2004 International Conference on Image Processing (ICIP}

CONSTRUCTING THE TOPOLOGICAL SOLUTION OF JIGSAW PUZZLES

J. De Bock, P. De Smet, W. Philips and J. D’Haeyer

Dep. TELIN/TWO7, Ghent University
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
E-mail: jdebock@telin.UGent .be

ABSTRACT

In this paper we present a novel approach to the jigsaw puzzle
solving problem. The main components are a shape based local
contour matching followed by a global solving procedure that con-
structs the topological solution of the jigsaw puzzle. The shape
based local contour matching will be discussed briefly, but the
main focus of the paper is the construction of the topological so-

lution. The solving procedure starts with the classification of the .

puzzle pieces. Next, the edge topology is constructed and finally
the internal topology is constructed. We tested the developed algo-
rithms on five different jigsaw puzzles. Ultimately, we were able
lo solve a jigsaw puzzle consisting of 300 puzzle picces, the largest
one solved automatically to date.

1. INTRODUCTION

Automatic jigsaw puzzle solving has always been a popular testbed
for the evaluation of compuier vision techniques. One has to find
a solution for three very different subproblems: local matching
(geometric), finding a global solution (combinatorial) and explic-
itly fitting the pieces together {geometric). You can regard it as
a stripped down version of the very complex generic digilal re-
construction problem. The clearly defined and easy understand-
able goal appealed to the imagination of several anthors in the past
[1, 2, 3, 4] and also very recently [3, 6].

The first step in automatically solving a jigsaw puzzle by com-
puter, is obtaining a digital image of the individual puzzle pieces.
This is done by scanning the pieces with a flatbed image scanner.
Using real jigsaw puzzles is to be preferred above making artifi-
cial jigsaw puzzles [1]. When you use real jigsaw puzzies, you
can (est the developed algorithms for robustness against scanner
noise, dust particles and bad jigsaw cuttings. The pieces are also
scanned with random rotations. Limiting the rotation to predefined
angles is too restrictive and unrealistic, because generally you do
not know which rotation the piece will have in the final solution.

Starting from the digital images of the individual pieces, we
apply different algorithms to obtain a good description of the locat
shape along the contour of the pieces. Those algorithm are already
pubiished in [7, 8]. We briefly enumerate the different steps: con-
tour extraction with region growing, polygonal approximation of
the contour and a shape description based on differential angles.
The final result is, for each piece, a shape vector. The typical con-
tour outlines of the pieces are shown in figure 1.

We then apply a contour matching algorithm on the shape vec-
tors to find the cost and positions of the best match between a pair
of pieces. In [7, 8], the same algorithms were used to search for
matching fragments of ripped-up documents with success. This

0-7803-8554-3/04/$20.00 ©2004 IEEE.

PECEREFCHEEEARELITRN
REELB WAL PR PR RN L LN
Q#k&&%tmﬁ%##ﬁ&*#%*#t

.....

&#ﬁ#&&%ik#&#&*&m*&&i
#&##i*@&%ﬁ#ﬁ%%&%ﬂ&&$
B R AR REEE D ERNWEE NS
AR FHHRRHRBFHER R EIED
L2 LS RO LIET L T LY
BN XL BRI RS RERRAGERTY
L T T XA AL R T LT
XS P AR B AR KE AR DX
F XX T HECTIEL L T IETE LY
We¥e 2 b5 Mr ik o o i e ste B il P A A A

ERFEDER AR AFREF SR

Fig. 1. Puzzle 5: the cutlines of all the puzzle pieces

proves that the matching algorithm we use is not specific for puz-
zle picces, unlike other papers [4, 5, 6]. The contour matching
costs will be the only input for the algorithms that construct the
topolegical solution. We do not mix the construction of the topo-
logical solution with the last step, i.e. explicitly fitting the pieces
together, as in [5, 6]. We thus first construct the topological solu-
tion and then we can make a graphical solution with the algorithms
published in [9]. The main advantage of this strict distinction is
that the time consuming explicit fitting is not multiplied with the
many pairs of probably matching pieces that must be tried during
the solving step. This approach is also taken in [3]. In the fol-
lowing sections the construction of the topological solution wiil be
explained in detail.

