
UNIVERSITY OF CALIFORNIA,
IRVINE

Approximate Inference in Graphical Models

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sholeh Forouzan

Dissertation Committee:
Professor Alexander Ihler, Chair

Professor Rina Dechter
Professor Charless Fowlkes

2015

c© 2015 Sholeh Forouzan

DEDICATION

To my loving and ever-supportive husband, Reza
and to my mother, father and brother

AND
To Dina who showed me the true meaning of courage

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Examples of graphical models . 3
1.2 Inference . 4
1.3 Approximate Inference . 5
1.4 Summary of Contributions . 6

2 Background 9
2.1 Elimination Based Inference . 10

2.1.1 Bucket Elimination . 11
2.1.2 Mini-bucket Elimination. 15
2.1.3 Weighted Mini-bucket . 18

2.2 Variational Methods . 26
2.2.1 Exponential Family and Marginal Polytope 26
2.2.2 WMBE - The Variational View . 29
2.2.3 Variational Methods for Maximization 30

3 Incremental Region Selection for Mini-bucket Elimination Bounds 32
3.1 Region Choice for MBE . 32

3.1.1 Partitioning Methods . 34
3.1.2 Variational bounds. 37

3.2 A Hybrid Approach . 38
3.2.1 Initializing a join tree . 39
3.2.2 Message Passing . 41
3.2.3 Adding new regions . 42
3.2.4 Updating graph structure . 43

3.3 Discussion . 47

iii

3.4 Empirical Evaluation . 48
3.5 Conclusion . 55

4 Improving Resource Usage in Mini-bucket Elimination 56
4.1 Introduction . 56
4.2 State of the Art . 58

4.2.1 Content-based region choices . 58
4.2.2 Inefficient memory allocation . 60

4.3 Memory awareness . 61
4.3.1 Baseline Methods . 65
4.3.2 Memory Budget for Weighted MBE 68
4.3.3 Memory Allocation Schemes . 74

4.4 Empirical Evaluation . 81
4.4.1 Content Based Partitioning . 81
4.4.2 Content Based Partitioning with Message Passing 92

4.5 Discussion and Future Work . 93

5 Linear Approximation to ADMM for MAP inference 96
5.1 Approximate Inference for MAP . 96
5.2 MAP and LP Relaxations . 98
5.3 Alternating Direction Method of Multipliers 100
5.4 ADMM for MAP-LP . 101

5.4.1 APLP/ADLP . 102
5.4.2 DD-ADMM . 103
5.4.3 Quadratic Programs and Identity Matrix 104

5.5 Linearized ADMM Algorithm . 105
5.6 Performance Analysis . 108

5.6.1 Parameter Selection . 108
5.6.2 Experimental Results . 109

5.7 Discussion . 114

6 Conclusions and Future Directions 115

Bibliography 119

iv

LIST OF FIGURES

Page

2.1 Example: Factor and Factor graph . 9
2.2 Example: Bucket Elimination . 12
2.3 Example: Mini-bucket Elimination . 16

3.1 Different partitionings for mini-bucket elimination 35
3.2 Incremental WMBE: Merge and post-merge reparameterization operations . 47
3.3 Incremental WMBE: Improvement vs.ibound 52

4.1 Memory use, partitioning heuristics, and ibound 60
4.2 Incremental WMBE-MB: Updating the memory budget after a merge 72
4.3 Memory allocation schemes . 75
4.4 Protein side-chain prediction: Improved approximation and memory use . . . 84
4.5 Protein side-chain prediction: Different initializations for WMBE-MB 86
4.6 Protein side-chain prediction: choice of ibound 87
4.7 Linkage analysis: Improved approximation and memory use 88
4.8 Linkage analysis: Different initializations for WMBE-MB 90
4.9 WMBE-MB: Memory margin vs potential improvement 90
4.10 Pedigree instances: Bound quality versus available memory 91
4.11 WMBE-MB: Region selection and message passing 93

5.1 Auxiliary variables and updates in different frameworks 107
5.2 Potts models: Convergence time for LAPLP, DD-ADMM and ADLP 110
5.3 Linkage analysis: Convergence time for LAPLP, DD-ADMM and ADLP . . . 111
5.4 Protein side-chain prediction: Convergence time for LAPLP, DD-ADMM and

ADLP . 112
5.5 ADMM algorithms: Average run time . 113

v

LIST OF TABLES

Page

3.1 Image segmentation: Comparing different partitioning heuristics 49
3.2 Linkage analysis: Comparing different partitioning heuristics 50
3.3 Protein side-chain prediction: Comparing different partitioning heuristics . . 54
3.4 Top-down vs. Greedy region selection . 54

4.1 Protein side-chain prediction: Improved approximation using WMBE-MB . . 82
4.2 Protein side-chain prediction: Different initializations for WMBE-MB 85
4.3 Linkage analysis: Improved approximation using WMBE-MB 89
4.4 Linkage analysis: Different initializations for WMBE-MB 89

vi

LIST OF ALGORITHMS

Page

2.1 Bucket/Variable Elimination for computing the partition function Z 13
2.2 Bucket/Variable Elimination to compute marginals p(xi) 14
2.3 Mini-Bucket Elimination for computing the partition function Z 17
2.4 Weighted Mini-Bucket Elimination for computing the partition function Z . 21
2.5 Calculating the WMB bound Φ̄(θ̄, w̄) and its derivatives 25
3.1 Incremental region selection for WMBE . 40
3.2 AddRegions: find regions to add for merge 44
3.3 MergeRegions: merge and parameterize newly added regions to improve bound 46
4.1 Memory-aware region selection using ibound 64
4.2 Memory-aware Incremental region selection for WMBE using ibound 65
4.3 Memory-aware Incremental region selection for WMBE using memory budget 69
4.4 Memory-aware region selection using memory budget 70
4.5 Updating memory budget after adding new regions 70
4.6 Checking memory required for adding a new region 79
4.7 Checking memory required for adding a new region under memory budget . 80
5.1 Efficient projection on to the l ball . 104
5.2 Linearized APLP . 106

vii

ACKNOWLEDGMENTS

How does a person say thank you, when there are so many people to thank. First and
foremost I would like to thank my advisor Prof. Alexander Ihler without whom this journey
was not possible. Not only he was a brilliant research advisor to me, but he was also a
great mentor and an incredible source of support when I needed it the most. His timely
encouragements helped me grow beyond what I thought was possible. I’ve learned a lot
from him, academically and otherwise and will forever be in depth to him.

I would also like to thank my committee members Prof. Rina Dechter and Prof. Charless
Fowlkes, for their time and feedback. Rina’s research and teachings were the building blocks
of this thesis. She always made sure that I could reach out to her for advice and helped
me with her constructive feedback. Charless inspired my interest in computer vision and
constantly amazed me by his intuition and his ability to explain any complicated idea very
simply. I was fortunate to do research with him and learned a lot from him.

I am also indebted to Dr. Babak Shahbaba and Dr. Payam Heydari for being there for me
during this journey. They encouraged me to follow my passion every step of the way. Their
insights and encouragement were one of the things that supported me when I needed it the
most.

Of course, my experience at UCI was largely shaped by my peers. I’d like to thank the
students from Machine Learning and Vision Labs and most importantly members of IGB
who brought me up to speed when I first came to UCI.

Last, and most importantly, I want to thank my wonderful family. They all believed in
me through out this journey which gave me the confidence I needed to make it to the end.
Finally to my ever-supportive husband who stood by my side every step of the way, through
the good and the bad. His unconditional support was the single most important reason I
made it through the end and I am forever indebted to him for that.

I am grateful for the assistance I have received for my graduate studies from NSF grants IIS-
1065618 and IIS-1254071, and by the United States Air Force under Contract No. FA8750-
14-C-0011 under the DARPA PPAML program.

viii

CURRICULUM VITAE

Sholeh Forouzan

EDUCATION

Ph.D in Computer Science 2015
University of California, Irvine Irvine, CA

M.S in Computer Science 2011
University of California, Irvine Irvine, CA

M.S in AI and Robotics 2008
University of Tehran Tehran, Iran

B.S in Computer Engineering 2006
Shahid Beheshti University Tehran, Iran

ix

ABSTRACT OF THE DISSERTATION

Approximate Inference in Graphical Models

By

Sholeh Forouzan

Doctor of Philosophy in Computer Science

University of California, Irvine, 2015

Professor Alexander Ihler, Chair

Graphical models have become a central paradigm for knowledge representation and rea-

soning over models with large numbers of variables. Any useful application of these models

involves inference, or reasoning about the state of the underlying variables and quantify-

ing the models’ uncertainty about any assignment to them. Unfortunately, exact inference

in graphical models is fundamentally intractable, which has led to significant interest in

approximate inference algorithms.

In this thesis we address several aspects of approximate inference that affect its quality. First,

combining the ideas from variational inference and message passing on graphical models, we

study how the regions over which the approximation is formed can be selected more effectively

using a content-based scoring function that computes a local measure of the improvement

to the upper bound to log partition function. We then extend this framework to use the

available memory more efficiently, and show that this leads to better approximations. We

propose different memory allocation strategies and empirically show how they can improve

the quality of the approximation to the upper bound. Finally, we address the optimization

algorithms used in approximate inference tasks. Focusing on maximum a posteriori (MAP)

inference and linear programming (LP), we show how the Alternating Direction Method of

Multipliers (ADMM) technique can provide an elegant algorithm for finding the saddle point

x

of the augmented Lagrangian of the approximation, and present an ADMM-based algorithm

to solve the primal form of the MAP-LP whose closed form updates are based on a linear

approximation technique.

xi

Chapter 1

Introduction

Graphical models are a powerful paradigm for knowledge representation and reasoning. Well

known examples of graphical models include Bayesian networks, Markov random fields, con-

straint networks and influence diagrams. An early application of graphical models in com-

puter science is medical diagnostics, in which medical specialists are interested in diagnosing

the disease a patient might have by reasoning about the possible causes of a set of observed

symptoms, or evaluate which future tests might best resolve the patient’s underlying dis-

eases. Another popular example application of graphical models is in computer vision, such

as image segmentation and classification, where each image might consist of thousands of

pixels and the goal is to figure out what type of object each pixel corresponds to.

To model such problems using graphical models, we represent them by a set of random

variables, each of which represent some facet of the problem. Our goal is then to capture

the uncertainty about the possible states of the world in terms of the joint probability

distribution over all assignments to the set of random variables.

One of the main characteristics of such models is that there is going to be some significant

uncertainty about the correct answer. Probability theory is used to deal with such uncer-

tainty in a principled way by providing us with probability distributions as a declarative

representation with clear semantics, accompanied by a toolbox of powerful reasoning pat-

1

terns like conditioning, as well as a range of powerful learning methodologies to learn the

models from data.

While probability theory deals with modeling the uncertainty in such problems, in most

cases we are still faced with another complexity: the very large number of variables to

reason about. Even for the simplest case where each random variable is binary, for a system

with n variables the joint distribution will have 2n states, which requires us to deal with

representations that are intrinsically exponentially large. For these computational reasons,

we exploit ideas from computer science, specifically graphs, to encode structure within this

distribution and exploit the structure to represent and manipulate the distribution efficiently.

The resulting graphical representation gives us an intuitive and compact data structure

to encode high dimensional probability distributions, as well as a suite of methods that

exploit the graphical structure for efficient reasoning. At the same time, the graph structure

allows the parameters of the probability distribution to be encoded compactly, representing

high dimensional probability distributions using a small number of parameters and allowing

efficient learning of the parameters from data.

From this point of view, graphical models combine ideas from probability theory and ideas

from computer science to provides powerful tools for describing the structure of a probability

distribution and to organize the computations involved in reasoning about it. As a result,

this framework has been used in a broad range of applications in areas including coding and

information theory, signal and image processing, data mining, computational biology and

computer vision.

2

1.1 Examples of graphical models

Protein side chain prediction. Predicting side-chain conformation given the backbone

structure is a central problem in protein-folding and molecular design. Proteins are chains of

simpler molecules called amino acids. All amino acids have a common structure - a central

carbon atom (COl) to which a hydrogen atom, an amino group (NH2) and a carboxyl group

(COOH) are bonded. In addition, each amino acid has a chemical group called the side-

chain, bound to COl. This group distinguishes one amino acid from another and gives

its distinctive properties. Amino acids are joined end to end during protein synthesis by

the formation of peptide bonds. An amino acid unit in a protein is called a residue. The

formation of a succession of peptide bonds generate the backbone (consisting of COl and its

adjacent atoms, N and CO, of each reside), upon which the side-chains are hung [Yanover

and Weiss, 2003].

The goal of molecular design is then to predict the configuration of all the side-chains relative

to the backbone. The standard approach to this problem is to define an energy function and

use the configuration that achieves the global minimum of the energy as the prediction.

To model this problem, a random variable is defined for each residue and the state of it

represents the configuration of the side-chain of that residue. The factors in graphical model

then capture the constraints and the energy of the interactions with the goal of finding

a configuration that achieves the global minimum of the energy defined over the factors

[Yanover and Weiss, 2003].

Genetic linkage analysis. In human genetic linkage analysis, the haplotype is the sequence

of alleles at different loci inherited by an individual from one parent, and the two haplotypes

(maternal and paternal) of an individual constitute that individual’s genotype. However,

this inheritance process is not easily observed. Measurement of the genotype of an indi-

vidual typically results in a list of unordered pairs of alleles, one pair for each locus. This

3

information must be combined with pedigree data (a family tree of parent/offspring relation-

ships) in order to estimate the underlying inheritance process [Fishelson and Geiger, 2002].

A graphical model representation of given pedigree of individuals with marker information

(alleles at different loci) takes the form of a Bayesian network with variables representing the

genotypes, phenotypes, and selection of maternal or paternal allele for each individual and

locus. Finding the haplotype of individuals translates to an optimization task of finding the

most probable explanation (mpe) of the Bayesian network. Another central task is linkage

analysis, which seeks to find the loci on the chromosome that are associated with a given

disease. This question can be answered by finding the probability of evidence over a very

similar Bayesian network [Fishelson and Geiger, 2002].

1.2 Inference

Inference in graphical models refers to reasoning about the state of the underlying variables

and quantifying the model’s uncertainty about any assignment to the random variables.

For example, given the graphical model, we might be interested in finding the most likely

configuration of variables and its value. This is an inference task that comes up in protein

side-chain prediction, where the goal is then to find a configuration that achieves the maxi-

mum value of the objective function and recover optimal amino acid side-chain orientations

in a fixed protein backbone structure.

Another equally important inference task is computing summations (marginalizing) over

variables. Such inference task comes up when computing the marginal probability of a

variable being in any of its states and computing the partition function. Both of these tasks

are essential parts of training conditional random fields for image classification where we

need to compute the partition function and the marginal distributions in order to evaluate

the likelihood and its derivative. More importantly, because both of these quantities should

4

be computed for each training instance every time the likelihood is computed, we need to

have efficient methods for it.

Unfortunately, like many interesting problems, inference in graphical models is NP-hard

[Koller and Friedman, 2009a] as there are exponentially large number of possible assignments

to the variables in the models. Despite such complexity, inference can be performed exactly

in polynomial time for some graphical models that have simple structure like trees. The

most popular exact algorithm, the junction tree algorithm, groups variables into clusters

until the graph becomes a tree. Once an equivalent tree has been constructed, its marginals

can be computed using exact inference algorithms that are specific to trees.

However, many interesting problems that arise ubiquitously in scientific computation are

not amenable to such simple algorithm. For many real-world problems the junction tree

algorithm is forced to make clusters which are very large and the inference procedure still

requires exponential time in the worst case. Such complexity have inspired significant interest

in approximate inference algorithms and had led to significant advances in approximation

methods in the past decade.

1.3 Approximate Inference

The complexity of exact inference have led to significant interest in approximate inference

algorithms. Monte Carlo algorithms and variational methods are the two main classes that

received the most attention. Monte Carlo algorithms are stochastic algorithms that attempt

to produce samples from the distribution of interest. Variational algorithms on the other

hand convert the inference problem into an optimization problem, trying to find a simple

approximation that most closely matches the intractable marginals of interest. Generally,

Monte Carlo algorithms are unbiased and given enough time, are guaranteed to sample from

5

the distribution of interest. However, in practice, it is generally impossible to know when that

point of time has been reached. Variational algorithms, on the other hand, tend to be much

faster, but they are inherently biased. In other words, not matter how much computation

time they are given, they can not lesson the error that is inherent to the approximation.

1.4 Summary of Contributions

Our ultimate goal is to advance the computational capabilities of reasoning algorithms for

intelligent systems using the graphical models framework. We consider graphical models

that involve discrete random variables and develop methods that allow us to improve on the

existing approximate inference algorithms in several dimensions. We focus our attention to

several areas that affect the quality of approximate inference:

• finding better approximations to the exponentially hard exact inference problem

• finding more efficient ways to use the available memory to improve the approximation

• finding better optimization algorithms to solve the approximate inference task faster

and more accurately

As stated earlier an inherent source of error in variational methods is the approximation

itself and thus finding better approximations is the key to reducing the error in the inference

task. We show how such an approximation can be built incrementally in the context of

weighted mini-bucket elimination for computing the partition function. We also study how

approximate inference algorithms based on mini-bucket elimination use the available mem-

ory and develop algorithms that allows efficient use of the amount of memory available to

construct better approximations and hence better approximate inference. Finally we focus

our attention on the algorithms used to solve the optimization task for approximate inference

6

and develop an algorithm that uses Alternative direction method of multipliers (ADMM), a

state of the art optimization algorithm, to find better solutions to the approximate inference

problem for computing the maximizing assignment to variables.

To do so, this thesis first presents some background on problems and methods for graphical

models in Chapter 2, then describes our contributions in three parts:

Chapter 3:

• We describe how to use the message passing framework of Weighted Mini-bucket Elim-

ination(WMBE) to select better regions to define the approximation and improve the

bound

• We introduce a new merging heuristic for (weighted) mini-bucket elimination that uses

message passing optimization of the bound, and variational interpretations, in order

to construct a better heuristic for selecting moderate to large regions in an intelligent,

energy-based way

• We propose an efficient structure update procedure that incrementally updates the join

graph of mini-bucket elimination after new regions are added in order to avoid starting

from scratch after each merge.

