or more background neighbors, or if it was
in arow or column with two or fewer foreground pixels. We then
took every other pixel around the boundary as a vertex, and per-
formed some Gaussian smoothing on these points, in order to ob-
tain apolygonal representation of theboundary. The polygons, each
with about 600 vertices with floating-point coordinates, seemed to
be accurate to about .5 mm tolerance. Sources of error included
piece shadows, scanner noise, specks of color on the back sides of
pieces, and most ominously “hanging chad”. We manually num-
bered the polygons according to their positionsin the solved puzzle,
in order that we could check the computer’s solution.

3.1 FindingIndents, Outdents, and Flat Sides

Many previous algorithms, including that of Wolfson et al. [21],
simply divided piece boundariesinto four sides by finding sharp cor-
ners. In order to handle puzzles such as Figure 1, however, we need
a somewhat more sophisticated classification of boundary “parts’.

Our algorithm searches for tabs, which are either indents or out-
dents. Finding the tabs requires some care. For example, if we de-
fine an outdent as a region that touches the convex hull of the piece
and has a“neck” that will interlock with a neighboring piece, then
the piece in Figure 3(a) would be incorrectly classified as having
five outdents. It turns out to be easier to find the indents first.

In order tofind the indents, wefirst find inflection points, edges at
which theturning of the polygon changes direction. Because straight
parts of the boundary may have many spurious inflection points, we
reject inflection pointsunlesstheturning after each end totalsat least
10° before turning back. Figure 6(a) shows inflection points along
an indent and an outdent. The precise locations of inflection points
arenot very robust, because piece boundaries are often quite straight
near their inflection points; however, the mere existence of inflec-
tion points on either side of an indent is quite reliable. Indents are
identified by finding points p along the boundary that locally maxi-
mize the distance to the convex hull of the piece, finding theinflec-
tion pointson either side of p, and finally testing whether the tangent
lines through the inflection points cross outside the piece. Thislast
test embodies the assumption that tabs interlock.

Before finding outdents, our algorithm finds straight sides. Even
thisstepisnontrivial. For example, the piecein Figure 3(b) haslong
straight stretches of the boundary that are not straight sides. To han-
dle the situations shown in this figure, the algorithm finds straight

Figure 3: (a) The piece on the left illustrates the importance
of identifying indents before outdents. Of thefive possible out-
dents, only 2 and 3 are genuine. (b) The piece on theright has
some long straight stretchesthat are not straight sides.
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Figure 4. For pieces that fit perfectly, the lengths of the bold
partsof horizontal lines should be equal.

sides by first finding straight stretches of boundary, but rejecting a
stretch unlessit turns “inward” at each end, and neither inward turn
is part of aprevioudly identified indent.

The agorithm finds outdents along stretches of the boundary that
have not yet been assigned to indents or straight sides. More pre-
cisely, anindent claimsthe boundary on either side up until the bound-
ary comes sufficiently close (< 10 pixels) to the convex hull and
then falls off the hull again. Symmetric to the procedure for identi-
fying indents, outdents are identified by finding points p aong the
boundary that locally minimize the distance to the convex hull of
the piece, finding the inflection points on either side of p, and fi-
nally testing whether the tangent lines through the inflection points
cross inside the piece.

3.2 Ordering the Border

Asin previous algorithms|[3, 21], we begin by placing the border
pieces. First wefind the order of the border pieces, then we actually
embed the border piecesin the plane. Each border piece has aright
and left side, unambiguously defined by orienting the piece with its
straight side down. In the case of a corner piece, we orient the two
straight sidesto be down and to theright. Wedefineascore s(A, B)
measuring how well the right side of piece A fits the left side of
piece B. Finding the best ordering is now an asymmetric traveling
salesman problem with s( A, B) serving asthe distance from “ city”
Atocity B. Itisasymmetricinthat s(A, B) # s(B, A). We solve
this NP-hard problem using the assignment problem heuristic.

If the number of border pieces is n, imagine n workers and n
machines where the cost of assigning worker A to machine B is
s(A, B). In polynomia time we can find the best assignment of
workers to machines. To convert this to a path, pick any piece P
to start the path. If worker P is assigned to machine @, we set the
second element of the path to be Q. If worker @ is assigned to R,
then set R to be the third element of the path, and so on. This may
not give atraveling salesman tour because the path may returnto P
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Figure5: This204-piece puzzleisthelargest one solved automatically to date. Wolfson et al. solved two inter mixed 104-piece puzzles,
but the two-puzzle problem is somewhat easier because thereismore border and near-border.

inlessthan n steps. For our test puzzles we obtained either asingle
n-long cycle or two cycles. Inthelatter caseit requires only O(n?)
stepstotest al possible waysto stitch the two cyclestogether. Tak-
ing the optimal stitched cycle will find the correct border ordering
provided that there were no more than two errors in the initial or-
dering. One of the advantages of starting with border piecesis that
the four corner pieces provide anatural check on the solution, since
they must be symmetrically placed. Thusif the assignment problem
heuristic made more than two errors, we would detect thisfailure at
this early stage, and go on to consider more complicated ways of
stitching together cycles.