2. CONSTRUCTING THE TOPOLOGICAL SOLUTION

2.1. Classification of the puzzie pieces

Before we start with the actual construction of the topological so-
lation, we classify the puzzle pieces. The classes are defined ac-

2127

Costs

o " L L s .
o 5¢ . 100 150 200 250 300

Puzzle pieces

Fig. 2. Sorted costs after matching with an artificial straight edge

cording to the number of straight edges of each picce:
e corner edge piece: two straight edges, the four corners of
the jigsaw puzzle.

o one edge piece: one straight edge, together with the corner
edge pieces they form the rectangular frame of the jigsaw
puzzle.

o internal piece: no siraight edge, the pieces inside the rect-
angular frame.

To implement this classification, we reuse the developed contour |

matching algorithm, We first match all pieces with an artificial
right corner. The pieces that produce the four lowest matching
costs, most strongly resemble an artificial right corner and should
correspond to the corner edge pieces we are looking for. Next,
we repeat the matching procedure but with an artificial straight

edge. The pieces that produce the lowest costs should resemble an -

artificial straight edge. After sorting these costs, we obtain a clear
separation between edge pieces and internal pieces; see figure 2.
Using the information gathered from these two procedures, we can
perfectly classify all the pieces in the three described classes.

2.2. General solving framework

We first define what we mean with the term topelogical solution. A
topological solution consists of a unique position for each puzzie
piece in a rectangular grid. During the scanning procedure we kept
track of the correet row and column numbers for each piece in the
manually laid jigsaw puzzle. After finding a topological solution,
we thus have a unique row and column couple for each position
in the grid. We now can check the correctness of a topological
solution by verifying the couples in the grid. An example of a cor-
rect topological solution is given in figure 3; mirrored and rotated
versions of this correct topological solution are also considered
correct.

The global goal is now to devise an algorithm that gives as
output the topological solution that has the highest probability to
‘be a correct topological solution. If we want to make this algo-
rithm as simple as possible, it is necessary to split the problem into

T T T T | T 1 I
lfll 1—.21 1—3| 174| 1-5| 1—6| 177| lfﬂl 1i-9

1 1
4-5 4-6, 4-7

1
i |
5—5| 5—6I
!

1

6-7

6-8 | 6-9

6—5| 6-6

Fig. 4. Possible positions in a rectangular grid for the edge pieces

subproblems. We achieve this by first trying to find the correct
topological solution for the edge picces: the edge topology. The
possible positions in a rectangular grid for the edge pieces are dis-
played in figure 4, we will call this layout the rectangular frame,
The classification step has already delivered the necessary perfect
split between edge picces and internal pieces. The reduction of the
logical complexity also results in a reduction in search space, ie.
we can completely ignore the internal pieces.

Every position inside the rectangular frame has two neighbor
positions within the rectangular frame. We can now define two
requirements for a valid edge topology: the edge topology must
form one cycle containing all edge pieces, and edge pieces that are
neighbors must share a common contour and thus must have a low
matching cost. The solving algorithms for the edge topology are
based on these requirements. After finding the edge topology we
can finally determine the correct number of rows and columus for
the rectangular grid by checking the positions of the four corner
edge pieces within the edge topology. We then fit the cycle of
edge pieces in the rectangular frame with the edge corner pieces
omnto the corner positions.

Now we will use the already determined edge topology as the
starting point for finding the correct topological solution for the
internal pieces: the internal topology. Before each iteration of
the solving algorithm for the internal topology, we determine the
“trusted positions”. With a trusted position we mean a position in
the rectangular grid that has two or more already fixed neighbor
pieces (called eligible pocket in [5]). A few examples are given
in figure 5. They are called trusted positions because they have
enough neighbors with which we can calculate the matching cost.
The solving algorithms for the internal topology are alsc based on
the requirement of the pieces having a low matching cost with all

2128

=] (I e
[[[[[[m '} [[w

D Already fixed puzzle picces
[J Trusted positions
B Neigbors of trusted positions

O
[0

Fig. 5. Examples of trusted position

neighbors. The algorithms will use the trusted positions as input
and will give as output one of the trusted positions together with
one of the still to be fixed internal pieces. This piece will then be
fixed in that position. 1f we repeat the procedure for all the remain-
ing intcrnal pieces, we can completely fill the rectangular grid.

2.3. Puzzle piece treated as one contour

In this section we describe the solving algorithms that treat a puz-
zle piece as one contour. We thus obtain one maiching cost per
pair of pieces.