Chapter 4:

• We describe how controlling the complexity of inference using ibound can result in

inefficient use of resources and propose memory-aware alternatives

• We propose several memory allocation techniques to bypass the choice of a single

control parameter for content-based MBE approximation that allows a more flexible

control of memory during inference

7

• We expand the incremental region selection algorithm for weighted mini-bucket elimi-

nation to use a more fine tuned memory budget rather than a fixed ibound

• We perform an empirical evaluation of different allocation schemes, characterizing their

behavior in practice

• We propose practical guidelines for choosing the memory allocation scheme for different

classes of problems

Chapter 5:

• We present an algorithm based on the Alternating Direction Method of Multipliers

(ADMM) for approximate MAP inference using its linear programming relaxation

• We characterize different formulations of such problem using a graphical approach and

discuss the challenges

• We propose a linear approximation to ADMM that allows solving the optimization

efficiently

8

Chapter 2

Background

Graphical models capture the dependencies among large numbers of random variables by

explicitly representing the independence structure of the joint probability distribution. It

is useful to represent probability distributions using the notion of factor graphs. Such a

representation allows the inference algorithms to be applied equally well to Bayesian networks

and Markov random fields, as both of those can be easily converted to factor graphs.

For example, the factor graph in Figure 2.1 represents the joint distribution over random

variables X1, . . . , X5 as a collection of factors fij(Xi, Xj) over pairs of variables. Each random

variable Xi can take one of several possible values xi ∈ Xi, where Xi is called the domain

and |Xi| is called the cardinality of the variable. A factor f(X1, . . . , XN) is then a function

(or table) that takes a set of random variables {X1, . . . , XN} as input, and returns a value

for every assignment, (x1, . . . , xN), to those random variables in the cross product space

(a) (b)

Figure 2.1: (a) Factor graph (b) Factor

9

X = X1×· · ·×XN . In the sequel, we use var(f) to refer to the set of input random variables,

{X1, . . . , XN}, for factor f(X1, . . . , XN). By this definition, a factor can be normalized,

i.e.
∑

xα
f(xα) = 1 and f(xα) ≥ 0 for all assignments xα, or may be un-normalized so

that it does not necessarily correspond to a probability distribution. These factors are

the fundamental building blocks in defining distributions in a high dimensional space. A

probability distribution over a large set of variables is then formed by multiplying factors:

p(x1, . . . , xN) = p(x) =
1

Z

∏
α∈I

fα(xα) where Z =
∑

x

∏
α

fα(xα)

Here xα indicates the subset of variables that appear as arguments to factor fα, and Z is

a constant which serves to normalize the distribution (called the partition function). We

assume f(xα) ≥ 0. As shown in Figure 2.1, we can then associate p(x) with a graph

G = (V,E), where each variable Xi is associated with a node of the graph G. The node

corresponding to Xi is connected to Xj if both variables are arguments of some factor fα(xα).

The set I is then a set of fully connected cliques in G.

Given such a representation, common inference tasks include finding the most likely or

maximum a posteriori (MAP) configuration of p(x), a combinatorial optimization problem, or

computing the partition function Z or the marginal distributions of variables, a combinatorial

summation problem:

x∗ = arg max
x

∏
α∈I

fα(xα) Z =
∑

x

∏
α

fα(xα) b(xi) =
∑
x\xi

p(x)

2.1 Elimination Based Inference

Unfortunately, inference tasks such as computing the partition function or finding the most

likely configuration of the variables are often computationally intractable for many real-world

10

problems. Elimination based methods such for exact inference, such as variable or ‘bucket’

elimination [Dechter, 1999] directly eliminate (by summing or maximizing) the variables,

one at a time, along a predefined elimination ordering. The complexity of such an elimi-

nation procedure is exponential in the tree-width of the model, leading to a spectrum of

approximations and bounds subject to computational limits. We first introduce the bucket

elimination method [Dechter, 1999] in Section 2.1.1 and then the mini-bucket elimination

method [Dechter and Rish, 2003] for approximate inference. We mainly focus our discus-

sion on marginal inference, but the same methods can be applied to maximization tasks by

replacing the sum operator with max.

2.1.1 Bucket Elimination

Bucket elimination (BE) [Dechter, 1999] is an exact algorithm that directly eliminates vari-

ables in sequence. Given an elimination order, BE collects all factors that include variable Xi

as their earliest-eliminated argument in a bucket Bi, then takes their product and eliminates

Xi to produce a new factor over later variables, which is placed in the bucket of its “parent”

πi, associated with the earliest uneliminated variable:

λi→πi(xi→πi) =
∑
xi

∏
fα∈Bi

fα(xα)
∏

λj→i∈Bi

λj→i(xj→i)

where xi→πi is the set of variables that remain in the scope of the intermediate functions

λi→πi after Xi is eliminated. This calculation can be conveniently organized as a “Bucket

Elimination” procedure shown in Algorithm 2.1.

As an example, for the toy model of Figure 2.1, the BE algorithm takes the following steps:

Given the elimination order o = [1, 2, 3, 4, 5], the bucket elimination algorithm starts by

eliminating variable X1 by grouping all factors containing X1 in their scope, in bucket B1

11

(a) (b)

Figure 2.2: (a) Bucket Elimination (b) The Cluster Tree for Bucket Elimination

and eliminating X1 by

λ1→π1(x2, x3, x4) =
∑
x1

f12f13f14,

where we use fij as shorthand for fij(xi, xj). The elimination results in the intermediate

function, λ1→π1 . This intermediate function is then passed to bucket B2 (associated with

variable X2), which is the first variable that will be eliminated from this function based on

the elimination order o. Figure 2.2(a) shows how the original factors are grouped together in

the buckets and how the messages generated by the algorithm are assigned to each bucket.

Execution of Bucket elimination algorithm induces a tree structure, CT = (V,E), known as

a cluster tree. The cluster tree then associates a node i ∈ V to each bucket Bi. An edge

(i, j) ∈ E connects the two nodes i and j if the intermediate function λi→πi produced by

processing bucket Bi is passed to bucket Bj.

From the cluster tree prespective, the functions λi→πi constructed during the elimination

process can be interpreted as messages that are passed downward in a cluster tree represen-

tation of the model [Ihler et al., 2012]; see Figure 2.2(b). We will refer to bucket B2 as being

12

Algorithm 2.1 Bucket/Variable Elimination for computing the partition function Z

Input: Set of factors of a graphical model F = {fα(xα)}, an elimination order o =
[x1, . . . , xN]
Output: The partition function Z
for i← 1 to N do

Find the set (bucket) Bi of factors fα and intermediate messages λj→i over variable xi.

Eliminate variable xi:

λi→πi(xi→πi) =
∑
xi

∏
fα∈Bi

fα(xα)
∏

λj→i∈Bi

λj→i(xj→i)

Update the factor list F← {F−Bi} ∪ {λi→πi(xi→πi)}:

end for
Return: partition function Z =

∏
λi→∅∈F

λi→∅

the parent of bucket B1 and bucket B1 as being a child of bucket B2. Note that a bucket

may have multiple children, but can only have one parent.

Note that while computing the partition function of the probability distribution over the

variables {X1 . . . X5} using a brute-force procedure requires a sum over a 5 dimensional

tensor with computational complexity O(k5), where k is the number of possible states for

Xi, the bucket elimination complexity is only O(k4).

In general, the space and time complexity of BE are exponential in the induced width of

the graph along the elimination order, which is the maximum number of variables that

appear together in a bucket and need to be reasoned about jointly. While good elimination

orders can be identified using various heuristics [see e.g., Kask et al., 2011], this exponential

dependence often makes direct application of BE intractable for many problems of interest.

Computing Marginal Probabilities

13

Algorithm 2.2 Bucket/Variable Elimination to compute marginals p(xi) [Dechter, 1999]

Input: Set of factors of a graphical model F = {fα(xα)}, an elimination order o =
[x1, . . . , xN]
Output: The partition function Z and the marginal distributions {p(xBi)}
Forward Pass: Use Algorithm 2.1 to calculate Z and all the messages λi→πi for all buckets
Bi

Backward Pass:

Initialize p(xBi) =
∏
fα∈Bi

fα(xα)
∏

λj→i∈Bi

λj→i(xj→i)

for j ← N − 1 to 1 do

Compute a message from Bj to Bi; where Bj is the bucket that receives the message
λi→πi in the forward elimination

λj→i(xj→i) =
∑

xBj \xBi

p(xBj)

λi→πi(xi→πi)

Compute the marginal over variables in Bi:

p(xBi) = λj→i(xj→i)p(xBi)

end for
Return: partition function Z and the marginals {p(xBi)}
Remark: Marginals over single variables can be computed by further marginalizing over
the variables in the bucket. e.g. p(xi) =

∑
πi
p(xBi)

In many cases we are interested in calculating the marginal probabilities, p(xi). To do so

we can simply fix the value xi and run the BE Algorithm 2.1 for all possible values of

xi. While simple, such approach is very inefficient as we often need to compute p(xi) for all

variables and all their possible values which repeat many of the same calculations. By sharing

the repeated calculations, one can derive a more efficient algorithm. Dechter [1999] shows

how an additional backward elimination can be used to compute the marginal probabilities

recursively; this procedure is shown as Algorithm 2.2.

14

2.1.2 Mini-bucket Elimination.

To avoid the complexity of bucket elimination, Dechter and Rish [2003] proposed an approx-

imation in which the factors in bucket Bi are grouped into partitions Qi = {q1
i , ..., q

p
i }, where

each partition qji ∈ Qi, also called a mini-bucket, includes no more than ibound + 1 variables.

The user-selected bounding parameter ibound then serves as a way to control the complex-

ity of elimination, as the elimination operator is applied to each mini-bucket separately.

The ibound parameter then provides a flexible method to trade off between complexity and

accuracy.

For the running example of Figure 2.1, the elimination process for X1,
∑

x1
f12f13f14, can

be approximated by the following upper and lower bounds to the exact elimination [Dechter

and Rish, 2003]:

∑
x1

f12f13 min
x1

f14 ≤
∑
x1

f12f13f14 ≤
∑
x1

f12f13 max
x1

f14,

which holds for all values of (x2, x3, x4). Mini-bucket approximation eliminatesX1 from f12f13

and f14 separately, instead of eliminating X1 from their product f12f13f14; this reduces the

computational complexity from O(k4) to O(k3), as the separate eliminations operate over

smaller functions. Figure 2.3 (a) shows mini-bucket elimination with ibound = 2 and Figure

2.3 (b) shows the cluster tree generated along the elimination procedure.

More generally, this approximation can be applied within each elimination step of Bucket

Elimination (Algorithm 2.1), which results in a general mini-bucket elimination (MBE) al-

gorithm given in Algorithm 2.3 [Dechter and Rish, 2003]. At each elimination step, MBE

first splits the functions in the bucket Bi into smaller mini-buckets (partitions) and then

eliminates Xi from each mini-bucket separately. The results are then passed to buckets later

in the elimination order.

15

(a) (b)

Figure 2.3: (a) Mini-Bucket Elimination (b) The Cluster Tree for Mini-Bucket Elimination

In general, using the inequality

∑
xi

∏
fα∈Bi

fα ≤
[∑

xi

∏
fα∈q1

i

fα

]
·
[

max
xi

∏
fα∈q2

i

fα

]
, (2.1)

MBE gives an upper bound on the true partition function, where its time and space com-

plexity are exponential in the user-controlled ibound. A similar inequality, with the max

operator replaced by min can be used to find a lower bound on the exact elimination.

∑
xi

∏
fα∈Bi

fα ≥
[∑

xi

∏
fα∈q1

i

fα

]
·
[

min
xi

∏
fα∈q2

i

fα

]
, (2.2)

Clearly, the complexity of MBE is reduced to O(kibound) instead of O(ktw) of exact bucket

elimination, where tw is the induced width of the graph along the elimination order. Smaller

ibound values result in lower computational cost, but are typically less accurate; higher ibound

values give more accurate results, but are computationally more expensive to compute.

Unfortunately the bounds defined by MBE are relatively loose and require use of a high

ibound to achieve good results in practice. To overcome this drawback, Liu and Ihler [2011]

16

Algorithm 2.3 Mini-Bucket Elimination for computing the partition function Z
[Dechter and Rish, 2003]

Input: Set of factors of a graphical model F = {fα(xα)}, an elimination order o =
[x1, . . . , xN], and an ibound
Output: An upper (lower) bound on partition function Z
for i← 1 to N do

Find the set (bucket) Bi of factors fα and intermediate messages λj→i over variable xi.

Partition Bi into p subgroups q1
i , . . . , q

p
i such that ∪pj=1q

j
i = Bi and

| ∪f∈qji var(f)| ≤ ibound + 1 for all j = 1, . . . , p

Eliminate variable xi:
for m = 1 . . . p do

λi→πi(xi→πi) =

∑
xi

(
∏
fα∈qmi

fα(xα)
∏

λj→i∈qmi

λj→i(xj→i)), if m = 1

max
xi

(
∏
fα∈qmi

fα(xα)
∏

λj→i∈qmi

λj→i(xj→i)), if m 6= 1

end for

Update the factor list F← {F−Bi} ∪ {λi→πi(xi→πi)}:

end for
Return: the bound on partition function Z =

∏
λi→∅∈F

λi→∅

Remark: A lower bound can be obtained by replacing the max in elimination step with
min

introduced weighted mini-bucket elimination which uses a more general bound based on

Höllder’s inequality that can give tighter bounds for small ibound values. The details of

weighted MBE are explained in section 2.1.3.

It is important to highlight the relationship between miini-bucket elimination and message

passing, as mini-bucket elimination can be interpreted in the context of a cluster tree and

message passing on it. The corresponding cluster tree for a particular partitioning then

17

contains a cluster for each mini-bucket, with its scope being the union of the scope of all

the factors in that mini-bucket, and MBE bound corresponds to a problem relaxation in

which a copy of shared variables between the mini-buckets is made for each, and the result

of eliminations λi→πis correspond to the messages in a cluster tree defined on the augmented

model over the variable copies; see Figure 2.3(b). This cluster tree is guaranteed to have

induced-width ibound or less. The problems are equivalent if all copies of Xi are constrained

to be equal; otherwise, the additional degrees of freedom lead to a relaxed problem and thus

can generate an upper bound. This connection allows us to apply any of the message passing

paradigms to our inference problem and inspires combining message passing techniques with

MBE based approximate inference techniques and balance the positive properties of both.

Another factor that affects the mini-bucket bound significantly is the choice of partitions Qi.

In Chapter 3, we explain the existing heuristics that have been used to guide the choice of

partitions, and introduce a new general partitioning heuristic within weighted mini-bucket

that results in better approximation quality.

2.1.3 Weighted Mini-bucket

A recent improvement to mini-bucket generalizes the MBE bound with a “weighted” elimina-

tion [Liu and Ihler, 2011]. Compared to standard MBE, which approximates the intractable

summation operators with upper/lower bounds based on max/min operators, weighted mini-

bucket builds an approximation based on the more general powered sum with a “weighted”

elimination step. An upper or lower bound can then be computed depending on the signs of

the weights.

Weighted mini-bucket applies Hölder’s and reverse Hölder inequalities, which provide gen-

eral tools for constructing bounds or approximations to the sum of products, to form the

foundation for of a mini-bucket approximation [Liu and Ihler, 2011]. For a set of positive

18

functions fα(xα), α = 1, . . . , n defined over discrete variables x, and a set of non-zero weights

w = [w1, . . . , wn], Hölder’s inequality results in an upper bound

∑
x

∏
α

fα ≤
∏
r

[∑
xi

f
1
wr
α

]wr
for w ∈ W+ (2.3)

and reverse Hölder’s inequality results in a lower bound

∑
x

∏
α

fα ≥
∏
r

[∑
xi

f
1
wr
α

]wr
for w ∈ W− (2.4)

where

W+ = {w :
∑
r

wr = 1 and wr > 0,∀r = 1, . . . , n}

W− = ∪nk=1W−k where W−k = {w :
∑
r

wr = 1 and wk > 0, wr < 0,∀r 6= k}

so that W+ corresponds to a probability simplex on the weights wr, and W− corresponds

to a normalized weights with exactly one positive element. Given equations (2.3) and (2.4),

the sum of products of functions can be approximated using products of powered sums over

individual functions and can be used to provide upper and lower bounds for the partition

function in a manner similar to mini-bucket elimination.

For the running example of Figure 2.1, weighted mini-bucket approximation results in the

following elimination, where w1 and w2 are weights satisfying w1 +w2 = 1 and the direction

of inequality depends on the signs of the weights [w1, w2].

∑
x1

f12f13f14
≥
≤ [

∑
x1

(f12f13)
1
w1]w1 [

∑
x1

f
1
w2

14]w2

It is interesting to note that the powered sum
w∑
x

f(x) =
(∑

x

f(x)
1
w

)w
approaches max

x
f(x)

19

when w → 0+ and min
x
f(x) as w → 0. Consider the upper bound of equation (2.3) for a

partition q1
i , q

2
i , which takes the form

∑
xi

∏
fα∈Bi

fα ≤
[∑

xi

∏
fα∈q1

i

f
1
w1
α

]w1

·
[∑

xi

∏
fα∈q2

i

f
1
w2
α

]w2

,

where wi > 0 and w1 + w2 = 1. It is easy to see that this bound generalizes the mini-

bucket upper bound where w1 = 1 and w2 → 0+. The same argument holds for the lower

bound (2.4), as it generalizes the mini-bucket lower bound where w1 = 1 and w2 → 0−.

Based on these Hölder inequality bounds, Liu and Ihler [2011] then generalized mini-bucket

elimination to weighted mini-bucket elimination (WMB), presented in Algorithm 2.4, by

replacing the mini-bucket bound with Hölder’s inequality. The general procedure is the same,

except that the sum/max operators are replaced with weighted sums where the weights are

normalized to sum to one for each variable.

Liu and Ihler [2011] also show that the resulting bound is equivalent to a class of bounds based

on tree reweighted (TRW) belief propagation [Wainwright et al., 2005], or more generally

conditional entropy decompositions (CED) [Globerson and Jaakkola, 2007a], on a join-graph

defined by the mini-bucket procedure. This connection is used to derive fixed point repa-

rameterization updates, which change the relative values of the factors fα while keeping

their product constant in order to tighten the bound. Section 2.2 gives some background on

variational methods for inference and further explains this connection.

Variable Splitting Perspective

It is useful to consider the effect of partitioning of functions into different mini-buckets

and eliminating in each mini-bucket separately. This procedure effectively splits a variable

into one or more replicates, one for each mini-bucket. From this perspective, mini-bucket

20

Algorithm 2.4 Weighted Mini-Bucket Elimination for computing the partition function Z
[Liu and Ihler, 2011]

Input: Set of factors of a graphical model F = {fα(xα)}, an elimination order o =
[x1, . . . , xN], and an ibound
Output: An upper (lower) bound on partition function Z
for i← 1 to N do

Find the set (bucket) Bi of factors fα and intermediate messages λj→i over variable xi.

