
2004 International Conference on Image Processing (U P)

CONSTRUCTING THE TOPOLOGICAL SOLUTION OF JIGSAW PUZZLES

J. De Bock, I? De Smet, W Philips and J. D’Hneyer

Dep. TELINiTW07, Ghent University
Sint-Pietersnieuwstraat 4 I , B-9000 Ghent, Belgium

E-mail: jdebocketelin. UGent . be

ARSTRACT

In this papcr we prcsent a novel approach to the jigsaw puzzle
solving prohlcm. Thc main coniponents are a shapc based local
contour matching lullowed by a global solving procedure that coo-
structs the topological solution of the jigsaw puzzle. The shape
hased local contour matching will he discussed bricfly, hut the
main focus of thc papcr is the construction of the topological so-
lution. Thc solving procedure slalts with the classification of the
puzzle pieces. Ncxt, the edge topology is constructcd and linally
the internal topology is constructed. We tested the dcveloped algo-
rithms on fivc different jigsaw puzzles. Ultimately, we were ahlc
to solve a jigsaw puzzle consisting oI 300 puzzle pieces, the largest
one solved automatically to date.

1. INTRODUCTION

Automatic jigsaw puzzle solving ha always been apopulartesthed
for the evaluation of computer vision techniques. One has to find
a solution for three very different subproblems: local matching
(geometric). finding a global solution (combinatorial) and explic-
itly lilting the pieces together (geometric). You can regard it as
a stripped down version of the very complex generic digital re-
construction problem. The clearly defined and easy understand-
able goal appealed to the imagination of several authors in the past
[I , 2, 3.41 and also very recently [5 , 61.

The first step in automatically solving a jigsaw puzzle by com-
puter, is obtaining a digital image of the individual puzzle pieces.
This is done by scanning the pieces with a flatbed image scanner.
Using real jigsaw puzzles is to he preferred above making artifi-
cial jigsaw puzzles [l]. When you use real jigsaw puzzles, you
can test the developed algorithms for robustness against scanner
noise, dust particles and had jigsaw cuttings. The pieces are also
scanned with random rotations. Limiting the rotation to predefined
angles is too restrictive and unrealistic, because generally you do
not know which rotation the piece will have in the final solution.

Starling from the digital images of the individual pieces, we
apply different algorithms to obtain a good description of the local
shape along the contour of the pieces. Those algorithm are already
published in 17, 81. We briefly enumerate the different steps: con-
tour extraction with region growing, polygonal approximation of
the contour and a shape description based on differential angles.
The final result is, for each piece, a shape vector. The typical con-
tour outlines of the pieces are shown in figure 1.

We then apply a contour matching algorithm on the shape vrc-
tors to find the cost and positions of the best match between a pair
of pieces. In [7, 81, the same algorithms were used to search for
matching fragments of ripped-up documents with success. This

Fig. 1. Puzzlc 5: the outlines of all the puzzle pieces

proves that the matching algorithm we use is not specific for puz-
zle pieces, unlike other papers [4, 5 , 61. The contour matching
costs will be the only input for the algorithms that construct the
topological solution. We do not mix the construction of the topo-
logical solution with the last step, i.e. explicitly fitting the pieces
together, as in [S . 61. We thus first construct the topological solu-
tion and then we can make a graphical solution with the algorithms
published in [SI. The main advantage of this strict distinction is
that the time consuming explicit fitting is not multiplied with the
many pairs of probably matching pieces that must he tried during
the solving step. This approach is also taken in [3]. I n the fol-
lowing sections the construction of the topological solution will be
explained in detail.

2. CONSTRUCTING THE TOPOLOGICAL SOLUTION

2.1. Classification of the puzzle pieces

Before we start with the actual construction of the topological so-
lution, we classify the puzzle pieces. The classes are defined ac-

0-7803-8554-3/04/$20.00 02004 IEEE. 21 27

Fig. 2. Sorted costs after matching with an artificial straight cdgc

cording to the number of straight edges of each piece:

corner edge piece: two straight edges, the four corners of
the jigsaw puzzle.

one edge piece: one straight edge, together with the corner
edge pieces they form the rectangular frame of the jigsaw
puzzle.

internal piece: no straight edge, the pieces inside the rect-
angular frame.