2.3.1. Solving algorithm for the edge topology

We first match all edge pieces with each other. Conceptually, we
can describe this by a graph: a node represents a piece and an edge
represents the match between a pair of pieces and has the matching
cost as attribute. Following the requirements we have to find a
cycle in the graph that visits all nodes once. The costs of the edges
of the cycle must be as low as possible. This can be treated as
a Symmetric Traveling Salesman Problem where we look for the
cycle that has the lowest total cost (sum of all the costs). But this
method does not necessarily give the edge topology that has the
highest probability to be the comrect one, because it treats all edge
costs in the same way. A better way of finding the cycle is using
a highest confidence first algorithm. This highly favers the most
confident matches or the matches with the highest probability to
be correct. For each iteration of the algerithm we do the following
things to select the next edge of the cycle. We first search for all
free nodes k. Free nodes are nodes from whom are selected less
than two edges for the cycle. For each node k& we then create a
list of edges of that node: L. We delete all the edges from the
lists Ly, that are already selected for the cycle, that have as second
node a non-free node or that create a subcycle. Next, we search in
each list Ly the edge ax with the lowest cost ¢{a;) and the edge
by, with the second lowest cost c(by) and calculate c(by) — c{ax).
Finally the edge ax corresponding with the highest c(bx) — c(ax)
(evaluated over all L) is selected as the next edge for the cycle. If
we keep iterating the edge selector, we obtain the complete cycle
and thus the edge topology.

2.3.2. Solving algorithm for the internal topology

Here, we also use a highest confidence first algorithm (as described.

in [5] for this context). For each iteration of the algorithm we

Fig. 6. The two sides of the edge pieces used for matching

do the following things to select one trusted position and one still
to be fixed intcrnal piece. We use all the trusted positions & as
input, For ¢ach position & we create a list of costs L. We obtain
Ly by calculating for each still to be fixed piece 2, the cost of
fitting it in position &. This fitting cost is the mean of the maiching
cost ol picce 7 with all neighbors of position &. Next, we search
for each list Ly the picce ay with the lowest cost ¢{ax) and the
piece by with the sccond lowest cost e(by) and calculate e(by) —
e{ar). Finally the trusted position with the highest ¢(bz) — e{ax)
{evaluated over all 1.} is sclected together with internal piece ay,.

2.4, Puzzle piece treated as four linked subcontours

In this section we describe the solving algorithms that treat a puz-
zle piece as four linked subcontours, correspending with the four
sides of a piece. We thus obtain one matching cost per pair of sub-
contours. To locate the four subcontours in the shape vector we lo-
cate the four corner points of the piece that delimit the four sides of
a piece. We can locate the corner points by applying some checks
on the shape vector. The detailed explanation is given in [10].

2.4.1. Solving algorithm for the edge topology

Here we also first match all edge pieces with each other, but now
we can use additional information: the four sides of the pieces.
We can limit the algorithm to two sides for each edge piece. These
sides are displayed in figure 6 for the two types of edge pieces.
Using the labels like they are displayed, side L will always fit with
side R in the edge topology. We thus match side L with side R and
side R with side L respectively for each pair of edge pieces. With
this method we obtain two matching costs per pair of pieces. Here
we also can describe the matches with their costs by a graph, but
now a directed graph. We now have to find a cycle in the graph
that visits all nodes once and respects the directional restrictions
of the edges. The costs of the edges of the cycle must again be as
low as possible. This can be treated as an Asymmetric Traveling
Salesman Problem (as described in [5] for this context). But for
the same reason we reuse the highest confidence first algorithm
used for the undirected graph. Of course we adapt it so it takes the
directional restrictions into account,

2.4.2. Solving algorithm for the internal topology

Here we can also use the additional information to make the solv-
ing algorithm much more robust. The algorithm is the same as
the version for one contour, except for the calculation of the cost
of fitting an internal piece in a trusted position. By splitting the
pieces in four sides, we now can keep track of the orientation of

2129

1 1
0| fixed N |2 0 fixsedN |2
3 3
5 RS O
LT DT
"L 1) 1
3|fixed W |1 | 13 piecei j1, 3|fixed Wil! 2| piccei |0,
Do R
2 iz 2 vk
1 1
— 1
0|fixedN ;2 OffixedN |2
3 3
o7 i Con S
RS AR
[i 1
3|fixedW (1| 'L piecei)3, 3| fixed W|L1| 10 piecei }2,
1 1
A o
2z RN S 2 Vool d

Fig. 7. Calculation of the fitting cost using the sides information

each already fixed piec'e. The method we use is displayed in fig-
ure 7 for a trusted position with two already fixed neighbors. We
displayed the pieces conceptually by a square with four labeled
sides. For the four possible rotations of piece i, we calculate the
mean of the matching costs between each pair of subcontours that
has to fit. For example, for the first orientation in figure 7 this is
the mean of (subcontour 3 of fixed N, subcontour 0 of piece ¢) and
{subcontour 1 of fixed W, subcontour 3 of piece ¢). From the four
costs, the lowest one is selected as the final fitting cost. We store
the orientation that gives that lowest cost, it will become the final
orientation of the piece when it is selected as the to be fixed piece.
The calculations on the lists Ly remain the same.