Partition Bi into p subgroups q1
i , . . . , q

p
i such that ∪pj=1q

j
i = Bi and

| ∪f∈qji var(f)| ≤ ibound + 1 for all j = 1, . . . , p

Assign a weight wj to each partition qji such that
∑

j w
j = 1.

Eliminate variable xi from each partition:
for m = 1 . . . p do

λi→πi(xi→πi) =
[∑

xi

∏
fα∈qmi

f
1

wmi
α

]wmi
end for

Update the factor list F← {F−Bi} ∪ {λi→πi(xi→πi)}:

end for
Return: the bound on partition function Z̄ =

∏
λi→∅∈F

λi→∅

Remark: An upper or lower bound can be computed based o the sign of the weights wmi

elimination (Algorithm 2.3) is identical to bucket elimination (Algorithm 2.1), but executes

on the replicas of variables in different mini-buckets.

WMB uses this perspective to define the bounds on an augmented model defined by splitting

variables which characterizes the weighted mini-bucket bound as an explicit function of the

augmented model parameters and the weights. This formulation then allow the development

of efficient algorithms to optimize the parameters and the weights to obtain the tightest

bound.

21

To make this formulation clear, note that the process of partitioning the functions assigned

to the mini-buckets can be interpreted as replicating the variables that appear in different

mini-buckets. Let x̄i = {xri}
Ri
r=1 be the set of Ri copies of variable xi. Also let w̄i = {wri }

Ri
r=1

be the corresponding collection of weights for each replicate such that
∑Ri

r=1w
r
i = 1. The

sets x̄ = {x̄1, . . . , x̄n} and w̄ = {w̄1, . . . , w̄n} thus represent the collection of variable copies

and the weights. The elimination order o = [1, . . . , n] on the original variables x can then be

simply extended to the set x̄ as ō = [11, . . . , 1R1 , . . . , n1, . . . , nRn]. Let θ̄ = {θ̄α : α ∈ I} be

the set of factors defined over the set of variable copies x̄ where θ̄α = log f̄α. Such formulation

allows computing the log-partition function as a sequential powered sum,

Φ(θ̄, w̄) = log
w̄m∑
x̄m

· · ·
w̄1∑
x̄1

∏
α∈I

exp(θ̄α(x̄α)) (2.5)

It is therefore possible to jointly optimize θ̄ and w̄ to get the tightest bound. Computing

the tightest upper bound then requires solving the following optimization problem

min
θ̄,w̄

Φ(θ̄, w̄) s.t θ̄ ∈ Θ, w̄ ∈ W+ (2.6)

Here Θ is the set of augmented natural parameters θ̄ = {θ̄ᾱ : ᾱ ∈ Ī} that are consistent

with the original model in that
∑

ᾱ∈Ī θ̄ᾱ(x̄α) =
∑

α∈I θα(xα) for all the values x̄ir = xi. And

W+ is the set of weights that makes the corresponding Hölder inequality to hold, namely,

W+ = {w̄ :
∑
r

w̄ir = 1, w̄ir ≥ 1,∀i, r}

This optimization is convex and its global optimum can be calculated efficiently. Liu and

Ihler [2011] show how the forward-backward Algorithm 2.5 can be used to calculate Φ̄(θ̄, w̄)

in a forward pass which is identical to weighted mini-bucket Algorithm 2.4. A backward pass

then calculates the approximate marginals. These marginals can then be used to compute

22

the derivatives of Φ̄(θ̄, w̄) with respect to θ̄ and w̄ as:

∂

∂θ̄α
Φ̄(θ̄, w̄) = p̄w(x̄α), (2.7)

∂

∂w̄k
Φ̄(θ̄, w̄) = Hw(x̄k|x̄k+1:n; p̄w) (2.8)

In principle, having the values Φ(θ̄, w̄) and derivatives as output from Algorithm 2.5, we

could directly apply black- box optimization routines to optimize the bound. However since

Φ(θ̄, w̄) is calculated using a relatively expensive forward-backward message-passing algo-

rithm, it seems most efficient to update θ̄ and w̄ while computing messages.

Moment matching conditions are used to update θ̄ given the positive weights w̄ > 0. To do

so, first an ”average marginal” pm(xi) is computed using the geometric mean of the marginals

of the replicates {p̄w(x̄ir)} and then θ̄ is adjusted to correct for the difference between the

marginal of each replicate and the average marginal as follows:

pm(xi) =

[∏
r

p̄w(x̄ir = xi)
w̄ir

] 1∑
r w̄ir

θ̄cir = θ̄cir + w̄ir log
pm(xi)

p̄w(x̄ir)

Entropy matching can then be used to update {w̄ir} in W̄+, fixing the augmented natural

parameters θ̄, giving the following updates:

w̄ir = w̄ir exp

[
−εw̄ir(Hir|≺ −

∑
r

w̄irHir|≺)

]
, ∀r = 1, ..., Ri

w̄ir =
w̄ir∑
r w̄ir

, ∀r = 1, ..., Ri

23

Very important aspect of such optimization which directly impacts the tightness of the bound

is the structure of the cluster tree over which the augmented model p̄(x̄) is formed. Such

structure can be formed by running the mini-bucket elimination Algorithm 2.3 which requires

partitioning the functions that belong to a bucket into smaller mini-buckets. Different parti-

tioning strategies result in different structures than can affect the tightness of the bound and

have been previously studied for selecting better mini-buckets for MBE algorithm [Rollon

and Dechter, 2010]. In Chapter 3 we study one such partitioning strategy which allows us

to add new regions to the cluster tree Ḡ incrementally to achieve tighter bounds.

24

Algorithm 2.5 Calculating the WMB bound Φ̄(θ̄, w̄) and its derivatives [Liu and Ihler,
2011]

Input: Set of augmented factors of a graphical model {f̄ck(x̄ck)} and their cluster tree Ḡ.
A weight vector w̄ = [w̄1, . . . , w̄n]. An elimination order ō = [11, . . . , 1R1 , . . . , n1, . . . , nRn]

Output: Φ̄(θ̄, w̄) and its derivatives
Forward pass:
for i← 1 to n̄ do

λi→l(x̄i→l) =
[∑

x̄i

(fci(x̄i)
∏

j∈child(i)

λj→i(x̄j→i))
1
wi

]wi
where l = πi is the parent of ci and child(i) is the set of nodes that have i as their
parents.

end for
Backward pass:
for i← n̄ to 1 do

λk→i(x̄k→i) =
[∑

x̄k\x̄i

(fck(x̄k)
∏
j∈δ(i)

λj→i(x̄j→i))
1
wi λi→k(x̄i→k)

− 1
wi

]wmi
where δ(i) is all the nodes connected to i in the cluster tree Ḡ including its parent k

end for
Compute the bound:

Φ̄(θ̄, w̄) = log
∏
k

 w̄k∑
x̄k

[̄fck(x̄k)
∏
i∈δ(k)

λi→k(x̄i→k)]

where k lists all the clusters with no parents in Ḡ.
Compute the approximate marginals:

p̄w(x̄ck) ∝ [̄fck(x̄k)
∏
i∈δ(k)

λi→k(x̄i→k)]
1
wk

25

2.2 Variational Methods

All inference methods discussed so far use a sequence of variable elimination steps to compute

the partition function. In contrast, variational methods convert the inference problem into

an optimization task over the space of distributions. The goal is then to find a distribution

minimizing a divergence measure to the target distribution over which we can solve the

inference problem more efficiently. To review the variational inference framework next we

introduce the exponential family form for graphical models and the variational form for the

log-partition function.

2.2.1 Exponential Family and Marginal Polytope

The factorized distribution p(x) =
1

Z

∏
α

fα(xα) can be written into an overcomplete expo-

nential family form [Wainwright and Jordan, 2008b],

p(x;θ) = exp(θ(x)− Φ(θ)) θ(x) =
∑
α∈I

θα(xα) (2.9)

where θα(xα) = log(fα(xα)) are the log of the factors fα in our graphical model. The values

θα are called the natural parameters of the exponential family and the vector θ = {θα(xα) :

α ∈ I,xα ∈ Xα} is a vector formed by concatenating all the natural parameters. Φ(θ) is

then the log-partition function, that normalizes the distribution

Φ(θ) = log
∑

x

exp(θ(x)) (2.10)

The framework of variational inference converts the problem of computing the log-partition

function (2.10) to an optimization problem:

Φ(θ) = max
q∈Px
{Eq(θ(x)) +H(x; q)} (2.11)

26

where Px is the set of all possible distributions defined on x which can be represented as

Px = {q(x) :
∑

x

q(x) = 1 and q(x) ≥ 0,∀ x} (2.12)

and H(x; q) = −Eq(log q(x)) is the entropy of distribution q.

This representation has several interesting properties[Wainwright and Jordan, 2008b]:

1. Φ(θ) is a convex function of θ.

2. The maximum is obtained at q∗(x) = p(x) = exp(θ(x)− Φ(θ)).

3. The derivatives of Φ(θ) with respect to the natural parameters θα(xα) equal the

marginal distribution of p(x), as

∂Φ(θ)

∂θα(xα)
= p(xα), ∀α ∈ I,xα ∈ Xα (2.13)

An important simplification is possible by observing that Eq(θ(x)) can be decomposed into

smaller terms defined only over the factor scopes α as:

Eq(θ(x)) =
∑
α

Eq(θα(xα)) =
∑
α

∑
xα

q(xα)θα(xα)

This simplification allows us to represent each q(x) ∈ Px which is intrinsically high dimen-

sional with (
∏

i |Xi| − 1) values by
∑

α(
∏

Xi∈α |Xi| − 1).

Additionally it allows defining the marginal polytope M(I) as the set of all possible marginal

distributions µ := {µα : α ∈ I,xα ∈ Xα} that are consistent with the joint distribution on

x. More specifically:

M(I) = {µ : ∃ q(x) ∈ Px such that µα(xα) =
∑
x\xα

q(x) ∀α ∈ I,xα ∈ Xα}

27

As a result the optimization (2.11) can now be defined as an optimization over the marginal

potytope M(I) as:

Φ(θ) = max
µ∈M(I)

{〈µ,θ〉+H(x;µ)} (2.14)

where 〈µ,θ〉 is the inner product,

〈µ,θ〉 =
∑
α∈I

∑
xα

µ(xα)θα(xα)

As a result both the partition function and marginals can be computed from a single con-

tinuous optimization (2.14) instead of the sum inference task.

Unfortunately, simply casting the log-partition function as an optimization problem does not

cause the computation to be tractable and the optimization in (2.14) remains intractable

for two reasons: (1) the entropy H(x;µ) is intractable to compute in general, and (2) the

marginal polytope, M, is difficult to characterize exactly, requiring an exponential number

of linear constraints in general.

Approximating the variational form (2.14) efficiently then requires three components: (1)

approximating the marginal polytope M ≈ M̄; (2) approximating the entropy H(x;µ) ≈

H̄(x;µ); and (3) solving the continuous optimization with those approximations.

As a result, some of the important problems in variational approximations include the se-

lection of an appropriate entropy approximation H̄, and the choice of regions, or subsets of

variables whose beliefs are represented directly which often affects both the accuracy of H̄

and the form of the polytope approximation M̄.

28

2.2.2 WMBE - The Variational View

As described in section 2.1.3, weighted mini-bucket elimination (WMBE) can be used to

compute an upper or lower bound of the log-partition function by passing weighted mes-

sages forward along an elimination order. The weighted summation and Hölder’s inequality

were then used to compute its bounds (2.3) and (2.4). Liu and Ihler [2011] show that this

bound can be interpreted from a variational perspective by first approximating the marginal

polytope by a marginal polytope on the cluster tree formed by the partitions and then

bounding the exact entropy using a weighted conditional entropy.

To make this connection clear, note that the process of partitioning the functions assigned

to the mini-buckets can be interpreted as replicating the variables that appear in different

mini-buckets. Let x̄i = {xri}
Ri
r=1 be the set of Ri copies of variable xi. Also let w̄i = {wri }

Ri
r=1

be the corresponding collection of weights for each replicate such that
∑Ri

r=1w
r
i = 1. The

sets x̄ = {x̄1, . . . , x̄n} and w̄ = {w̄1, . . . , w̄n} thus represent the collection of variable copies

and the weights. The elimination order o = [1, . . . , n] on the original variables x can then

be simply extended to the set x̄ as ō = [11, . . . , 1R1 , . . . , n1, . . . , nRn]. Let θ̄ = {θ̄α : α ∈ I}

be the set of factors defined over the set of variable copies x̄. Such formulation allows, the

primal WMB bound to be

Φ(θ) ≤ Φ(θ̄, w̄) = log
w̄m∑
x̄m

· · ·
w̄1∑
x̄1

∏
α∈I

exp(θ̄α(x̄α)) (2.15)

From the variational perspective, the above replaces the marginal polytopeM on the original

variables, with the marginal polytope M̄ on the variable replicates which means the search

for the mean vector µ ∈ M is replaced with searching for some extended mean vector

µ̄ ∈ M̄. The entropy can be bounded using a weighted sum of the conditional entropies,

29

computed using the marginals µ̄, on the mini-bucket graph

H(µ) ≤ H̄w̄(µ̄) =
∑
i∈ō

w̄iH(x̄i|x̄i+1:n̄; µ̄) (2.16)

Plugging the approximations to the marginal polytope M̄ and conditional entropy H̄w̄(µ̄)

in to (2.14) results in the dual WMB bound to the log partition function

Φ(θ) ≤ max
µ̄∈M̄
{〈µ̄, θ̄〉+ H̄w̄(µ̄)} (2.17)

In principle, we could use a variety of methods to directly optimize (2.17). However, as Liu

and Ihler [2011] show, the primal WMB bound in (2.15) can be optimized efficiently via

simple message passing updates described in Algorithm 2.5 which is the route we follow in

our later experiments involving WMB.

2.2.3 Variational Methods for Maximization

The variational form (2.14) casts the problem of computing the log-partition function as a

continuous optimization problem. A similar representation exists for the maximization tasks

in graphical models as:

Φ(θ) = max
µ∈M(I)

{〈µ,θ〉} (2.18)

which provides a powerful toolkit for the max-inference; a combinatorial optimization prob-

lem. It is interesting to note that the form (2.18) and (2.14) differ only by the addition of

the entropy term in the latter. Intuitively for the maximization we expect the marginals

of the optimal distribution to correspond to a single assignment while for the summation

the entropy term causes the optimal distribution to spread across many high-probability

30

assignment to increase the entropy.

Approximating the marginal polytope M in (2.18) with a more manageable set such as

the local consistency polytope L results in an approximation known as a relaxation of lin-

ear programming relaxation for MAP inference. Many efficient algorithms have been devel-

oped to solve the linear program (2.18), including max-product linear programming (MPLP)

[Globerson and Jaakkola, 2007b] and dual decomposition [Komodakis et al., 2011, Sontag

et al., 2010]. In Chapter 5 we discuss how to use augmented Langrangian methods com-

bined with the Alternating Direction Method of Multipliers to solve this optimization more

efficiently.

31

Chapter 3

Incremental Region Selection for

Mini-bucket Elimination Bounds

3.1 Region Choice for MBE

The popularity of mini-bucket elimination [Dechter and Rish, 2003] (discussed in detail

in Chapter 2) has led to its use in many reasoning tasks; MBE is often used to develop

heuristic functions for search and combinatorial optimization problems [Dechter and Rish,

2003, Kask and Dechter, 2001, Marinescu and Dechter, 2007, Marinescu et al., 2014], as well

as to provide bounds on weighted counting problems such as computing the probability of

evidence in Bayesian networks [Rollon and Dechter, 2010, Liu and Ihler, 2011].

A critical component of the mini-bucket approximation is the set of partitions formed during

the elimination process. By bounding the size of each partition and eliminating within

each separately, MBE ensures that the resulting approximation has bounded computational

complexity, while providing an upper or lower bound. A single control variable, the ibound,

allows the user to easily trade off between accuracy and computational complexity (including

both memory and time). The partitioning of a bucket into mini-buckets of bounded size can

be accomplished in many ways, each resulting in a different accuracy. From the variational

32

perspective, this corresponds to the critical choice of regions in the approximations, defining

which sets of variables will be reasoned about jointly.

Traditionally, MBE is guided only by the graph structure, using a scope-based heuristic

[Dechter and Rish, 2003] to minimize the number of buckets. However, this ignores the

importance of the function values on the bound. More recent extensions such as Rollon

and Dechter [2010] have suggested ways of incorporating the function values into the par-

titioning process, with mixed success. A more bottom-up construction technique is the

relax-compensate-recover (RCR) method of Choi and Darwiche [2010], which constructs a

sequence of mini-bucket-like bounds of increasing complexity.

Variational approaches typically use a greedy, bottom-up approach termed cluster pursuit.

Starting with the smallest possible regions, the bounds are optimized using message passing,

and then new regions are added greedily from an enumerated list of clusters such as triplets

[e.g., Sontag et al., 2008, Komodakis and Paragios, 2008]. This technique is often very

effective if only a few regions can be added, but the sheer number of regions considered often

creates a computational bottleneck and prevents adopting large regions [see, e.g., Batra et al.,

2011].

We propose a hybrid approach that is guided by the graph structure in a manner similar to

the mini-bucket construction, but takes advantage of the iterative optimization and scoring

techniques of cluster pursuit. In practice, we find that our methods work significantly better

than either the partitioning heuristics of Rollon and Dechter [2010], or a pure region pursuit

approach. We also discuss the connections of our work to RCR [Choi and Darwiche, 2010].

We validate our approach with experiments on a wide variety of problems drawn from recent

UAI approximate inference competitions [Elidan et al., 2012].

33

3.1.1 Partitioning Methods

As discussed above, mini-bucket elimination and its weighted variant compute a partitioning

over each bucket Bi to bound the complexity of inference and compute an upper bound on the

partition function Z. However, different partitioning strategies will result in different upper

bounds. Rollon and Dechter [2010] proposed a framework to study different partitioning

heuristics, and compared them with the original scope based heuristic proposed by Dechter

and Rish [1997]. Here we summarize several approaches.

Scope-based Partitions. Proposed by Dechter and Rish [1997], scope-based partitioning is

a simple but effective top-down approach that tries to minimize the number of mini-buckets

in Bi by including as many functions as possible in each mini-bucket qki . To this end, it first

orders the factors in Bi by decreasing number of arguments. Starting from the largest, each

factor fα is then merged with the first available mini-bucket that satisfies the computational

limits, i.e., where |var(f)∪var(qji)| ≤ ibound+1 where var(f) represents the scope of function

f . If there are no mini-buckets available that can include the factor, a new mini-bucket is

created and the scheme continues until all factors are assigned to a mini-bucket.