Itisrelatively easy to come up with a scoring function s(A, B)
for border pieces, since such pieces must be aligned at their straight
sides. The score we useis computed by positioning the pieces with
their straight sides along acommon supporting line, and then exam-
ining lines parallel to the supporting line, as shown in Figure 4. For
each such line, we compute thelength “ between” the two pieces (to-
tal length outside both pieces). If the pieces fit perfectly, the distri-
bution of lengths should cluster tightly about the median, and hence
we compute the score as the average difference to the median of the
between lengths.

3.3 Planar Embedding

The next step isto embed the border pieces in the plane, that is,
to give them z- and y-coordinates. First, we place one piece ar-
bitrarily. From the solution to the traveling salesman problem, we
can find two neighboring pieces. Although we could place the sec-
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ond piece by aligning its straight side to the straight side of the first
piece, instead we use amore general method that we shall reuse for
placing piecesin the interior of the puzzle.

We use fiducial points—canonical |locations—to aign adjacent
pieces. We define one fiducial point per tab, both indents and out-
dent. One possible choice for afiducia point is an inflection point
near the neck of atab, but this choiceisrather poor, because the pre-
cise location of inflection points is quite sensitive to scanner noise.

We instead compute fiducial points by fitting an ellipse to each
tab (using least squares) and defining the center of the ellipse to be
afiducial point, as seenin Figure 6(a). Wefit the ellipse to polygon
points from one inflection point to another. Although the positions
of theinflection points are not robust, small variationsin their posi-
tions have little effect on the fitted ellipse.

We use the fiducial points in turn to place a sequence of points
along the tab that should match well with corresponding points on
the tab of the neighboring piece. Rather than taking points equally
spaced by some measure of arc length asin previous work [3, 21],
we found that synchronization was more robust with points that are
equiangular as viewed from the ellipse center. In order to align two
neighboring pieces, we then use a least-squares fit to find the rigid
motion (rotation and trangl ation) that minimizes the sum of squares
of distances between corresponding points.

The method just described performs quite well locally, but isin-
sufficient to compute a good global embedding. The last boundary
piece will fit well with the next-to-last piece, but typically will be
quite far from thefirst piece and hence will not form aclosed frame.



Inflection point

Figure6: (a) Thealgorithm usesthreefeature pointson atab: inflection points, ellipse center s, and tangent points. (b) The matching
score of a pieceto a pocket is computed using the path between the two tangent points marked by dots.

We perform aglobal relaxation that distributesthetotal error evenly
among all the border pieces. This relaxation will later be used for
the interior pieces as well.

For the global relaxation, we pick k pairs (k = 30 worked well)
of corresponding points along each common border between neigh-
boring pieces. We then minimize the sum of the squares of al intra-
pair distancesin order to find new positionsfor all n pieces at once.
The adjustment of piece P isarigid motion given by

!

r = xzcosfp —ysinfp +cp

!

Y =

We want to find the values of the 3n variables {6p,cp,dp} that
minimize the distance between pairs of corresponding points

k
Z Z d(z'f, z']Q)

P,Q j=1

xsinfp + ycosfp + dp.

where 2’ f , z'? are the pairs of points along the adjusted common
border of neighboring pieces P and (). This minimization prob-
lemisnot linear. But since the relaxation only moves pieces asmall

amount, fp issmall and we can linearize using
!

xr

!

Yy ~

x—ybp +cp
x0p +y +dp.

Q

A similar global relaxation has been proposed as a method for
repositioning vertices in finite-element meshes in order to improve
the shapes of elements[5], but the idea has not gained much popu-
larity because one-at-a-time repositioning seemsto bejust as effec-
tive and much more efficient (see for example[2]). The superiority
of global relaxation for jigsaw puzzles thus came as a bit of a sur-
prise to us. We now expect that global relaxation would be better
than one-at-a-time repositioning for the problem of distributing er-
rorssmoothly over asurface scanned in nearly-rigid patches, aprob-
lem that arisesin the Digital Michelangelo project [14].