To implement this classification, we reuse the developed contour
matching algorithm. We first match all pieces with an arlificial
right comer. The pieces that produce the four lowest matching
costs, most strongly resemble an artificial right corner and should
correspond to the comer edge pieces we are looking for. Next,
we repeat the matching procedure but with an’anificial straight
edge. The pieces that produce the lowest costs should resemble an
artificial straight edge. After sorting these costs, we obtain a clear
separation between edge pieces and internal pieces: see figure 2.
Using the information gathered from these two procedures, we can
perfectly classify all the pieces in the three described classes.

2.2. General solving framework

We first define what we mean with the term topological solution. A
topological solution consists of a unique position for each puzzle
piece in a rectangular grid. During the scanning procedure we kept
track of the correct row and column numbers for each piece in the
manually laid jigsaw puzzle. After finding a topological solution,
we thus have a unique row and column couple for each position
in the grid. We now can check the correctness of a topological
solution by verifying the couples in the grid. An example of a cor-
rect topological solution is given in figure 3; mirrored and rotated
versions of this correct topological solution are also considered

The global goal is now to devise an algorithm that gives as
output the topological solution that has the highest probability to
be a correct topological solution. If we want to make this algo-
rithm as simple as possible, it is necessav to split the problem into

COKeC1.

Fig. 3. Example of a corrcct topological solution

I l l I 1

Fig. 4. Possible positions in a rectangular grid for the edge pieces

subproblems. We achieve this by first trying to find the correct
topological solution for the edge pieces: the edge topology. The
possible positions in a rectangular grid for the edge pieces are dis-
played in figure 4, we will call this layout the rectangular frame.
Thc classification step has already delivered the necessary perfect
split between edge pieces and internal pieces. The reduction of the
logical complexity also results in a reduction in search space, i.e.
we can completely ignore the internal pieces.

Every position inside the rectangular frame has two neighbor
positions within the rectangular frame. We can now define two
requirements for a valid edge topology: the edge topology must
form one cycle containing all edge pieces, and edge pieces that are
neighbors must share a common contour and thus must have a low
matching cost. The solving algorithms for the edge topology are
based on these requirements. After finding the edge topology we
can finally determine the correct number of rows and columns for
the rectangular grid by checking the positions of the four corner
edge pieces within the edge topology. We then fit the cycle of
edge pieces in the rectangular frame with the edge comer pieces
onto the comer positions.

Now we will use the already determined edge topology as the
starling point for finding the correct topological solution for the
internal pieces: the internal topology. Before each iteration of
the solving algorithm for the internal topology, we determine the
“trusted positions”. With a trusted position we mean a position in
the rectangular grid that has two or more already fixed neighbor
pieces (called eligible pocket in [SI). A few examples are given
in figure 5 . They are called trusted positions because they have
enough neighbors with which we can calculate the matching cost.
The solving algorithms for the internal topology are also based on
the requirement of the pieces having a low matching cost with all

2128

I I I I 1 1 - 1 I I I

Already tixcd puzzle pieces
0 Trusted positions
B Neighors of trusted positians

Fig. 5. Examples o f trustcd position

neighhoi-s. The algorithms will use the trusted positions as input
and wi l l give as output one of the trusted positions together with
onc o f the st i l l to be lixcd internal picccs. This piece wi l l then he
lixed in that position. If we rcpeat thc procedurc for a l l the remain-
ing internal pieces. we can complctely fill the rectangular grid.

2.3. Puazle piece treated as one contour

In this section wc describe the solving algorithms that treat a puz-
zIc piece as one contour. We thus obtain one matching cost per
pair of pieces.