Scope-based partitioning provides an efficient way to quickly decide which regions to include

in the cluster graph. However, because it relies solely on the function arguments, it ignores

a significant source of information: the functions values themselves.

Consider an example when eliminating variable X1 from a bucket containing four factors,

{f14, f17, f123, f156} with ibound = 3. Suppose that the two functions f123 and f156 return 1

for every assignment to the variables in their scope, i.e. f123 = 1 and f156 = 1. Eliminating

X1 from the bucket without partitioning is then proportional to eliminating X1 from the

34

(a) (b) (c)

Figure 3.1: Comparing approximations. Suppose f123 = f156 = 1; then (a) exact elimination
provides the same answer as (b) an approximation using three mini-buckets, while (c) the
scope-based approximation of two mini-buckets may give a loose upper bound.

product f14f17 as

∑
x1

f14f17f123f156 = C ×
∑
x1

f14f17 (3.1)

Two ways of partitioning these four functions into different mini-buckets are shown in Figure

3.1(b) and (c). Scope-based partitioning aims to minimize the number of mini-buckets, and

so groups the functions into two mini-buckets, {f123, f14} and {f156, f17}. However, another

choice would be to use three partitions {f123}, {f156}, and {f14, f17}. Comparing the results

of elimination from these two partitionings,

∑
x1

f17f123 max
x1

f17f156 = C ×

(∑
x1

f14 max
x1

f17

)
(3.2)

∑
x1

f17f14 max
x1

f123 max
x1

f156 = C ×
∑
x1

f14f17 (3.3)

with the exact elimination (3.1), we can see that the scope-based partitioning results in a

potentially loose upper bound, while eliminating from the three partitions (3.3) provides the

same value as exact elimination. In other words, the particular values of f123 and f156 cause

a partitioning that looks less accurate (three mini-buckets) to actually provide a much more

accurate approximation.

Content-based Partitions. Since looking at function values can help choose better mini-

35

buckets, Rollon and Dechter [2010] explored informed selection of variable groupings into

mini-buckets based on content-based distance functions, and proposed various content-based

partitioning heuristics that seek to find a partitioning that is closest to the true bucket

function, gi =
∑

xi

∏
α∈Bi fα.

Rollon and Dechter [2010] frame this selection process as an optimization problem,

Q∗ = arg min
Q

dist(gQi , gi), (3.4)

where Q = {q1
i , . . . , q

p
i } is a partitioning of Bi with bounding parameter ibound and

gQi =

p∏
j=1

∑
xi

∏
α∈qji

fα

is the function represented by the partitioning Q. Rollon and Dechter [2010] studied the ef-

fectiveness of several different distance functions across multiple problem instances; however,

no single distance was found to consistently outperform scope-based partitioning.

It is important to note that we can not efficiently compute all possible partitionings and score

them to decide which one to choose, so Rollon and Dechter [2010] proposed a greedy approach

that organizes the space of partitionings into a lattice using the refinement relation between

partitions. Also, in general, computing the distance (3.4) is exponential in the number

of arguments of gi, since we need to measure the distance of the resulting approximation

function gQi relative to the intractably large true function gi. However, for some types of

distance functions like relative error, they show how to derive a local measure that only

requires computing functions in the two candidate mini-buckets to be merged and can be

interpreted as the penalty or error associated with keeping them separated. In this chapter,

we use the ideas presented in [Rollon and Dechter, 2010] and extend them to form a new

hybrid partitioning heuristic.

36

Relax-Compensate-Recover. Choi and Darwiche [2010] indirectly address the problem of

partition selection within their Relax, Compensate and Recover framework, in which certain

equality constraints in the graph are first relaxed in order to reduce the computational

complexity of inference. New auxiliary factors are then introduced to compensate for the

relaxation and enforce a weaker notion of equivalence. The recovery process then aims to

identify those equivalence constraints whose relaxation were most damaging and recover

them. Choi and Darwiche [2010] proposed a number of recovery heuristics, including mutual

information and residual recovery.

3.1.2 Variational bounds.

The variational viewpoint of inference corresponds to optimizing an objective function over a

collection of beliefs that are constrained to lie within the marginal polytope, or set of marginal

probabilities that can be achieved by some joint distribution. Efficient approximations are

developed by relaxing the optimization to enforce only a subset of the constraints – for

example that the beliefs be consistent between overlapping cliques. In the case of the log

partition function, we also approximate the entropy term in the objective; for example, the

weighted mini-bucket bound is:

logZ ≤ max
bα∈L

∑
α

Ebα [log fα] +
∑
i,α

wiαH(xi|xα\i ; bα)

where
∑

αwiα = 1 for all i. Like mini-bucket bounds, the quality of variational bounds

depends significantly on the choice of regions, which determine both the constraints that will

be enforced and the form of the entropy approximation. Traditionally, research on variational

approximations for the log partition function has focused more on the optimization of the

bound through message passing than the region selection aspect. Often, regions are chosen

to match the original model factors, and then may be improved using methods like cluster

pursuit, described next.

37

Cluster Pursuit. Sontag et al. [2008] studied the problem of region selection for MAP

inference in the context of cluster-based dual decomposition relaxations. They developed

a bottom-up approach in which regions (typically cycles or triplets) are added incremen-

tally: First, the dual decomposition bound is optimized through message passing. Then, a

pre-defined set of clusters, such as triplets or the faces of a grid, are scored by computing

a lower bound on their potential improvement to the dual objective; the scoring function

used measures the difference between independently maximizing each pairwise factor, ver-

sus jointly maximizing over the triplet. After adding the best-scoring cluster, or a small

number of them, the procedure repeats. Similar cycle repair processes were also proposed

by Komodakis and Paragios [2008] and Werner [2008], and related cluster pursuit methods

have also been applied to summation problems [Welling, 2004, Hazan et al., 2012]. However,

scoring all possible clusters often becomes a computational bottleneck; for example, to make

the process more efficient, Batra et al. [2011] proposed pre-selection heuristics to reduce the

number of clusters considered.

3.2 A Hybrid Approach

To summarize, existing elimination based approaches avoid the space and time complexity

of exact inference by using a top-down partitioning approach that mimics the construction

of a junction tree and allows large regions to be added to the approximation quickly. In

contrast, message passing algorithms often use cluster pursuit methods to select regions, a

bottom-up approach in which a predefined set of clusters (such as triplets) are scored based

on their potential improvement to the bound, and incrementally added.

It is important to highlight the relationship between mini-bucket elimination and message

passing, since mini-bucket elimination can be interpreted in the context of cluster graph and

message passing on it. This connection inspires combining message passing techniques with

38

mini-bucket elimination based approximate inference techniques and balance the positive

properties of both. To balance the effectiveness of both approaches, being able to add larger

regions while taking into account their potential improvement to the upper bound for the

log partition function, our hybrid scheme, like mini-bucket, uses the graph structure to

guide region selection, while also taking advantage of the iterative optimization and scoring

techniques of cluster pursuit.

Cluster pursuit algorithms use the function values, and more concretely the improvement

to the bound produced by them, in order to select regions that tighten the upper bound

effectively. However, there are often prohibitively many clusters to consider: for example,

in a fully connected pairwise model, there are O(n3) triplets, O(n4) possible 4-cliques, etc.,

to score at each step. For this reason, cluster pursuit methods typically restrict their search

to a predefined set of clusters, such as triplets [Sontag et al., 2008]. Our proposed approach

uses the graph structure to guide the search for regions, restricting our search to merging

pairs of existing clusters within a single bucket at a time. This allows us to constrain the

complexity of the search and add larger regions more effectively.

In contrast, the content-based heuristics for region selection of Rollon and Dechter [2010]

use the graph structure as a guide, but their scoring scheme only takes into account the

messages from the earlier buckets in the elimination order. Our proposed hybrid approach

uses iterative optimization on the junction tree in order to make more effective partitioning

decisions. Algorithm 3.1 describes the overall scheme of our hybrid approach, which is

explained in detail next.

3.2.1 Initializing a join tree

Given a factor graph G and a bounding parameter ibound, we start by initializing a join

graph, using a min-fill elimination ordering [Dechter, 2003] (which we denote o = {x1, ..., xn}

39

Algorithm 3.1 Incremental region selection for WMBE

Input: factor graph (G), bounding parameter ibound and maximum number of iterations
T
Initialize wmb to a join graph using e.g. a min-fill ordering o, uniform weights and
uniform messages
for each bucket Bi following the elimination order do

repeat
(qmi , q

n
i)← SelectMerge(Qi)

R ← AddRegions(wmb, o, qmi , qni)
wmb← MergeRegions(wmb, R)
for iter = 1 to T do

// pass forward messages and reparameterize:
wmb← msgForward(wmb)
// pass backward messages:
wmb← msgBackward(wmb)

end for
until no more merges possible

end for

without loss of generality) and ibound = 1. For any given bucket Bi, this results in each

mini-bucket (or region) qki ∈ Bi containing a single factor fα. In the sequel, to simplify the

notation, we refer to the mini-bucket qki simply as region k when the context is clear. We

denote the result of the elimination as λk→l and the variables in its scope as var(λk→l). λk→l

is then a message that is sent to the bucket Bj of its first-eliminated argument in o. Here,

l = πk denotes the parent region of k which can be one of the initial mini-buckets in Bj if

var(λk→l) ⊆ var(l), or be a new mini-bucket containing a single factor, fl = 1, that assigns

the value one to every assignment to the variables in var(λk→l). In our implementation we

choose l ∈ Bj to be the mini-bucket with the largest number of arguments, |var(l)|, such

that var(λk→l) ⊆ var(l).

Using the weighted mini-bucket elimination scheme of Algorithm 2.4, we initialize the mini-

bucket weights wr uniformly within each bucket Bi, so that for qri ∈ Qi, w
r = 1

|Qi| , which

ensures
∑

qri ∈Qi
wr = 1.

40

3.2.2 Message Passing

We use iterative message passing on the join graph to guide the region selection decision.

Having built an initial join graph, we use the weighted mini-bucket messages [Liu and Ihler,

2011] to compute forward and backward messages, and perform reparameterization of the

functions fα to tighten the bound.

Let k be a region of the mini-bucket join graph, and l its parent, l = πk, with weights wk

and wl, and fk(xk) the product of factors assigned to region k. xk is then the union of all

the variables in the scope of the factors assigned to region k. Then we compute the forward

messages as,

Forward Messages:

λk→l(xl) =
[∑

xk\xl

[
fk(xk)

∏
t:l=πt

λt→l(xl)
] 1

wk

]wk
(3.5)

and compute the upper bound using the product of forward messages computed at roots of

the join graph,

Upper bound on Z:

Z ≤
∏

k:πk=∅

λk→∅ (3.6)

In order to tighten the bound, we compute backward messages in the join graph,

Backward Messages:

λl→k(xk) =
[∑

xl\xk

[
fl(xl)

∏
t∈δ(l)

λt→l(xl)
] 1

wl
[
λk→l(xl)

]− 1

wk

]wk

where δ(l) is the set of all neighbors (parent and children) of region l in the cluster tree.

We then use these incoming messages to compute a weighted belief at region k, and repa-

41

rameterize the factors fk for each region k in a given bucket Bi (e.g., k ∈ Qi) to enforce a

weighted moment matching condition:

Reparameterization:

bk(xi) =
∑
xk\xi

[
fk(xk)

∏
t∈δ(l)

λt→k(xk)
] 1

wk

b̄(xi) =
[∏
k∈Qi

bk(xi)
]1/∑k w

k

fk(xk)← fk(xk)
[
b̄(xi)/br(xi)

]wk
In practice, we usually match on the variables present in all mini-buckets k ∈ Qi, e.g.,

∩k∈Qixk, rather than just xi; this gives a tighter bound for the same amount of computation.

3.2.3 Adding new regions

New regions are added to the initial join tree after one or more rounds of iterative optimiza-

tion. To bound the complexity of the search over clusters, we restrict our attention to pairs

of mini-buckets to merge within each bucket and use the elimination order o to guide our

search, processing each bucket Bi one at a time.

Given bucket Bi and a current partitioning Qi = {q1
i , ..., q

k
i }, we score the merge for each

allowed pair of mini-buckets (qmi , q
n
i), e.g., those with |var(qmi)∪ var(qni)| ≤ ibound + 1, using

an estimate of the benefit to the bound that may arise from merging the pair:

S(qmi , q
n
i) = max

x
log [λm→πm(xπm)× λn→πn(xπn)÷ λr→πr(xr)] (3.7)

This score can be justified as a lower bound on the decrease in the approximation to logZ,

since it corresponds to adding region πr with weight wπr = 0, while reparameterizing the

parents πm, πn to preserve their previous beliefs. This procedure leaves the bound unchanged

42

except for the contribution of πr; eliminating with wπr = 0 is equivalent to the max operation.

For convenience, we define S(qmi , q
n
i) < 0 for pairs which violate the ibound constraint. Then,

having computed the score between all pairs, we choose the pair with maximum score to be

merged into a new clique. In Algorithm 3.1, the function SelectMerge(·) denotes this scoring

and selection process.

3.2.4 Updating graph structure

Having found which mini-buckets to merge, we update the join graph to include the new

clique r = qmi ∪ qni . Our goal is to add the new region in such a way that it affects the scope

of the existing regions in the join tree as little as possible. Adding the new clique is done in

two steps.

First, we initialize a new mini-bucket in Bi with its scope matching, var(r), the scope of

the new merged region r. Eliminating variable xi from this new mini-bucket results in the

message λr→πr . The earliest argument of λr→πr in the elimination order determines the

bucket Bj containing mini-buckets that can potentially be the parent, πr, of the new region.

To find πr in Bj we seek a mini-bucket qkj that can contain r, i.e., var(λr→πr) ⊆ var(qkj). If

such a mini-bucket exists, we set πr to qkj ; otherwise, we create a new mini-bucket q
|Qj |+1
j

and add it to Qj, with a scope that matches var(λr→πr). The same procedure is repeated

after eliminating xj from q
|Qj |+1
j until we either find a mini-bucket already in the join tree

that can serve as the parent, or var(λr→πr) = ∅ in which case the newly added mini-bucket

is a root. Algorithm 3.2 describes these initial structural modifications.

Having added the new regions, we then try to remove any unnecessary mini-buckets, and

update both the join tree and the function values of the newly added regions to ensure that

the bound is improved. To this end, we update every new mini-bucket r that was added

to the join tree in the previous step as follows. For mini-bucket r ∈ Qi, we first find any

43

Algorithm 3.2 AddRegions: find regions to add for merge

Input: The join graph wmb, elimination order o, and mini-buckets qmi and qni to be merged

Output: a list of newly added mini-buckets R
Initialize new region qr with var(qr) = var(qmi ∪ qni) and add it to Qi

repeat
Update R = R∪ qr
Set new clique C = var(qr)\xi
if C = ∅ then
done← True

else
Find Bj corresponding to the first un-eliminated variable in C based on elimination
order o
for each mini-bucket region qkj ∈ Qj do

if C ⊆ var(qkj) then
// forward message fits in existing mini-bucket:
done← True

end if
end for

end if
if not done then

// Create a new region to contain forward message:
Initialize new region qr with var(qr) = C and add it to Qj

end if
until done

mini-buckets s ∈ Qi that can be subsumed by r, i.e., var(s) ⊆ var(r). For each of these

mini-buckets s, we connect all of s’s children (mini-buckets t such that πt = s) to r, e.g., set

πt = r. We also merge the factors associated with r and s, so that fr ← fr × fs.

Next, we reparameterize several other functions in the join graph in order to preserve or

improve the current bound value. Specifically, removing s changes the incoming, forward

messages to its parent, πs = pa(s), which changes the bound. By reparameterizing the factor

at πs,

fπs ← fπs × λs→πs fπr ← fπr ÷ λs→πs

we keep the overall distribution unchanged, but ensure that the bound is strictly decreased.

44

Finally we remove s from Qi, completing the merge of mini-buckets s and r. This process is

given in Algorithm 3.3 and depicted in Figure 3.2 for a small portion of join-graph.

Every merge decision is followed by one or more iterations of message passing, followed

by rescoring the mini-buckets in Bi. The process of message passing and merging continues

until no more mini-buckets of Bi can be merged while still satisfying the bounding parameter

ibound.

Continuing along the elimination order, the same procedure is repeated for the mini-buckets

in each bucket Bi, and the final upper bound to the partition function is computed using

Eq. (3.6).

Computational Complexity of Incremental region selection for WMBE. Rollon and

Dechter [2010] provide an analysis of the computational complexity of their content-based

partitioning heuristic. Following the same framework, next we analyze the computational

complexity of adding new regions in our hybrid approach.

Proposition 3.1. The computational complexity of merging all pair of regions (qm, qn) in

Algorithm 3.1, is at most O(R ·L2 ·exp(z)+R ·L ·z ·exp(z)+T ·R2 ·exp(z)), where L is the

maximum number of initial regions in a bucket (which can be bounded by the largest degree

of any variable), z is the ibound and R =
∑

α |α| bounds the number of possible regions in

the cluster graph.

Proof. Let R be as defined, and denote by O(S) the computational complexity of a single

merge. There cannot be more than R merges, which means that the complexity of all possible

merges is O(R · S). The complexity of a single merge can then be bounded as O(S) =

O(L2·exp(z)+L·z·exp(z)+T ·R·exp(z)). The first term in O(S) captures the complexity of

computing the score, which is O(exp(z)), for any pair of regions. The algorithm computes the

score for every pair of regions in a bucket, which yields O(L2 ·exp(z)) for score computation.

45

Algorithm 3.3 MergeRegions: merge and parameterize newly added regions to improve
bound

Input: The join graph wmb and a list of newly added mini-buckets R
for all r ∈ R do

Initialize new region r in Bi with fr(xr) = 1
Find regions {s | s ∈ Qi & var(s) ⊆ var(r)}
// Remove / merge contained regions s:
for all found regions s do

Connect all children of s to r
fr = fr × fs // merge factors and
// preserve belief at parent πs:
fπs = fπs × λs→πs
fπr = fπr ÷ λs→πs
Remove s from Qi

end for
end for

The second term in O(S) is the complexity bound of the merge process. For each merge we

have to add the new merged region and all its parents, which is bounded by z. After adding

these new regions, we need to check for subsumptions of old regions of the cluster graphs with

the new ones which involves z·L tests. If one region can be subsumed by the other, we need to

update the messages sent to them by their children which requires O(exp(z)) computations

for each update. Putting it all together, the computational complexity of the merge process

is bounded by O(L · z · exp(z)). The third component accounts for the complexity of T

iterations of messages passing after each merge, which is bounded by O(T ·R ·exp(z)) when

we have at most R regions in the cluster graph. Having the complexity of a single merge as

O(S) = O(L2 · exp(z) + L · z · exp(z) + T ·R · exp(z)), we can then bound the complexity

of doing all merges as O(R ·S) = O(R ·L2 · exp(z) +R ·L · z · exp(z) + T ·R2 · exp(z)).