3. RESULTS AND CONCLUSION

We tested the described algorithms for the construction of the topo-
logical solution on five different jigsaw puzzies. They differ in size
of the pieces, number of pieces, manufacturer, diversity in tab con-
figuration and typical contour outline. For each jigsaw puzzle we
increased the accuracy of the matching algorithm until the solving
algorithms could construct a correct topological solution. The to-
tal running time (scanning and contour extraction excluded) was
then measured and is given in table 1. The algorithms were imple-
mented in C, compiled with gco 3.2.3 and run on a AMD Athlon
XP 1700+. Generally the running time increases with the amount
of pieces and with the required accuracy. The required accuracy
decreases with the diversity of the contour outlines. This explains
why the running time is so long for puzzle 3 compared to puzzle 4
(for the one contour version): the diversity in the contour outlines
was much less than in puzzle 4, so we had to increase the accuracy
to still obtain a correct topological solution. The four subcontours
version is less dependent on the diversity because it uses more a
priori information. This explains why we could find a correct topo-

running times (in seconds)
one contour four subcontours
Puzzle 1: 4x7 4 [
Puzzlc 2: 6x9 33 10
Puzzle 3: 13x8 153 27
Puzzle 4: 12x9 81 29
Puzzle 5: 15x20 - 244

Table 1. The running times for the tested jigsaw puzzles

logical solution for puzzle 5 with the four subcontours version, but
not with the one contour version. This also explains a normal time
for puzzle 3 for the four subcontours version. Ultimately, we were
able to solve a jigsaw puzzle consisting of 300 puzzle picces, the
largest one solved automatically to date, in an extremely fast time.

4. REFERENCES

[11 T. Aliman, “Solving the jigsaw puzzle problem in linear
time,” Applied Artificial Intelligence, vol. 3, no. 4, pp. 453-
462, 1989,

[2] R. W. Webster, P. S. LaFollette, and R. L. Stafford, “Isthrous
critical points for solving jigsaw puzzles in computer vision,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 21, no.
5,pp. 1271-1278, 1991,

[3] H. Bunke and G. Kaufmann, “Jigsaw puzzle solving using
approximate string matching and best-first search,” in Com-
puter Analysis of Images and FPatterns, D. Chetverikov and
W. G. Kropatsch, Eds. 1993, vol. 719 of Lecture Notes in
Computer Science, pp. 299-308, Springer-Verlag.

[4] M. G. Chung, M. Fleck, and D. A, Forsyth, “Jigsaw puzzlc
solver using shape and color," in Proc. of the 4th Interna-
tional Conference on Signal Processing, 1998, pp. 877-880.

[5] D. Goldberg, C. Malon, and M. Bern, “A global approach to
automatic solution of jigsaw puzzles,” in Proc. of the 18th
annual symposium on Computational geometry, 2002, pp.
82-87.

6] F. H. Yao and G. E. Shao, “A shape and image merging tech-
nique to solve jigsaw puzzles,” Pattern Recognition Leiters,
vol. 24, no. 12, pp. 1819-1835, 2003.

[7] P. De Smet, J. De Bock, and E. Corluy, “Computer vision
techniques for semi-automatic reconstruction of ripped-up
documents,” in SPIE AeroSense Proc. 5108B, Investigative
Image Processing 3, 2003.

{8] P. De Smet, J. De Bock, and E, Corluy, “Semi-automatic
jigsaw puzzle reconstruction of fragmented documents,” in
3rd Triennial Meeting of the European Academy of Forensic
Science, 2003.

[91 P. De Smet and E. Corluy, “High-precision recomposition
of fragmented 2-d objects,” in I4th ProRISC workshop on
Circuits, Systems and Signal Processing, 2003.

[10] J. De Bock, “Computer algorithms for solving jigsaw puz-
zles,” M.S. thesis, Ghent University, 2003,

2130