2.3.1. Solving algorirhrn for the edge fopology

We first match all edge pieces with each other. Conceptually, we
can describe this by a graph: a node represents a piece and an edge
represents the match between a pair of pieces and has the matching
cost as attribute. Following the requirements we have to find a
cycle in the graph that visits all nodes once. The costs of the edges
o f the cycle must be as low as possible. Th is can be treated as
a Symmetric Traveling Salesman Problem where we look for the
cycle that has the lowest total cost (sum o f all the costs). But this
method does not necessarily give the edge topology that has the
highest probability to be the correct one, because i t treats all edge
costs in the same way. A better way of finding the cycle i s using
a highest confidence first algorithm. T h i s highly favors the most
confident matches or the matches with the highest probability to
be correct. For each iteration of the algorithm we do the following
things to select the next edge of the cycle. We first search for all
free nodes k. Free nodes are nodes from whom are selected less
than two edges for the cycle. For each node k we then create a
list of edges of that node: Lr.. We delete all the edges from the
lists LI that are already selected for the cycle, that have as second
node a non-free node or that create a subcycle. Next, we search in
each l i s t Lr. the edge ar. with the lowest cost c(ur.) and the edge
br. with the second lowest cost c (b k) and calculate c(bli) ~ c(ak) .
Finally the edge ar. corresponding with the highest c(bk) - c (R ~)
(evaluated over all Ln) i s selected as the next edge for the cycle. If
we keep iterating the edge selector, we obtain the complete cycle
and thus the edge topology.

2.3.2. Solving algorithm for the inremal topology

Here, we also use a highest confidence first algorithm (as described
i n [51 for this context). For each iteration of the algorithm we

Fig. 6. Thc two sides of the edgc pieces used for matching

do the following things to select one trusted positioii and one s t i l l
to be lixed intcrnal picce. We use a l l the trusted positions I; as
input. For each position 6 we crcate a l is t o f costs Ln. We uhtain
Ln by calculating for each still to be fixed piece i , the cost of
fitting i t in position k. This litling C U S ~ i s thc mean of the matching
cost o f picce i with all neighbors of position h. Ncxt, wc search
for each l ist Ln the picce ak with thc lowest cost c(ue) and the
piece b p with the sccond lowest cost 40,) and calculate c(bn) -
~ (u r .) . Finally thc trusted position with the highest c(bl i) - c(an)
(evaluated over all Ln) i s sclected together with internal piecc o n .

2.4. Puzzle piece treated IS fnur linked subcnntours

In this section we describe the solving algorithms thal treat a puz-
zle piecc as four linked subcontours, corresponding with the four
sides of a piece. We thus obtain one matching cost per pair of sub-
contours. To locate the four subcontours in the shape vector we Io-
cate the four comer points of the piece that delimit the four sides of
a piece. We can locate the comer points by applying some checks
on the shape vector. The detailed explanation is given in [IO].

2.4.1. Solving algorithm for rhe edge ropology

Here we also first match all edge pieces with each other, but now
we can use additional information: the four sides o f the pieces.
We can limit the algorithm to two sides for each edge piece. These
sides are displayed in figure 6 for the two types of edge pieces.
Using the labels like they are displayed, side L will always fit with
side R in the edge topology. We thus match side L with side R and
side R with side L respectively for each pair o f edge pieces. With
this method we obtain two matching costs per pair of pieces. Here
we also can descrihe the matches with their costs by a graph, but
now a directed graph. We now have to find a cycle in the graph
that visits all nodes once and respects the directional restrictions
of the edges. The costs o f the edges o f the cycle must again be as
low as possible. T h i s can he treated as an Asymmetric Traveling
Salesman Problem (as described in [5] for this context). But for
the same reason we reuse the highest confidence first algorithm
used for the undirected graph. Of course we adapt i t so i t takes the
directional restrictions into account.

2.1.2. Solving algorirhm for rhe internal ropology

Here we can also use the additional information to make the solv-
ing algorithm much more robust. The algorithm i s the same as
the version for one contour, except for the calculation o f the cost
o f fitting an internal piece in a trusted position. By splitting the
pieces i n four sides. we now can keep track o f the orientation o f

2129

0 fixedN 2 Dl

0 fixrdN 2 Dl
Fig. 7. Calculation of the fitling cost using the sides information

each already fixed pie&. The m e t h d we use is displayed in lig-
ure 7 for a trusted position with two already fixed neighbors. We
displayed the pieces conceptually by a square with four labeled
sides. For the four possible rotations of piece i, we calculate the
mean of the matching costs between each pair of subcontours that
has to fit. For example, for the first orientation in figure 7 this is
the mean of(subcon1our 3 of fixed N. subcontour 0 of piece i) and
(subcontour 1 of fixed W, subcontour 3 of piece i) . From the four
costs, the lowest one is selected as the final fitting cos t We store
the orientation that gives that lowest cost, it will become the final
orientation of the piece when it is selected as the to be fixed piece.
The calculations on the lists LI, remain the same.