46

↓ λ3,4 ↓ λ3,5

x2,3,4 x2,3,5

x3,4 x3,5,6

⇒
x2,3,4,5

x3,4,5 x3,5,6

↓ λ3,4,5
÷λ3,5 ×λ3,5

(a) (b)

Figure 3.2: Merge and post-merge reparameterization operations. (a) A portion of a join-
graph corresponding to the elimination of x2 and x3, each with two mini-buckets. (b) Merging
cliques (2, 3, 4) and (2, 3, 5) produces a new clique (3, 4, 5), which subsumes and removes
clique (3, 4). Having removed parent (2, 3, 5), we reparameterize the new clique functions by
the original message λ3,5 (red) to preserve the original belief at (3, 5, 6) and ensure that the
bound is tightened. See text for more detail.

3.3 Discussion

Our method is similar to content-based mini-buckets, with the main difference being that

message passing performed on the simpler graph is used to reparameterize the functions

before the merge scores are computed.

Our method can also be viewed as a cluster pursuit approach, in which we restrict the clusters

considered, to unions of the current minibuckets at the earliest bucket Bi, and merge up to

our computational limit before moving on to later buckets. These restrictions serve to reduce

the number of clusters considered, but in addition, appear to lead to better regions than a

purely greedy region choice – in the experiments (Section 3.4), we compare our approach

to a more “cluster pursuit-like” method, in which pairs of regions in any bucket Bi are

considered and scored. Perhaps surprisingly, we find that this greedy approach actually

gives significantly worse regions overall, suggesting that processing the buckets in order can

help by avoiding creating unnecessary regions.

Finally, our method is also closely related to RCR [Choi and Darwiche, 2010]. From this

47

perspective, we “relax” to a low-ibound minibucket, “compensate” by variational message

passing, and “recover” by selecting regions that will tighten the variational bound defined

by the join graph. Compared to RCR, we find a number of differences in our approach: (1)

RCR selects constraints to recover anywhere in the graph, similar to a greedy cluster pursuit;

as noted, this appears to work significantly less well than an ordered recovery process. (2)

RCR makes its recovery updates to the relaxed graph, then (re)builds a (new) join tree over

the relaxed graph; in contrast, we incrementally alter the join graph directly, which avoids

starting from scratch after each merge. (3) Our method is solidly grounded in the theory of

variational bounds and message passing, ensuring that both the message passing and region

merging steps are explicitly tightening the same bound. From this perspective, for example,

it becomes clear that RCR’s “residual recovery” heuristic is unlikely to be effective, since

after message passing, the reparameterization updates should ensure that all mini-buckets

containing a variable xi will match on their marginal beliefs. In other words, residual recovery

is making its structure (region) choices using a criterion that actually measures mismatches

that can be resolved by message passing.

3.4 Empirical Evaluation

To show our method’s effectiveness compared to previous region selection strategies for MBE,

we tested our incremental approach on a number of real world problems drawn from past UAI

approximate inference challenges, including linkage analysis, protein side chain prediction,

and segmentation problems. We compare our hybrid region selection method against the

scope-based heuristic of Dechter and Rish [1997] and the content-based heuristic of Rollon

and Dechter [2010].

48

Table 3.1: UAI Segmentation Instances. Different columns show the bound achieved
using each partitioning heuristic, where “Scp”, “Cont” and “Hyb” represent the näıve scope
based partitioning for MBE [Dechter and Rish, 1997], the context (or energy) based heuristic
of Rollon and Dechter [2010] and our hybrid approach interleaving iterative optimization with
partitioning, respectively. In all but one case, our proposed construction provides tighter
bounds.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

2-17-s -31.3197 -33.4840 -49.5670 -38.9801 -42.1524 -52.507
2-17-s-opt -46.9314 -45.4286 -49.6432 -48.661 -48.4306 -52.5633

8-18-s -54.9884 -60.9899 -85.6518 -72.3045 -72.284 -87.2385
8-18-s-opt -80.6527 -81.1391 -85.6694 -83.0398 -79.0921 -87.2556

9-24-s -51.2897 -49.3903 -55.6046 -54.9325 -55.0151 -55.615
9-24-s-opt -56.0513 -53.7852 -55.6241 -54.9325 -55.0151 -55.615

17-4-s -58.7953 -59.0758 -81.5415 -80.267 -79.3323 -85.3712
17-4-s-opt -71.7959 -76.8213 -81.6079 -83.2573 -82.9646 -85.3865

7-11-s -59.8250 -57.2773 -72.7178 -71.1296 -70.1542 -75.2869
7-11-s-opt -70.7037 -68.8255 -72.9556 -74.6424 -73.9855 -75.2905

Experimental Setup

For each set of experiments, we initialize a join tree using WMB elimination with ibound = 1.

We use an elimination ordering found using the min-fill heuristic [Dechter, 2003] and set the

weights uniformly in each bucket. As a result, each mini-bucket qki contains a single factor

fα as described in section 3.2.1.

From this initial setup, we then use Algorithm 3.1 to merge mini-buckets incrementally and

compute the upper bound as in Eq. (3.6).

Segmentation. To evaluate the different methods on pairwise binary problems we used a

set of segmentation models from the UAI08 approximate inference challenge. These models

have ≈ 230 binary variables and ≈ 850 factors. We used varying ibounds for comparison

49

Table 3.2: UAI Pedigree Instances. Different columns show the bound achieved using
each partitioning heuristic; again, “Scp”, “Cont” and “Hyb” are scope based partitioning
[Dechter and Rish, 1997], the content-based heuristic [Rollon and Dechter, 2010] and our
proposed, hybrid approach. In all cases, our proposed construction provides stronger bounds,
both before and after full optimization using message passing.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

ped23 -67.8848 -69.9015 -71.9677 -75.6057 -78.4033 -79.4649
ped23-opt -71.6951 -71.6988 -72.0670 -76.0531 -78.7646 -79.4669

ped20 -35.6986 -40.1787 -44.7230 -51.2648 -54.4136 -57.6506
ped20-opt -42.3024 -42.8980 -44.7501 -52.6043 -56.2193 -57.7841

ped42 -41.6656 -43.5206 -51.0000 -55.0681 -57.5755 -61.3504
ped42-opt -49.0089 -50.0585 -51.1018 -57.3718 -59.2170 -61.3560

ped38 -79.4742 -89.6906 -92.7643 -98.6339 -101.1178 -113.6004
ped38-opt -83.0351 -91.8510 -93.0615 -101.0715 -104.1031 -113.8926

ped19 -58.9234 -63.2737 -80.6488 -90.7840 -93.9027 -100.3230
ped19-opt -72.3311 -77.7023 -80.7167 -92.8916 -96.2846 -100.3388

and report the results on two values, ibound ∈ [5, 10] . Table 3.1 compares the upper bound

on the log partition function for a representative subset of instances in this category, for two

different computational limits, ibound = 5 and ibound = 10. Different columns show the

bound achieved using different partitioning heuristics:

(1) Scp represents näıve scope-based partitioning;

(2) Cont represents the energy based heuristic of Rollon and Dechter [2010]; and

(3) Hyb represents our hybrid approach, interleaving iterative optimization with partition-

ing.

The results show clear improvement in the upper bound using our hybrid approach, indicat-

ing the effectiveness of iterative message passing and optimization in guiding region selection.

To further study the effectiveness of the merged regions in the context of message passing

and optimization, we then fully optimized the join-graphs generated by the three region

50

selection schemes using iterative message passing until convergence. The upper bounds after

this optimization process are denoted by inst-opt for each problem instance, inst. As might

be expected, this additional optimization step improves the bounds of the scope-based and

content-based heuristics more dramatically than our hybrid method; however, even after full

optimization of the bounds, we find that the hybrid method’s bounds remain better in all of

the 6 instances except one, indicating that our method has identified fundamentally better

regions than the previous approaches.

Of course any improvement in the bound from the content-based partitioning and our hybrid

method comes with an additional computational overhead. While our implementations for

these algorithms are in MATLAB and are not optimized for timing experiments, its is im-

portant to consider the effect of this computation on time. In each set of these experiments,

computing the bound using content-based partitioning took on average 10 times more than

scope-based partitioning. Our hybrid approach then requires one round of message passing

after each merge and took on average 10 times more than the content-based to compute the

upperbound.

Linkage Analysis. To compare the various methods on models with non-pairwise factors

and higher cardinalities of variables, we studied pedigree models. The pedigree linkage

analysis models from the UAI08 approximate inference challenge have ≈ 300−1000 variables,

whose cardinalities vary in the range of [2, ..., 5]; the induced width of the models are typically

≈ 20 − 30. We used varying ibounds for comparison and report the results on two values

ibound ∈ [5, 10] .

Table 3.2 shows the upper bounds on a subset of pedigree problems, again showing the

effectiveness of the hybrid method: we find that again, the hybrid method consistently

outperforms the other two region selection approaches, and results in better fully optimized

bounds in all of the 22 instances when ibound = 5 and all but two cases when ibound = 10.

51

ibound

4 6 8 10 12 14 16 18 20

L
o

g
Z

 u
p

p
e

r
b

o
u

n
d

-90

-85

-80

-75

-70

-65

-60

Scp

Cont

Hyb

Scp-opt

Cont-opt

Hyb-opt

Figure 3.3: The upper bound achieved by the three partitioning heuristics for pedigree23
instance over ibound range between 4 to 20.

As for the segmentation instances, computing the upperbound using our hybrid approach is

on average 10 times slower than using the content-based partitioning and using content-based

partitioning is on average 10 times slower than using the scope-based heuristic.

Effect of ibound. We also studied the results of the three partitioning methods across a

range of ibounds, to understand how our method’s effectiveness changes as a function of

the allowed region sizes. Figure 3.3 shows the results for an instance of pedigree dataset.

Empirically, our method is more effective on smaller ibounds, where there are a large number

of possible merges and finding the best one results in a greater improvement to the upper

bound. For larger ibounds, where the resulting cluster trees are relatively close to that of

exact variable elimination, the upper bounds produced by all three heuristics are also fairly

close.

Protein Side-Chain Prediction. Finally, to examine models over high-cardinality variables,

we look at a subset of the protein side chain prediction models, originally from Yanover and

Weiss [2003] and Yanover et al. [2006]. These models contain ≈ 300 − 1000 variables with

cardinalities between 2 and 81, with pairwise potential functions. For these problems, we

only ran our experiments using ibound = 2, due to the high number of states for each variable.

Table 3.3 shows the results of the three partitioning methods, which again agrees with the

52

previous experiments: our hybrid method outperforms the other two in all 44 instances in

the problem set, often dramatically, both before and after the bound is fully optimized.

For these set of instances where the variables have large cardinalities, computing the upper

bound using our hybrid approach is on average 10 times slower than using the content-based

partitioning and using content-based partitioning is on average 20 times slower than using

the scope-based heuristic.

Greedy vs. Elimination Order Based Merging. As discussed before, we restrict the clus-

ters considered for merges to unions of the current minibuckets at the earliest bucket Bi,

and merge up to our computational limit before moving on to later buckets, which serves to

reduce the number of clusters considered. We compare our choice of clusters with a purely

greedy region choice in which pairs of regions in any bucket Bi are considered and scored.

Interestingly, the upper bounds achieved using the greedy approach were not better than the

top-down merging based on elimination order. A possible reason for this behavior is that the

top-down approach allows large regions generated by mini-buckets early in the elimination

ordering to be processed by buckets later in the order; the greedy approach disrupts this flow

and results in extra regions that cannot be merged with any other region while respecting

the ibound.

53

Table 3.3: Protein side-chain prediction. Here we show results for only ibound = 2,
due to the high number of states in each variable. Our method often produces dramatically
better partitionings than scope- or content-based mini-bucket partitions.

Instance Scp Cont Hyb

1crz -242.2036 -284.865 -451.598
1crz -opt -528.5348 -495.514 -545.929
2cav 71.2802 -26.0052 -148.637
2cav -opt -156.5387 -240.289 -272.606
1kk1 89.5527 46.8216 -121.723
1kk1 -opt -115.4737 -105.894 -143.447
1e4f 40.6686 -6.1785 -190.943
1e4f -opt -212.4607 -202.547 -240.27
1ehg 71.3308 14.768 -149.158
1ehg -opt -169.8435 -147.333 -211.678

Table 3.4: Top-down vs. Greedy Merging. We examine the effect of using a “fully
greedy” merging procedure closer to standard cluster pursuit, in which we merge the best-
scoring cluster in any bucket at each step. We find that following the top-down ordering
actually results in significantly better bounds. Results shown are for ibound = 5.

Instance Top-Down Greedy

ped23 -71.9677 -67.9094
ped23-opt -72.0670 -67.9094
ped20 -44.7230 -38.0717
ped20-opt -44.7501 -38.0718
ped42 -49.9955 -37.8576
ped42-opt -50.0469 -37.8582
ped38 -92.7643 -79.9144
ped38-opt -93.0615 -79.9144
ped19 -80.6488 -48.6900
ped19-opt -80.7167 -48.6904

54

3.5 Conclusion

We presented a new merging heuristic for (weighted) mini-bucket elimination that uses mes-

sage passing optimization of the bound, and variational interpretations, in order to construct

a better heuristic for selecting moderate to large regions in an intelligent, energy-based way.

Additionally we showed how to incrementally update the join graph of mini-bucket elimina-

tion after new regions are added in order to avoid starting from scratch after each merge.

Our approach inherits the advantages of both cluster pursuit in variational inference, and

(weighted) mini-bucket elimination perspectives to produce a tight bound. We validated

our approach with experiments on a wide variety of problems drawn from a recent UAI

approximate inference competition. In practice, we find that our methods work significantly

better than either existing partitioning heuristics for mini-bucket [Rollon and Dechter, 2010],

or a pure region pursuit approach. We expect this construction to improve our ability to

search and solve large problems. However, our method does involve additional computational

overhead compared to, say, scope-based constructions, in order to to evaluate and make

merge decisions. We did not focus here on any-time performance; a more nuanced balance

of time, memory, and bound quality is one direction of potential future study.

55

Chapter 4

Improving Resource Usage in

Mini-bucket Elimination

4.1 Introduction

In Chapter 3, we presented an incremental form of mini-bucket elimination (MBE) that

proposed new heuristics for selecting the regions, or mini-buckets, used in the approximation.

As with standard mini-bucket, we used a single control parameter, the ibound, to manage the

computational (time) and representational (memory) complexity of the approximation by

limiting the number of variables in each region. One of the main reasons MBE is so successful

is the easy tradeoff between memory and quality: Using more memory (larger regions) almost

always provides a significant improvement in quality, especially on summation problems (e.g.,

computing the log partition function); see Liu and Ihler [2011].

However, when applying MBE to real-world problems, we need to run it on a wide array of

problem types with very different properties, in terms of graph structures and cardinalities of

variables. Consider an example of protein side-chain prediction, where the model is dense and

pairwise, on perhaps 350 variables with cardinalities that vary between 2 and 81; choosing an

ibound = 4 for MBE with scope-based partitioning requires 17 GB of memory. In contrast,

56

for a linkage analysis (pedigree) instance, the graph is relatively sparse, and the 448 variables

have cardinalities that vary between 2 and 5, and we can compute an approximation with

ibound = 16 and using only 1 GB of memory. As a result, to be able to apply MBE to these

different problems, we need robust methods that can find good approximations in the face

of this kind of diversity.

A central challenge is then to automatically and quickly build approximations that satisfy

the resource constraints, and in particular the amount of memory available. As we discuss in

Section 4.2, finding the largest ibound that respects the memory limits is easy and efficient

for scope-based heuristics. However, for content-based heuristics, the regions are selected

based on the values of the functions and the incoming messages, which means that the exact

memory requirement of a particular execution is not easily evaluated without fully computing

the bound. If the resulting approximation uses too much memory, this work is wasted; if we

have memory left over, we may need to repeat the effort. For this reason, it would be useful

to be able to estimate and control the amount of memory used by an approximation on the

fly, as it is built.

In this chapter we first review the state of the art and discuss the challenges of estimating

the memory needs of content-based MBE. Then we propose two improvements that allow

us to better control how limited memory resources are used, and as a result often provide a

better bound on the partition function. Our goal is to more fully utilize the available memory

resources, while also allowing us to also use content-based selection methods that typically

give tighter bounds. We evaluate our framework on various real world problems and compare

different memory management strategies within content-based mini-bucket approximation.

57

4.2 State of the Art

In this section, we study the role that limited memory resources play during the design of

a mini-bucket based inference approximation and how current systems address the memory

allocation problem. Memory limits are a common and important form of constraint placed

on approximations; typically, the more memory is available, the better the approximation

quality.

One advantage of scope-based mini-bucket elimination is that it is relatively easy to design

an approximation that can fit in the available memory. For scope-based partitions, the

elimination process can be simulated very quickly for various ibound values. Using the

scopes of the intermediate functions, but without actually computing any of the functions

themselves, one can quickly compute the used memory, and select the largest ibound that

complies with the memory constraints; see Otten et al. [2012] for an example. Also, since

the amount of memory grows exponentially as ibound is increased, it is easy to search over

different values of ibound as the range of values in the search space is relatively small.

However, using the scope-based simulation with a particular ibound value to estimate the

memory required by an approximation has two main disadvantages, discussed next.

4.2.1 Content-based region choices

For content-based mini-bucket, ensuring bounded memory use by searching over ibound is

not as easy as scope-based mini-bucket elimination. In particular, the partitioning process

depends on the values of the functions and incoming messages, which means that it cannot

be simulated without fully computing the functions and messages.

From this perspective, an incremental approach (e.g., the method described in Chapter 3)

is a useful paradigm. However several issues should be addressed. For example, in Chapter

58

3 we showed that it was best to do all merges within a single bucket before moving on to

a later bucket. However, allowing all the memory to be used by the earlier buckets in the

elimination order is unlikely to be an effective use of the available memory. This suggests

that some “forecasting” of memory use in future buckets is probably useful.

A possibly näive way to estimate the amount of memory required by the content-based parti-

tioning process is to compute the amount of memory required by the scope-based mini-bucket

and use it as an estimate for the memory used by the content-based process. However for

models with even moderate variation in the domain size of the variables, different partitioning

choices can result in very different memory use. Then, when processing for a given ibound,

if the available memory is exceeded the procedure will not provide a usable approximation;

if it uses less memory than is available, it may result in a poor quality one.