3.4 Placing Interior Pieces

Aswe mentioned in Section 2, we use asimple greedy a gorithm,
without backtracking or branch-and-bound, to place interior pieces.
There are threeingredientsto the algorithm: a score measuring how
well a piece fitsinto an eligible pocket, a strategy for the order in
which we place pieces, and an optimization step to readjust the em-
bedding after each new pieceis placed.

86

Recall that an unfilled piece location is called an eligible pocket
if itis adjacent to at least two existing pieces (Figure 2). We score
how well a piece P fitsinto an eligible pocket in two steps. First
we calculate the position P would have if it really belongs in that
pocket, and then we compute a score using this position. The po-
sition for P is the one that minimizes the sum of squares of dis-
tances between corresponding fiducial points, those on P’stabsand
those on the pocket’s tabs. The score for P is computed by walk-
ing along the boundary of P, and for each vertex of P, finding the
closest boundary point on any of the neighboring pieces defining the
pocket. (Here we measure vertex-to-edge distances rather than the
simpler, but lessrobust, vertex-to-vertex distances.) Ascan be seen
in Figure 6(b), a piece bordered on two sides with already placed
pieces can share athird border with adiagonally adjacent piece. The
score is the average of the cubed distances between vertices of P
and their closest pocket points. We do not really know why the cubes
of distances worked better than the more usual squares of distances
(for the 100-piece puzzle either oneworked); evidently truematches
are distinguished by close distances everywhere.

Because we do not assume that pieces have well-defined sides,
we need to know how far to extend the walk aong the boundary of
P. We accomplish this using tangent points, points on the neck of
thetab that aretangent to aradius emanating from the ellipse center,
asshownin Figure6(a). Asshown in Figure 6(b), the operative part
of the boundary of P lies between two tangent points, one on each
of the tabs of the eligible pocket.

The part of the boundary not included between the two tangent
points & so contains valuable information on how well piecesfit to-
gether. Thisinformation was not needed for the 100-piece puzzle,
but became important for the larger 204-piece puzzle. To incorpo-
rate thisinformation into the scoring for apiece P, we use one step
of lookahead. Placing P creates some new eligible pockets adjacent
to P. For each of these pockets we find the best fitting piece. Then
we recompute the score for P using the (temporarily) newly fitted
neighbors. |n other words, the scoreis recomputed using a path that
includes much more of the boundary of P.

As mentioned in Section 2, we place pieces with highest confi-
dence first, whether or not we are using one-step lookahead. The
highest-confidence placement fillsthe eligible pocket with thelargest
ratio between the first and second-best scores. After placing each
piece, we reoptimize the embedding using the global least-squares
relaxation described in Section 3.3.



4. DISCUSSION

Our implementation includes a few simple speed-up tricks. For
example, we cache the computation of scores, and we only perform
the one-step lookahead mentioned above for pieces whose scoreis
within afactor of two of the best scoring piece. Overall it took about
3 minutes to solve the 100-piece puzzle and 20 minutesto solve the
204-piece puzzle on a Sun Ultra-60 workstation. Thisincludes the
time needed to process each scan, aswell asthe actual placement of
each piece.

Many parts of our algorithm do not use any hand-tuned param-
eters. Examples are the computation of fiducial points and the re-
laxation calculation. Other steps will probably have to be modified
slightly to work properly on awide range of test puzzles. For exam-
pletheidentification of straight sidesinvolves some parametersthat
are hand-tuned. The most serious example of ad hoc tuning occurs
in the scoring function used to place interior pieces. As mentioned
above, we computed scores as a sum of cubes of distances (rather
than the usual squares) in order to solve our 204-piece test case.

In summary, we were attracted to the jigsaw puzzle problem be-
cause it presents an interesting combination of combinatorial and
geometric challenges, and because no completely satisfactory al-
gorithms have yet been published. We believe our agorithm per-
forms better than previous algorithms for this“toy problem”. More
speculatively, we think that some of our techniques could be appli-
cable to other problems. First, we use a feature-based method, fo-
cusing on tabs, to match sides of pieces. We expect that analogous
problem-specific features (color, texture, thickness, etc.) would be
more powerful than generic curve-subcurve matching for many re-
alistic assembly problems, such asthose arising in archeology. Sec-
ond, weuse aglobal optimization step to readjust the positions of all
the pieces after fitting each new piece. This step seems especially
important when the boundary curvesthemselveshold littleinforma-
tion, for example, inthe case of broken glasswith relatively straight
fracture lines. Finally, we fit pieces in order of confidence. For as-
sembling broken objects, the power of this idea could perhaps be
magnified by a probabilistic model of the breaking process and use
of log-likelihood for scoring matches.
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