3. RESULTS AND CONCLUSION

We tested the described algorithms for the construction of the topo-
logical solution on five different jigsaw puzzles. They differ in size
ofthepieces. number ofpieces, manufacturer, diversity in tab con-
figuration and typical contour outline. For each jigsaw puzzle we
increased the accuracy of the matching algorithm until the solving
algorithms could construct a correct topological solution. The to-
tal running time (scanning and contour extraction excluded) was
then measured and is given in table I. The algorithms were imple-
mented in C, compiled with gcc 3.2.3 and run on a AMD Athlon
XP 17ooC. Generally the running time increases with the amount
of pieces and with the required accuracy. The required accuracy
decreases with the diversity of the contour outlines. This explains
why the running time is so long for puzzle 3 compared to puzzle 4
(for the one contour version): the diversity in the contour outlines
was much less than in puzzle 4. so we had to increase the accuracy
to still obtain a correct topological solution. The four subcontours
version is less dependent on the diversity because it uses more a
priori information. This explains why we could find a correct t o p -

Puzzle I : 4x1
Puzzlc 2: 6x9
Puzzle 1: 13x8
Puzzle 4: 12x9
Puzzle 5: 15x20

running times (in sccnnds)
one contour four subcontours

4 6
33 10

153 27
81 29

244

Table I . The running times for the tested jigsaw puzzlcs

logical solulion f k puzzle 5 with the four subcontours version, hut
not with the one contour version. This also explains a normal time
for puzzle 3 for the four subcontours version. Ultimately, we were
able to solve a jigsaw puzzle consisting of 300 puzzle pieces, the
largest one solved automakdly to dale, in an extremely fast lime.

4. REFERENCES

111 T. Altman, ”Solving thc jigsaw puzzle problem in linear
time:’ Applied Arrijicid Intelligence, vol. 3, no. 4, pp. 451-
462, 1989.

[2] R. W. Webstcr. P. S . LaFollctte, and R. 1.. Stafford, “Isthmus
critical points for solving jigsaw puzzles in computer vision,”
IEEE Trans. on Sysrerns, Mon. and Cyburnerics, vol. 21, no.
5,pp. 1271-1278, 1991.

[3] U. Bunke and G. Kaufmann, “Jigsaw puzzle solving using
approximate string matching and best-first search:’ in Com-
purer Analysis of Images and Parrems, D. Chetverikov and
W. G. Kropatsch, Eds. 1993, vol. 719 of Lecrure Nores in
Computer Science. pp. 299-308, Springer-Verlag.

[4] M. G. Chung. M. Fleck, and D. A. Forsyth, “Jigsaw puzzle
solver using shape and color,” in Pmc. of the 4rh Inrerna-
rional Conference on Signal Processing, 1998, pp. 877-880.

[SI D. Goldberg, C. Malon, and M. Bern, “A global approach to
automatic solution of jigsaw puzzles:’ in Pmc. of rhe 18th
annual symposium on Compurorionnl geometry, 2002, pp.
82-87.

[6] F. H. Yao and G. F. Shao, “A shape and image merging tech-
nique to solve jigsaw puzzles:’ Potrem Recognition Lerrers,
vol. 24, no. 1 2 . p ~ . 1819-1835, 2003.

[7] E De Smet, 1. De Bock, and E. Corluy. “Computer vision
techniques for semi-automatic reconstruction of ripped-up
documents,” in SPIE AeroSense Proc. 5108B. Invesrigarive
Image Processing 3,2003.

[8] P. De Smet, I. De Bock. and E. Corluy, “Semi-automatic
jigsaw puzzle reconstruction of fragmented documents:’ in
3rd Triennial Meering of the Eumpeon Academy of Forensic
Science, 2003.

191 P. De Smet and E. Corluy, “High-precision recomposition
of fragmented 2-d objects:’ in 14th ProRISC workshop on
Circuirs, Sysrems and Signal Processing, 2003.

[IO] I. De Bock, “Computer algorithms for solving jigsaw puz-
zles:’ M.S. thesis, Ghent University, 2003.

21 30