Figure 4.1 (a) shows an example of this difference in memory use for protein side-chain

prediction instances, where WMBE is used to compute an upper bound to the log partition

function with ibound = 2, using scope- and content-based heuristics. The memory required

by the content-based approximation is compared to the memory required by the scope-based

approximation by computing the difference, (M(Ctnt)−M(Scp)) /M(Scp). Here M(Ctnt)

is the memory required by the content-based partitioning andM(Scp) is the memory required

by scope-based partitioning. For some instances, the content-based partitioning required

more memory than scope-based, while for the others, the relationship is reversed. This

property makes it difficult to use the scope-based ibound value, and its associated memory

use, as an accurate estimate for a content-based partitioning. Hence we would like an

“online”, memory-aware partitioning procedure that can estimate and manage the amount

of memory it requires while building the approximation.

59

1c
4o

1e
18

1d
dt

1n
r0

1t
yv

1q
pk

1c
b6

1l
2q

1q
cf

1u
g6

1k
w

h

1n
5u

2n
ap

1e
u8

-0.2

0

0.2

0.4

0.6

0.8
(

M
(C

tn
t)

 -
 M

(S
cp

)
)

/ M
(S

cp
)

1j
u3

1e
u8

1f
5n

1n
5u

1c
b6

2n
ap

1e
xm

1e
4f

1g
sk

1f
s7

1q
pk

1d
pe

1c
rz

1j
y1

0

20

40

60

80

100

%
 M

em
or

y
U

se
d

(a) (b)

Figure 4.1: (a) Memory used by content-based partitioning, compared to the memory used
by scope-based partitioning in WMBE. Different partitioning decisions can lead to sig-
nificantly varying memory requirements. We show the relative difference in memory use,
M(Ctnt)−M(Scp)

M(Scp)
, across several problem instances, where M(Ctnt) is the memory required by

weighted mini-bucket elimination using content-based partitioning and M(Scp) is the mem-
ory required by scope-based partitioning. Positive values indicate the content-based parti-
tioning required more memory. (b) Percentage of memory used by scope-based mini-bucket
elimination when the ibound parameter is set to the largest value for which the mini-bucket
cluster tree fits in memory, across several protein examples. For many instances, a large
fraction of the available memory is left unused.

4.2.2 Inefficient memory allocation

Another aspect of estimating the required memory for any mini-bucket approximation is the

relationship between ibound and the memory required by the resulting mini-bucket approxi-

mation. Standard practice finds an ibound such that MBE using ibound+1 does not fit in the

memory. However, the ibound is a very coarse mechanism for controlling how much memory

is used, as any change in the ibound changes the amount of required memory exponentially.

This exponential growth makes searching over ibound values efficient, but also means that

the approximation built with the largest ibound may use only a fraction of the available

memory. This effect is more pronounced in models with larger domain sizes of the variables.

Figure 4.1 (b) shows this effect for instances of protein side-chain prediction problems. Each

bar shows the percent of memory used by scope-based mini-bucket elimination when ibound

is set to the largest value for which the cluster tree fits in memory. For many instances, a

large fraction of the available memory is unused. This effect argues for a more fine-grained

approach, or possibly a coarse-to-fine memory allocation procedure. Again, forecasting the

60

memory requirements for an approximation as new regions are added to the approximation

would be useful, as some buckets could use higher ibound values than others if we can afford

it.

To this end, we propose a set of budget-based memory allocation strategies that allow finer

control over how the available memory is used. We frame these approaches in terms of

the basic incremental cluster tree construction proposed in Chapter 3, then propose and

study empirically several mechanisms for setting the initial budget values, and updating the

budgets as the cluster tree is built.

4.3 Memory awareness

A key component of our framework is the incremental perspective to adding new regions;

to this end we will rephrase existing elimination based methods within our incremental

viewpoint. First, we define some of the the notation that we will require throughout the

chapter.

Let wmb be a valid mini-bucket cluster tree for a graphical model consisting of variables

X = {X1, . . . , Xn} and factors F = {fα(Xα)}, indexed by their scopes α ⊆ {1, . . . , n}, with

respect to ordering o = [X1, . . . , Xn]. Then, wmb consists of a set of regions (or mini-buckets)

R organized into buckets B1, . . . , Bn, with the properties:

1. Each factor fα can be assigned to a region that contains its scope:

∀α, ∃r ∈ R s.t. Xα ⊆ var(r)

where var(r) is the set of variables in region r.

2. Each region r ∈ R is associated with the bucket corresponding to its earliest eliminated

61

variable,

r ∈ Bi iff Xi ∈ var(r) and ∀Xj ∈ var(r), j ≥ i

where j ≥ i means that Xj is eliminated later than Xi in ordering o.

3. Each region r with more than one variable is identified with a parent region πr to which

its downward message (eliminating Xi) can be assigned:

if |var(r)| > 1 and r ∈ Bi, ∃πr ∈ R with var(r) \Xi ⊆ var(πr)

Now, we define several useful functions for measuring the computational resources associated

with the cluster tree wmb, bucket Bi, or region r:

size(r) = |var(r)| : the number of variables in region r

size(Bi) = max
r∈Bi

size(r) : the size of the largest region in Bi

size(wmb) = max
i
size(Bi) : the size of the largest region in R

M(r) =
∏

Xi∈var(r)

|Xi| : the number of entries in a table over the variables in r

M(Bi) =
∑
r∈Bi

M(r) : the total number of entries in the tables for regions in bucket i

M(wmb) =
∑
i

M(Bi) : the total number of entries in all tables for the regions in R

Then, “size(·)” corresponds to measuring the inherent complexity or memory requirements

of a region, bucket, or cluster tree according to its scope (as is typical for standard mini-

bucket formulations), while “M(·)” corresponds to measuring its complexity in terms of the

amount of memory required to represent an arbitrary function over those variables. We also

define the total memory budget (the memory available for inference) as M.

Two key steps of the incremental perspective are: (1) forming the initial cluster tree, and

62

(2) merging new regions and updating the graph structure.

Initializing the cluster tree. Given the factor graph G, our incremental approach starts

from an “initial” cluster tree, where each factor is a region, with descendants corresponding

to partial eliminations of that factor. We construct this initial cluster tree, wmb, using a

min-fill elimination ordering o and ibound = 1. For any given bucket Bi, this results in

each mini-bucket (region) r ∈ Bi containing a single factor. We represent the result of

the elimination as as message, λr→πr , with scope var(λr→πr), from region r to its parent

πr in a later bucket Bj, corresponding to its first-eliminated argument in o. The parent

region πr may be one of the initial mini-buckets in Bj, if a region in Bj with sufficient scope

already exists, or be a new mini-bucket. In our implementation we choose πr ∈ Bj to be

the mini-bucket over the most variables, such that var(λr→πr) ⊆ var(πr). To enable memory

awareness we also evaluate M(r) and M(Bi) for every region r and bucket Bi in the initial

cluster tree to keep track of the memory used.

Merge Operation. Algorithm 4.1 is used to score pairs of regions in each bucket and to

select the best region to be added to the current cluster tree based on a predefined scoring

function. Having selected which two regions to merge, we can then use the subroutines

AddRegion(.) (Algorithm 3.2) and MergeRegions(.) (Algorithm 3.3) defined in Chaper 3

to add the new region to the cluster tree. However, to be memory-aware, we need to check

if the updated cluster tree after the merge still respects the memory limit M. To do so,

SelectMerge(.) simulates the process of adding the newly merged region and computes the

additional memory required by the merge. This additional memory accounts for adding the

new regions to the cluster tree wmb and updating its structure. To do so, Algorithm 4.1

first simulates the merge process using Algorithm 4.6 and scores pairs of mini-buckets only

if the resulting cluster tree can still fit in the available memory.

To simulate the process of merging regions rj and rk in bucket Bi and adding the new region

63

Algorithm 4.1 SelectMerge: Scoring all possible merges in a bucket while taking into
account the total memory M

Input: cluster tree wmb, bucket Bi, elimination order o, total memory available M
for every pair (rj, rk) in Bi such that |var(rj) ∪ var(rk)| < ibound + 1 do

// check if merge respects the memory budget :
Let C = var(rj) ∪ var(rk) be a clique containing all variables from rj and rk
Mnew ← CheckMem(wmb, o, C, M)
if Mnew <M then
S(j, k)← score(rj, rk)

else
S(j, k)← − inf

end if
end for
// select the best merge:
(j∗, k∗) = arg maxj,k S(j, k)
Return: (rj∗ , rk∗)

rn, Algorithm 4.6 uses the clique C = var(rj) ∪ var(rk), which contains the variables in the

two regions rj and rk. The newly merged region rn then has C as its scope. The memory

required by bucket Bi after the merge, Mnew(Bi), is updated to account for the new region.

To do so, the memory required by the new region, M(rn), is added to the current amount

of memory used by Bi, M(Bi). The process also checks for any other regions in bucket Bi

that can be subsumed by the new region rn during the merge, and adds the memory used by

those to Mold. To account for the memory that is going to be available when these regions

are subsumed by rn, Mold is then subtracted from Mnew. The total memory required by

the cluster tree after adding this new region to bucket Bi is then updated in Mused and is

compared with the total available memoryM. If the new region can be added, we then need

to account for the memory required for updating the cluster tree structure. Eliminating

variable Xi from the new region rn results in a message λr→πr which has C = C\Xi as its

scope. This message is sent to the bucket Bm corresponding to the first variable of C in the

elimination order. If Bm has any region, rk, that can subsume the message (e.g. C ⊆ var(rk)

), then no new regions need to be added to the cluster tree. If it can not be subsumed, then

a new region rn should be added to the cluster tree and the memory required for it should

64

Algorithm 4.2 WMBE-IB: Memory-aware Incremental region selection for WMBE using
ibound

Input: factor graph (G), ibound, and the available memory M
Initialize wmb to a cluster tree using e.g. a min-fill ordering o, uniform weights
// pass forward messages along the elimination order
wmb← msgForward(wmb)
for each bucket Bi following the elimination order do

repeat
(rm, rn)← SelectMerge(Bi, ibound, M)
R ← AddRegions(wmb, o, rm, rn)
wmb← MergeRegions(wmb, R)
// pass forward messages along the merge path R until we reach a root
set r and πr to the first and second regions in R (πr is parent of r in cluster tree)
while πr 6= ∅ do

// pass forward message

λr→πr(xπr) =
[∑

xr\xπr

[
fr(xr)

∏
t:πr=πt

λt→πr(xπr)
] 1
wπr

]wπr
end while

until no more merges possible
end for
Return: Upper bound on Z: Ẑ =

∏
r:πr=∅ λr→∅

be added to Mused. This process continues until either the message can be subsumed by a

region that is already in the cluster tree or C\Xm is empty which means that the previously

added region has no parents. Algorithm 4.6 shows details of this process and returns the

total memory required to add the new region rn to the current cluster tree wmb.

4.3.1 Baseline Methods

Having a scoring and merge process that takes into account the memory constraints, we

can now give the basic weighted mini-bucket algorithms in our incremental, memory-aware

framework, detailed in Algorithm 4.2. The scoring function to choose the pair of regions to

add then depends on the partitioning heuristic. For scope based partitioning, we can define,

S(rm, rn) = |var(rm) ∪ var(rn)|,

65

that computes the number of variables in the resulting merged region and for content based

partitioning we can use the scoring function (3.7), defined in Chapter 3.

Computational Complexity of WMBE-IB. As in Rollon and Dechter [2010] next we an-

alyze the computational complexity of adding new regions using our incremental memory-

aware approach.

Proposition 4.1. The computational complexity of merging all mergable pairs of regions

(rm, rn) in WMBE-IB (Algorithm 4.2), is at most O(R · L2 · exp(z) +R · L3 · z +R · L · z ·

exp(z)+R ·n ·exp(z)), where L is the maximum number of initial regions in a bucket (which

can be bounded by the maximum degree of any variable), z is the ibound, n is the number of

variables in the graphical model and R =
∑

α |α| upper bounds the maximum possible regions

in the cluster graph.

Proof. Let R be as defined, and denote by O(S) the computational complexity of a single

merge. We cannot make more than R merges, which means that the complexity of all

possible merges is O(R · S). The complexity of a single merge can then be bounded as

O(S) = O(L2 ·exp(z)+L3 ·z+L ·z ·exp(z)+n ·exp(z)). The first term in O(S) captures

the complexity of computing the score, which is O(exp(z)), for any pair of regions. The

algorithm computes the score for every pair of regions in a bucket, which yields O(L2·exp(z))

for score computation. The second term in O(S) is the complexity of CheckMem(.) that

simulates the merge process to decide if a merge fits in memory. For each merge we have

to add the new merged region and all its parents, which is bounded by z. After adding

these new regions, we need to check for subsumptions of old regions of the cluster graphs

with the new ones which involves z · L tests. Checking for the required memory using

CheckMem(.) should be done for all merges in the bucket, and results in total computational

complexity of O(L3 · z). The third term then computes the bound for updating the

graph structure for the pair that is selected to be merged. As before the complexity of

66

adding the new merged region and its parents is bounded by z, with z · L possible merges

between the old regions and the new ones. For every such merge, if one region can be

subsumed by the other, we need to update the messages sent to them by their children

which requires O(exp(z)) computations for each update. Putting it all together, the

computational complexity of the merge process is bounded by O(L · z · exp(z)). Having

updated the cluster graph structure, the complexity of computing the messages from the

newly added region to the root is bounded by n · exp(z). Having the complexity of a single

merge as O(S) = O(L2 · exp(z) +L3 · z+L · z · exp(z) +n · exp(z)), we can then bound the

complexity of doing all merges as O(R·L2·exp(z)+R·L3·z+R·L·z·exp(z)+R·n·exp(z)).

This memory-aware incremental built have several advantages: (1) It allows assessing the

memory required for each new region, and only adds those regions that result in an updated

cluster tree that still fits in the available memory. As a result, the algorithm never runs

out of memory, merging as many regions as possible along the elimination order, and always

produces an upper bound. (2) When the ibound found by simulating the scope-based parti-

tioning for mini-bucket elimination leaves a large portion of memory unused, we can use the

memory-aware incremental region selection of Algorithm 4.2, WMBE-IB, with ibound+1 and

allow it to use as much memory until it cannot add any new regions to the approximation.

We will study this memory allocation strategy empirically in section 4.4.1.

However, using a larger ibound to compensate for the large amount of unused memory is not

the only possible solution. In the next section we define the concept of “memory budget”

which allows us to have finer control over how the available memory is used by different

buckets, and describe how the memory-aware algorithm 4.2 can be updated to use the

memory budget instead of a fixed ibound.

67

4.3.2 Memory Budget for Weighted MBE

Given a graphical model and a fixed memory limit M, our goal is to define and evaluate

several different online memory allocation schemes that allow us to have finer control over

how the available memory is used. We would like to be able to use the available memory as

efficiently as possible and achieve tight approximations.

To do so we define the memory budget for bucket Bi, MB(Bi), as the amount of memory

allocated to bucket Bi which can be used by all the mini-buckets included in that bucket.

This means that
∑

r∈BiM(r) ≤ MB(Bi) should hold for every bucket Bi. We represent

the memory budget for the cluster tree wmb as MB(wmb) = {MB(Bi) for Bi ∈ wmb}.

The total memory available is then distributed between different buckets such that M =∑
Bi∈wmbMB(Bi).

The memory budget for bucket Bi can then replace the fix ibound to control the amount of

memory used by Bi. A memory allocation scheme then defines how the available memory,

M, should be distributed among different buckets along the elimination order. There are two

questions that need to be addressed by each memory allocation scheme; 1) How to initialize

the memory budget for each bucket and 2) how to update the initial estimate as we merge

mini-buckets using different partitioning schemes.

However, in order to use any memory allocation scheme, we need to be able to keep track

of the available memory and the memory used by different mini-buckets as we add more

regions to mini-bucket approximation. To do so, we modify Algorithm 4.2, to use a memory

budget instead of ibound. Algorithm 4.3 shows the details of memory-aware incremental

region selection using memory budget. The general procedure to select and add regions is

as before, when using ibound and total available memoryM. The only difference is that the

new procedure keeps track of the memory budget and how it is used at each bucket, which

is explained in detail next.

68

Algorithm 4.3 WMBE-MB: Memory-aware Incremental region selection for WMBE using
memory budget

Input: factor graph (G), available memory M
Initialize wmb to a cluster tree using e.g. a min-fill ordering o, uniform weights
// pass forward messages along the elimination order
wmb← msgForward(wmb)
Initialize Memory Budget MB(wmb)← InitMB(wmb)
for each bucket Bi following the elimination order do

repeat
(rm, rn,M(rm, rn))← SelectMergeMB(Bi, MB(wmb))
R ← AddRegions(wmb, o, rm, rn)
wmb← MergeRegions(wmb, R)
// pass forward messages along the merge path R until we reach a root
set r and πr to the first and second regions in R (πr is parent of r in cluster tree)
while πr 6= ∅ do

// pass forward message

λr→πr(xπr) =
[∑

xr\xπr

[
fr(xr)

∏
t:πr=πt

λt→πr(xπr)
] 1
wπr

]wπr
end while
// update available memory :
MB(wmb)← UpdateBudgetMerge(MB(wmb),M(rm, rn))

until no more merges possible
// update available memory :
MB(wmb)← UpdateBudget(MB(wmb))

end for
Return: Upper bound on Z: Ẑ =

∏
r:πr=∅ λr→∅

Initialization. Given the factor graph G and the elimination order o, as before, first we

initialize a cluster tree wmb with ibound = 1. Next, we initialize a memory budget MB(wmb)

to manage memory allocation and keep track of the memory used as new regions are added

to the approximation. To do so, taking into account the amount of memory used by the

initial cluster tree, M(wmb), the available memory is updated asM =M−
∑

Bi∈wmbM(Bi)

and the memory budget MB(wmb) is initialized by distributing available memory among

different buckets based on a memory allocation scheme (described in section 4.3.3). This

step is done by InitMB(wmb) in Algorithm 4.3.

69

Algorithm 4.4 SelectMergeMB: Scoring all possible merges in a bucket while taking the
memory budget into account

Input: cluster tree wmb, bucket Bi, elimination order o, memory budget MB(wmb)
for every pair (rj, rk) in Bi do

Set C = var(rj) ∪ var(rk) to a clique that contains all variables from rj and rk
// check if merge respects the memory budget :
(fits,M(rm, rn))← CheckMemMB(wmb,C,MB(wmb))
if fits then
S(j, k)← score(rj, rk)
// keep track of the memory it requires
M(j, k)←M(rj, rn)

else
S(j, k)← − inf

end if
end for
// select the best merge:
(j∗, k∗) = arg maxj,k S(j, k)
Return: (rj∗ , rk∗) and the corresponding memory profile M(rj∗ , rk∗)

Algorithm 4.5 UpdateBudgetMerge: Updating memory budget after merging (rm, rn)

Input: memory budget MB(wmb), memory profile of the merge M(rm, rn)
// compute the extra memory we have along the merge path Bm :
ME =

∑
Bm

MB(rm, rn)
// update the budget along the merge path Bm :
for Bi ∈ Bm(end : −1 : 1) do

if MB(Bi) < M(Bi) then
MB(Bi) = M(Bi)

end if
ME = ME −MB(Bi))

end for
MB(B1) = ME

Selecting Mini-buckets to Merge. To select the pair of mini-buckets to merge, our budget

based algorithm needs to compare the required memory for the merge at each bucket with

the memory budget allocated to them. We update the two subroutines, SelectMerge(.)

and CheckMem(.), to use the memory budget. The updated subroutine, SelectMergeMB(.),

Algorithm 4.4, then uses CheckMemMB(.), Algorithm 4.7, to compute the memory required

for the merge and score the pairs that can be successfully added to the current cluster tree

wmb. Having a memory budget MB(wmb), which defines a limit on how much memory can

70

be used in each bucket, CheckMemMB(.) needs to check if the pair of regions (rm, rn) can be

successfully added to the current cluster tree while respecting the memory budget MB(Bi)

at every bucket that is affected by the merge. The pair is then scored only if it respects the

budget. After scoring all pairs that respect the memory budget, the best is selected to be

added as the next region to the cluster tree.

Checking Memory Requirement of a Merge. Checking for the memory required by a

merge is done by simulating the process of adding the new merged region to the current

cluster tree wmb. If a merge is possible, the subroutine CheckMemMB(.) returns a memory

profile, M(C), for the merge which contains the memory required at each bucket, M(Bi),

that is affected by the merge and contains the amount of memory used by that bucket after

the merge. Algorithm 4.7 details all the steps involved.

The procedure to compute the memory required at each bucket, Mnew(Bi), is similar to

WMBE-IB. However instead of comparing the total memory used after adding the new

regions (Mused) with the total memory available (M) the algorithm compares the memory

used at each bucket (M(Bi)) with the memory budget allocated to it (MB(Bi)). To do so,

when merging the two regions rj and rk into the new region rn, the algorithm first checks if

the required memory at Bi after the merge, Mnew(Bi), respects the memory budget MB(Bi)

and continues only if the required memory is less than the available budget for the bucket.

Adding the new region rn to the cluster tree might require adding additional regions to the

buckets later in the elimination order as well. CheckMemMB(.) keeps track of these buckets

in Bm = {Bi; if ∃ new rn ∈ Bi after the merge}. To decide if there is enough memory for the

merge, the sum of the required memory for all the buckets in Bm is compared with the total

memory available to those by the memory budget, as
∑

Bi∈BmMnew(Bi) ≤
∑

Bi∈BmMB(Bi).

This comparison assumes that any extra memory that is allocated to the buckets earlier in

the elimination order and is not used, can be shifted to the buckets later in the elimination

71

(a) (b) (c)

Figure 4.2: Updating the memory budget after a merge: (a) Memory budget before merge
(b) Memory required by the merge (c) Memory budget after merge

order.

The simulation continues until the new region can be merged with an existing region in the

cluster tree or the new region has no parents. The algorithm then returns if the merge can

be done and the memory required at each bucket Bi ∈ Bm after the merge, in a memory

profile M(C).

Updating graph structure and memory budget. Having selected the two regions to add,

the two subroutines, AddRegions(.) and MergeRegions(.), perform the merge exactly as

before (see Algorithm 3.2 and Algorithm 3.3). After adding the new regions in R to wmb,

WMBE-MB algorithm updates the memory budget for buckets affected by the merge (Bm

in CheckMemMB(.)) before continuing with another round of adding more regions. This

memory budget update is required because CheckMemMB(.) compares the sum of the

required memory for all the buckets in Bm against the total memory available for those by the

memory budget, e.g.
∑

Bi∈BmMnew(Bi) ≤
∑

Bi∈BmMB(Bi), to decide if a merge is possible.

This comparison is based on the assumption that any amount of available memory can be

shifted to later buckets along the elimination order. As a result a merge can be approved if∑
Bi∈BmMnew(Bi) ≤

∑
Bi∈BmMB(Bi) while the required memory at some bucket Bj ∈ Bm

is larger than the memory budget at that bucket, e.g. Mnew(Bj) > MB(Bj). Figure 4.2

shows such an example where (a) is the memory budget assigned to the three buckets before

the merge, (b) is the required memory at each bucket for the merged region to be added

to the cluster tree and (c) is the updated memory budget for the three buckets after the

72

merge. The required memory at bucket B2 is more than what is available in the memory

budget, MB(B2), but since bucket B1 has some extra memory that is not used after adding

the new region, a portion of it can be shifted to bucket B2 to make the merge possible.

UpdateBudgetMerge(.), Algorithm 4.5, makes sure that the memory budget after the merge

reflects the actual available memory in each bucket after the merge is done by shifting the

available memory along the elimination order, from buckets with extra memory to those that

require more.

Memory Reallocation. After all possible merges are done for bucket Bi, UpdateBudget(.)

shifts all the unused memory that was assigned to Bi to the buckets later in the elimina-

tion order. This final memory budget update is required only for some memory allocation

schemes, but results in better memory use and a better approximation in all. Section 4.3.3

describes different strategies for reallocating the unused memory.

Computational Complexity of WMBE-MB. Next we analyze the computational com-

plexity of adding new regions using our budget based incremental memory-aware approach.

Proposition 4.2. The computational complexity of merging all mergable pairs of regions

(rm, rn) in WMBE-MB (Algorithm 4.3), is at most O(R · L2 ·M + R · L3 · logM + R · L ·

M · logM + R ·M), where L is the maximum number of initial regions in a bucket (which

is bounded by the maximum degree of any variable), M is the total memory and R =
∑

α |α|

upper bounds the number of regions in the cluster graph.

Proof. Let R be as defined and denote by O(S) the computational complexity of a single

merge. Again, we cannot have more than R merges, which means that the complexity of

all possible merges is O(R · S). The complexity of a single merge can then be bounded as

O(S) = O(L2 ·M +L3 · logM +L ·M · logM +M). The first term in O(S) captures the

complexity of computing the score, which is O(M), for any pair of regions. The algorithm

73

computes the score for every pair of regions in a bucket, which yields O(L2 ·M) for score

computation. The second term in O(S) is the complexity complexity of CheckMem(.) that

simulates the merge process to decide if a merge fits in memory. For each merge we have

to add the new merged region and all its parents, which is bounded by logM . After adding

these new regions, we need to check for subsumptions of old regions of the cluster graphs

with the new ones which involves logM · L tests. Checking for the required memory using

CheckMem(.) should be done for all merges in the bucket, and results in total complexity of

O(L3 · logM). The third term then computes the bound for updating the graph structure

for the pair that is selected to be merged. Since each elimination reduces the table size

geometrically, the complexity of adding the new merged region and its parents is bounded

by logM , with logM ·L possible merges between the old regions and the new ones. For every

such merge, if one region can be subsumed by the other, we need to update the messages sent

to them by their children; this requires O(M) computations for each update. Putting it all

together, the computational complexity of the merge process is bounded by O(L·M ·logM).

Having updated the cluster graph structure, the complexity of computing the messages from

the newly added region to the root is bounded by M . Having the complexity of a single

merge as O(S) = O(L2 ·M + L3 · logM + L ·M · logM + M), we can then bound the

complexity of doing all merges as O(R ·L2 ·M+R ·L3 · logM+R ·L ·M · logM+R ·M).

4.3.3 Memory Allocation Schemes

Using the above memory aware algorithm, different memory allocation schemes proceed by

using different methods to initialize the memory budget and update it at each step. Different

schemes studied in this thesis are as follows:

Waterfall Memory Distribution. Perhaps the simplest way to allocate available memory is

to allow each bucket to use as much memory as it needs, adding the largest regions possible to

74

(a) (b) (c)

Figure 4.3: Different memory allocation schemes: (a) Waterfall Distribution where the total
available memory is assigned to the first bucket and any extra memory after all merges at
each bucket is redistributed between the buckets later in the elimination order. (b) Uniform
Distribution where the total available memory is equally split between different buckets; (c)
Proportional Distribution where the total available memory is distributed between different
buckets proportional to the memory used by scope-based partitioning;

the approximation until no more memory is available. In this scheme, all available memory

is initially allocated to the first bucket; see Figure 4.3 (a). Any memory that is unused by

the first bucket can then be shifted along the elimination order to become available to the

next bucket. For this simple allocation scheme, we can define InitMB(wmb) as:

MB(B1) =M

MB(Bi) = 0 for i = 2 . . . N

To update the memory budget after each bucket is processed, we pass any remaining memory

into the next bucket’s budget, defining UpdateBudget(wmb) as

MB(Bi+1)←MB(Bi+1) + (MB(Bi)−M(Bi))

MB(Bi)←M(Bi)

where Bi+1 is the bucket after Bi in the elimination order. This scheme is efficient in the

sense that almost all available memory will be allocated to some mini-bucket. However, it

will typically result in large regions early in the elimination order, and many small regions

in buckets later in the order, which can lead to poor approximation quality.

75

Uniform Memory Distribution. A simple way to encourage a more equitable distribution

of memory to different buckets is to divide the total memory uniformly among buckets; see

Figure 4.3 (b). More formally, for a graphical model with N variables such allocation uses

an initial memory distribution, InitMB(wmb):

MB(Bi) =
M
N

for i = 1 . . . N

While this allocation strategy is simple to use, it tends to be very conservative. Some parts

of the model are likely to be less complex than others; empirically, we observe that buckets

early in the elimination order often need less memory compared to buckets later in the order,

which often involve larger regions (a consequence of the graph structure and the elimination

ordering chosen).

As a result, uniform memory distribution may not use the available memory as efficiently

as the waterfall distribution. To some extent, we can remedy this limitation during the

UpdateBudget(.) step by shifting any unused memory from earlier buckets to the later ones,

similarly to the waterfall scheme; strategies for performing such memory shifts are discussed

in the sequel.

Proportional Memory Distribution. A final option is to use information from a “pilot”

estimate of the complexity of different portions of the inference process. Since estimating the

structure, and hence memory requirements of, scope based partitioning is easy and efficient,

we can use this scope-only structure to inform our budgets. After searching for the largest

ibound such that a scope-based partitioning will fit in our total memory, we evaluate the

memory usage of each bucket Bi. Then, we initialize our memory budget proportionally to

these values:

MB(Bi) =
Ms(Bi)∑
iMs(Bi)

×M,

76

where Ms(Bi) is the memory used by bucket Bi in the scope-based partitioning and M

is our total memory ceiling. The proportional scheme provides a better estimate of the

required memory at each bucket, while assuming that the memory needs of the content-

based partitioning will be similar to that of scope-based partitioning at each level. Figure

4.3 (c) shows an illustration of this allocation scheme.

Memory Reallocation. In all memory allocation schemes discussed above, the resulting

regions in one bucket may use less memory than allocated to that bucket’s budget. This

excess memory can then be redistributed among the later buckets in the elimination order,

in the UpdateBudget(.) step in Algorithm 4.3. The waterfall redistribution, in which any

extra memory is placed in the next bucket, is one such method. Alternatively, however, the

extra memory in each bucket can also be distributed among later buckets in other ways –

for example, uniformly among the later buckets:

MB(Bj)←MB(Bj) + (MB(Bi)−M(Bi))/(N − i) for j > i

or, proportionally to the expected needs of the later buckets:

MB(Bj)←MB(Bj) + (MB(Bi)−M(Bi))
MB(Bj)∑
j>iMB(Bj)

for j > i

and reduce the “budget” of bucket i to reflect its actual use: MB(Bi) = M(Bi).

Given these various initialization and update methods, we can combine them to generate a

number of different memory allocation strategies:

(1) UF: uniform initial distribution with no reallocation;

77

(2) UU: uniform initial distribution with uniform reallocation;

(3) UP: uniform initial distribution with proportional reallocation;

(4) UW: uniform initial distribution with waterfall reallocation;

(5) PF: proportional initial distribution with no reallocation;

(6) PU: proportional initial distribution with uniform reallocation;

(7) PP: proportional initial distribution with proportional reallocation;

(8) PW: proportional initial distribution with waterfall reallocation;

(9) WW: waterfall initial distribution with waterfall reallocation.

78

Algorithm 4.6 CheckMem: Checks if a new clique C can be added to the current cluster
tree wmb and returns the memory required for the updated cluster tree after merge

Input: The cluster tree wmb, elimination order o, total memory available M and clique
C
Output: Mused = M(wmb) after the merge is done
Initialize: Bm to the bucket corresponding to the first un-eliminated variable in C based
on elimination order o
Initialize: Xm to the variable that is being eliminated at Bm

Initialize: Mused =
∑

iM(Bi) to keep track of the memory used by current cluster tree
wmb
Initialize: done← False;
while not done do

Consider new region rn with var(rn) = C and set Mold ← 0
Find all regions rm ∈ Bm that can be subsumed by rn (C ⊆ var(rm)) and add their
memory, M(rm), to Mold

Set Mnew = M(Bm) +M(rn)−Mold

Update Mused = Mused −M(Bm) +Mnew

if Mused >M then
// memory required to add the new region exceeds memory limit:
done← True

end if
if not done then

// Remove Xm from C to get the scope of the outgoing message from the new region:

Set new clique C = var(rn)\Xm

if C = ∅ then
// new region rn is a root and has no outgoing messages:
done← True

else
FindBm corresponding to the first un-eliminated variable in C based on elimination
order o
for each mini-bucket region rm ∈ Bm do

if C ⊆ var(rm) then
// forward message fits in existing mini-bucket:
done← True

end if
end for

end if
end if

end while
return Mused

79

Algorithm 4.7 CheckMemMB: Checks if a new clique C can be added to the current
cluster tree wmb under the memory budget MB

Input: The cluster tree wmb, elimination order o, memory budget MB and clique C
Output: fits← True if C can be added to wmb, and the memory required for the merge
MC
Initialize: Bm = {Bj} to the bucket corresponding to the first un-eliminated variable in
C, based on elimination order o and Xj to the variable that is being eliminated at Bj

Initialize: fits← True;
Consider new region rn with var(rn) = C and set Mold ← 0
Find all mini-bucket region rj ∈ Bj that can be subsumed by rn and add their memory
to Mold

Set Mnew(Bj) = M(Bj) +M(rn)−Mold

if Mnew(Bj) > MB(Bj) then
fits← False // New clique doesn’t fit in the budget for bucket Bj

end if
if fits then

repeat
Set new clique C = var(rn)\Xj

if C = ∅ then
done← True

else
Find Bj corresponding to the first un-eliminated variable in C based on elimination
order o and set Xj to the variable that is being eliminated at Bj

for each mini-bucket region rj ∈ Bj do
if C ⊆ var(rj) then
done← True // forward message fits in existing mini-bucket

end if
end for

end if
if not done then
Bm ← Bm ∪ {Bj} // New region needs to be added to contain forward message
Consider new region rn with var(rn) = C and set Mold ← 0
Find all mini-bucket region rj ∈ Bj that can be subsumed by rn and add their
memory to Mold

Set Mnew(Bj) = M(Bj) +M(rn)−Mold

if
∑

Bi∈BmMnew(Bi) >
∑

Bi∈BmMB(Bi) then
// Total budget along these buckets is not enough to add the new clique Bj:
fits← False and done← True

end if
end if

until done
end if
return (fits,M(C) = {Mnew(Bi) for Bi ∈ Bm})

80

4.4 Empirical Evaluation

In this section, we compare the proposed memory allocation schemes on two domains of

problems, linkage analysis and protein side chain prediction, from past UAI approximate

inference challenges and study their ability to effectively use the available memory, and

the quality of the bounds they produce on the log-partition function using content-based

partitioning.

The two problem domains from which our instances are drawn have very different statistics

and operating points. The protein side-chain instances have variables with cardinalities

ranging from 2 to 81. On these instances, we typically find very low feasible ibound values

for typical memory bounds (e.g., 1GB), and memory use changes in large jumps, so that

many instances use 20% or less of the available memory. On the other hand, the pedigree

(linkage analysis) instances have variables with cardinality only between 2 and 5; on these

instances, the ibound selected is typically much higher, and a standard scope-based mini-

bucket uses, on average, more than half the available memory.

In the sequel, we will refer to the largest ibound value for which scope-based partitioning fits

into our memory budget as “iscope”.

4.4.1 Content Based Partitioning

First, we explore the effect of different memory allocation schemes on the quality of the

bound. To this end, we compare the content-based approximation of WMBE-IB with the

approximations from WMBE-MB under various memory budget strategies. For all methods,

when adding new regions, we use the scoring function introduced in Chapter 3, Eq. (3.7),

and merge the pair with the maximum score.

Protein Side-chain prediction. For the protein side-chain prediction examples, we find

81

Table 4.1: UAI Protein Side-chain Prediction. Each column shows the improvement in
the upper bound for that memory allocation scheme, over using an ibound control on com-
plexity (see section 4.3.3). The improvement is computed as log ẐiB − log ẐM , where log ẐM
is the upper bound to the log partition function computed using WMBE-MB and log ẐiB is
the upper bound computed by WMBE-IB. Larger values indicate improved approximation
using the budget based WMBE-MB, compared to the ibound based algorithm, WMBE-IB.

Inst UF UU UP UW PF PU PP PW WW
2cav 67.98 119.15 119.15 153.30 67.91 165.43 149.42 168.21 66.68
1ehg 30.32 63.69 63.69 78.16 15.12 66.97 48.16 77.02 -95.58
1exm 43.51 69.57 69.57 66.81 42.58 71.14 54.77 68.32 -61.66
1i24 122.73 111.82 111.82 144.42 81.87 115.32 94.90 114.35 -76.40
1ewf 100.62 107.53 107.53 116.20 72.31 119.73 106.30 121.71 -116.66

iscope ≤ 5 in general. This is much smaller than the induced width of the models (typically

≥ 20). Using a weighted min-fill elimination order, we initialize a cluster tree using the

individual factors in each model. We then use WMBE-MB (Algorithm 4.3) with different

memory allocation schemes to upper bound the log partition function, and compare these

bounds with that of WMBE-IB (Algorithm 4.2) when ibound = iscope.

In all 44 protein instances, only one content-based WMBE-IB used all available memory

before reaching the last bucket. However, in 65% of instances, content-based WMBE-IB

used more memory than scope-based WMBE, but did not reach the memory limit.

Table 4.1 shows the improvement in the bounds of WMBE-MB over WMBE-IB (i.e., the

difference of their bounds) on a randomly selected subset of these models. Each column

corresponds to a different budget management strategy. The values in the table correspond

to the difference log ẐiB−log ẐM , where log ẐM is the upper bound computed by WMBE-MB

and log ẐiB is the upper bound computed by WMBE-IB.

Figure 4.4 (a) summarizes the results for each memory allocation scheme across all instances.

For each allocation strategy, a box plot summarizes the improvement in the upper bound to

the log partition function, e.g., logẐiB − logẐM , for that allocation scheme; positive values

82

indicate that WMBE-MB found a tighter bound. Additionally, Figure 4.4 (b) shows a sum-

mary of the proportion of the available memory used by each allocation scheme. Strategies

employing “fixed” reallocation (e.g., no reallocation of memory) used the smallest fraction

of memory; strategies with some reallocation all averaged ≈ 80% or higher usage.

On these set of instances, all allocation schemes except waterfall allocation (WW) give an

improved upper bound compared to iboundcontrol. WW fares poorly, since in practice it

allows all possible merges in each bucket until the available memory is exhausted (see Figure

4.4 (b)). This results in fully merged buckets and exact elimination for variables early in the

elimination order, followed by almost no merges (very small mini-buckets) after the memory

is used; this gives poor quality approximations. Other schemes bound the maximum amount

of memory available to each bucket, preventing early buckets from consuming all the memory

and improving the approximation.

As expected, memory shifting schemes (UU, UP, UW and PU, PP, PW) allow better mem-

ory allocation and improve the approximation more than the corresponding fixed memory

allocation schemes (UF and PF). It is interesting to note that in general, shifting the extra

memory using a waterfall distribution (UW and PW) improves the approximation more than

uniform and proportional distribution of extra memory (UU and PU, PU and PP). This may

be because uniform memory shifting tends to overestimate the memory needed by buckets

later in the elimination order, limiting the available memory to earlier buckets and leaving

more memory unused at the end. On the other hand, waterfall redistribution of unused

memory allows the extra memory to be used as needed at each bucket when determining

merges. Unlike the full waterfall strategy (WW), here the initial uniform or proportional dis-

tribution limits the available memory to early buckets and avoids too uneven a distribution

of the available memory.

Alternative Initial Structure. One alternative to consider is to use a “coarse to fine”

83

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

-200

-100

0

100

200
lo

gZ
iB

 -
 lo

gZ
M

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

0.2

0.4

0.6

0.8

1

%
 o

f M
em

or
y

U
se

d

(a) (b)

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

0

50

100

150

200

lo
gZ

iB
 -

 lo
gZ

M

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

0.2

0.4

0.6

0.8

1

%
 o

f M
em

or
y

U
se

d

(c) (d)

Figure 4.4: Protein side-chain prediction. Summarizing (a),(c) the improvement in the
upper bound, and (b),(d) the proportion of memory used, for different memory allocation
schemes across all instances. The horizontal axis represents different allocation schemes (see
Section 4.3.3). The vertical axis shows the improvement logẐiB − logẐM . (a) Each box
plot summarizes the improvement in the upper bound for the corresponding scheme when
WMBE-MB starts from an initial factor graph. Positive values indicate better approxima-
tion by content-based WMBE-MB compared to content-based WMBE-IB. (b) Proportion
of the memory used by different allocation schemes when WMBE-MB starts from an initial
factor graph. (c) Each box plot summarizes the improvement to the upper bound for the
corresponding scheme when WMBE-MB is initialized with the cluster tree of content-based
WMBE-IB when ibound = iscope. (d) Proportion of the memory used when WMBE-MB is
initialized with the cluster tree of content-based WMBE-IB when ibound = iscope.

memory allocation. Instead of initializing our cluster tree to individual factors in WMBE-

MB, we could first use WMBE-IB with ibound = iscope to compute an approximation and

then execute WMBE-MB to refine the resulting cluster tree. Then, WMBE-MB can dis-

tribute any unused memory among different buckets. Figure 4.4 (c) and (d) show a summary

of the improvement in the approximation and proportion of memory used for different mem-

ory allocation schemes in this case. With the exception of WW, the qualitative results are

similar to starting WMBE-MB from individual factors. For WW, however, starting from the

cluster tree with induced width of iscope avoids using all the memory early, giving a bound

that is at least as good as using no memory allocation.

84

Table 4.2: UAI Protein Side-change Prediction. The upper bound computed by
WMBE-MB is compared for different initializations. log ẐFG is the upper bound computed
when WMBE-MB is initialized with the factor graph and log ẐIB is the upper bound com-
puted when WMBE-MB is initialized with the resulting cluster tree from WMBE-IB using
ibound = iscope. Each entry shows the proportion of instances for which one approximation
is better than the other.

UB\MemScheme UF UU UP UW PF PU PP PW WW

log ẐFG < log ẐIB 63% 63% 65% 55% 83% 80% 78% 68% 0%

log ẐFG > log ẐIB 37% 37% 35% 45% 17% 20% 22% 32% 100%

Figure 4.5 compares the results of the best two memory allocation schemes, UW and PW ,

for the two possible initializations (individual factors, or ibound-based), and Table 4.2 shows

the proportion of instances for which each initialization results in a tighter upper bound.

The results show that initializing WMBE-MB with the factor graph results in better ap-

proximation in most cases.

Initializing WMBE-MB using the factor graph allows more flexibility in how the available

memory is used, and seems to result in generally tighter bounds. Starting from the cluster

tree of WMBE-IB with ibound = iscope often results in mini-buckets that cannot be merged

unless the memory available to the bucket is increased significantly. As an example, con-

sider a factor graph with three factors on X1: {X1, X2, X3}, {X1, X4, X5}, and {X1, X7}.

Using ibound = 4, we can merge the first two mini-buckets, resulting in two mini-buckets,

{X1, X2, X3, X4, X5} and {X1, X7}, one of which is over five variables. However if ibound = 3

was used to initialize the cluster tree first, resulting in {X1, X2, X3, X7} and {X1, X4, X5},

we are not able to perform any further merging if ibound is increased to 4, yielding a largest

mini-bucket over four variables.

Choice of ibound. A simple technique to use a larger fraction of available memory is to use

ibound = iscope+1 in content-based WMBE-IB, especially when iscope leaves large portions

of the memory unused. Memory-aware WMBE-IB then allows merges up to iscope+1, until

85

FG IB
Initial Cluster Tree

0

50

100

150

200
lo

gZ
iB

 -
 lo

gZ
M

FG IB
Initial Cluster Tree

0

50

100

150

200

lo
gZ

iB
 -

 lo
gZ

M

(a) (b)

Figure 4.5: Comparing the improvement in the bound when WMBE-MB is initialized
with (1) factor graph (FG), and (2) the resulting cluster tree from WMBE-IB (IB) when
ibound = iscope . (a) shows the improvement in the approximation for UW and (b) shows
the improvement in the approximation for PW memory allocation scheme. The improve-
ment is computed as log ẐiB − log ẐM , where log ẐiB is the upper bound computed using
WMBE-IB and log ẐM is the upper bound computed using WMBE-MB with different ini-
tializations. Although the improvement given the two initialization is very close, starting
from the initial factor graph gives more flexibility in using the available memory and results
in tighter bounds in general.

the total memory limit is reached. Unfortunately, this simple strategy does not consistently

result in better approximations. In approximately half of protein instances, content-based

WMBE-IB with iscope+1 uses all the available memory before reaching the buckets later in

the elimination order, giving an upper bound that is less tight than WMBE-BI with iscope.

In general, memory-based allocation performs better – for all instances, using WMBE-MB

with PW memory allocation gave a better approximation than WMBE-IB with ibound =

iscope + 1. Figure 4.6 compares the upper bounds computed using WMBE-MB using UW

and PW allocation schemes with the upper bound computed with WMBE-IB.

Linkage Analysis. We also analyze performance on the linkage analysis (pedigree) mod-

els, where scope-based WMBE typically uses a higher proportion of the available memory.

Pedigree instances have variables whose cardinalities vary in the range of [2, ..., 5], and the

induced width of the model is typically ≈ 20− 30. The iscope found for these models is, on

average, about half the induced width.

Content-based partitioning with WMBE-MB behaves quite differently on these instances,

compared to the protein examples where the approximation using iscope left a large portion

86

1c
4o

1k
k1

1m
6i

2c
av

1e
4f

1e
hg

1p
1m

1m
ky

1e
w

f
1e

xm
1d

pe
1e

1m
1u

g6
1n

qe
1e

u8
1i

24
1f

s7
1e

39
1k

v7
1d

5t
1g

nt
1q

cf
1k

w
h

1g
sk

1d
dt

1q
pk

1t
yv

1j
u3

1j
y1

1c
rz

1l
2q

1g
o8

1n
r0

-700

-600

-500

-400

-300

-200

-100

0

100

lo
g
Ẑ

Ctnt
Ctnt+1
PW
UW

Figure 4.6: Protein side-chain prediction The upper bound computed by WMBE-MB
using UW and PW memory allocation schemes is compared with the upper bound computed
using WMBE-IB when ibound is set to iscope (Ctnt) and to iscope+1 (Ctnt+1) respectively.
The approximations using ibound = iscope + 1 use as much memory as the approximations
using UW and PW but in all cases the memory allocation schemes allow us to compute
better approximation with tighter bounds. Here the x-axis show different instances of protein
side-chain prediction and the y-axis shows the upper bound.

of memory unused. Figure 4.7 (a) summarizes the improvement of the upper bound for

different memory allocation schemes over all instances, a random subset of which is shown in

Table 4.3. Figure 4.7 (b) shows the proportion of memory used by each memory allocation

scheme. For 25% of instances, content-based WMBE-IB with ibound = iscope used more

memory than scope-based WMBE, but did not reach the memory limit before processing

the final bucket.

For linkage analysis models, the memory used by different buckets varies considerably, which

is why initializing the memory proportionally to scope-based WMBE usage proves to be more

useful than initializing uniformly. The results generally agree with those from the protein

problems, although the improvement is not as pronounced for these instances. The main

difference is that while we could only fit protein models with very low iboundvalues (2 or 3)

in 1GB of memory, here we can use much higher iboundvalues within the memory limit. Any

improvement in the approximation from using more memory is less pronounced, compared to

models with a much smaller ibound. Again, although the waterfall distribution uses almost

all memory available, it does not provide a tight bound because it distributes the memory

unevenly among buckets and leaves many, small mini-buckets later in the elimination order.

87

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

-10

-5

0

5
lo

gZ
iB

 -
 lo

gZ
M

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

0

0.2

0.4

0.6

0.8

1

%
 o

f M
em

or
y

U
se

d

(a) (b)

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

-10

-5

0

5

lo
gZ

iB
 -

 lo
gZ

M

UF UU UP UW PF PU PP PW WW
Memory Allocation Scheme

0

0.2

0.4

0.6

0.8

1

%
 o

f M
em

or
y

U
se

d

(c) (d)

Figure 4.7: UAI Linkage Analysis. Summarizing (a),(c) the improvement in the upper
bound, and (b),(d) the proportion of memory used, for different memory allocation schemes
over all linkage instances. For each allocation scheme, the vertical axis shows the improve-
ment logẐiB − logẐM . (a) Box plot summarizing the improvement in the upper bound for
each scheme when WMBE-MB starts from an initial factor graph. Positive values indicate
better bounds from WMBE-MB than WMBE-IB. (b) Proportion of the memory used by dif-
ferent allocation schemes when WMBE-MB starts from an initial factor graph. (c) Box plots
summarizing the improvement for the corresponding scheme when WMBE-MB is initialized
with the cluster tree of content-based WMBE-IB with ibound = iscope. (d) Proportion
of memory used when WMBE-MB is initialized with the cluster tree of WMBE-IB with
ibound = iscope.

UW and PW appear to distribute the available memory more effectively compared to the

other schemes and result in an improved upper bound in all but 2 instances.

Figure 4.7 (c) and (d) show the improvement in the upper bound and the memory used

by each allocation scheme when WMBE-MB is initialized using the cluster tree built by

WMBE-IB with ibound = iscope. As expected, all memory allocation schemes result in an

upper bound that is at least as good as the initial approximation by WMBE-IB. Here, since

the amount of extra memory that can be distributed among different buckets is not as large,

under many schemes (UF and PF) no new regions can be added to the approximation and

the bound does not change. However shifting the extra memory along the elimination order

88

Table 4.3: UAI Linkage Analysis. Different columns show the improvement on the upper
bound achieved using each memory allocation scheme (see section 4.3.3). The improvement
in the bound is computed as log ẐiB − log ẐM , where log ẐM is the upper bound to log
partition function computed by WMBE-MB and log ẐiB is the upper bound computed by
WMBE-IB. Larger values then show better approximation using budget based algorithm
compared to a fixed ibound.

Ins UF UU UP UW PF PU PP PW WW
ped13 -0.62 -2.55 -2.55 1.57 -1.55 1.21 1.23 1.08 -4.04
ped37 0.55 7.79 7.79 7.14 -0.28 -0.07 -0.28 2.71 7.14
ped38 -6.47 -0.45 -0.45 4.80 -0.26 -0.04 -0.23 3.31 5.09
ped42 1.37 -0.67 -0.67 0.51 -1.16 0.22 0.22 2.14 1.09
ped7 -1.54 1.19 1.19 2.39 -1.53 -1.16 -0.97 3.10 -4.39

Table 4.4: UAI Linkage Analysis. The upper bound computed by WMBE-MB is com-
pared for different initializations. log ẐFG is the upper bound computed when WMBE-MB
is initialized to the factor graph and log ẐIB when initialized with the cluster tree from
WMBE-IB using ibound = iscope. Each entry shows the proportion of instances for which
that approximation was tighter.

UB\MemScheme UF UU UP UW PF PU PP PW WW

log ẐFG < log ẐIB 15% 22% 22% 65% 36% 50% 65% 58% 36%

log ẐFG > log ẐIB 85% 78% 78% 35% 64% 50% 35% 42% 64%

(as in UW and PW), seems to make better use of the resources to improve the bound.

Figure 4.8 compares the improvement in the upper bound over the best allocation schemes,

UW and PW , when WMBE-MB is initialized with the factor graph and the cluster tree

of WMBE-IB with ibound = iscope and Table 4.4 shows the proportion of instances for

which each initialization results in a tighter upper bound. As before when the most effective

allocation schemes, UW and PW , are used for WMBE-MB, starting from the initial factor

graph results in tighter approximation in most cases.

iBound vs. Memory Comparing the effectiveness of WMBE-MB with the ibound-based

WMBE-IB over the two problem sets highlights an important difference between the two.

89

FG IB
Initial Cluster Tree

-4

-2

0

2

4

6

8
lo

gZ
iB

 -
 lo

gZ
M

FG IB
Initial Cluster Tree

-4

-2

0

2

4

6

8

lo
gZ

iB
 -

 lo
gZ

M

(a) (b)

Figure 4.8: UAI Linkage Analysis. Comparing the improvement in the bound when
WMBE-MB is initialized to the factor graph (FG), or the cluster tree from WMBE-IB when
ibound = iscope (IB). (a) The improvement in the approximation for UW , and (b) improve-
ment in the approximation for PW memory allocation scheme. Although the improvement
for each of the two initialization is very similar, starting from the initial factor graph gives
more flexibility in using the available memory and seems to result in generally tighter bounds.

0 0.2 0.4 0.6 0.8 1
Memory Margin

-50

0

50

100

150

200

lo
gZ

iB
 -

 lo
gZ

M

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Memory Margin

-4

-2

0

2

4

lo
gZ

iB
 -

 lo
gZ

M

(a) protein instances (b) pedigree instances

Figure 4.9: Relationship between the proportion of the memory that is not used by WMBE-
IB (memory margin) and the improvement of the upper bound when WMBE-MB with PW
memory allocation scheme is used for (a) protein side-chain prediction and (b) pedigree
(linkage analysis) problems (note different scales). Clearly the larger memory margins allow
larger potential improvement of the bound.

For protein problems, WMBE-IB typically uses around 30% of the available memory, while

for linkage problems, the proportion of memory used is closer to 70%. As a result budget-

based algorithms are more effective on the protein instances, and improve the upper bound

significantly. Figure 4.9 shows the connection between the fraction of memory that is not used

by WMBE-IB (memory margin) and the improvement of the upper bound when WMBE-

MB is used with PW memory allocation scheme for (a) protein side-chain prediction and

(b) linkage analysis problems.

Clearly, larger memory margins allow a greater potential improvement of the bound, since

90

14 15 16 17 18 19 20
logM

-116

-114

-112

-110

-108

-106

-104

-102

-100

-98
lo

g
Ẑ

WMBE-IB
WMBE-MB

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5
logM

-122

-120

-118

-116

-114

-112

-110

-108

-106

lo
g
Ẑ

WMBE-IB
WMBE-MB

(a) pedigree38 (b) pedigree34

Figure 4.10: Comparing the upper bound computed using WMBE-MB using UW memory
allocation with the upper bound of WMBE-IB as the memory limit is varied. As memory
is increased (x-axis, log scale), WMBE-IB improves only when the ibound can be increased,
resulting in a piecewise constant behavior. In contrast, the fine-grain allocation of WMBE-
MB allows better approximation at memory budgets in between, and often even at points
where WMBE-IB uses the entire available memory.

the budget-based methods’ finer grain control over memory allow them to use larger regions

if they fit. But how much benefit does this provide? Additionally, what if the scope-based

methods do use all the memory – can budget based methods still more effective?

In order to analyze these questions, we evaluated the bounds produced by WMBE-IB at

a series of ibound values, and computed the method’s memory usage at these points. The

performance of WMBE-IB, as a function of memory, is essentially piecewise-constant: if

ibound = 10 fits into memory, then as the memory budget is increase, the bound will not

improve until ibound = 11 manages to fit as well. Figure 4.10 traces this step-wise behavior

(blue) on two different pedigree instances. Then, we ran WMBE-MB using UW budget

allocation (red), with maximum allowed memory determined by each of these transition

points, as well as at memory bounds placed halfway in between. Interestingly, the perfor-

mance of WMBE-MB is often (though not always) significantly better than WMBE-IB, even

when WMBE-IB uses the entire available memory budget. The points halfway in between

changes in the ibound serve to emphasize the increased flexibility of WMBE-MB to improve

its performance as resources are increased by even small amounts.

91

4.4.2 Content Based Partitioning with Message Passing

Finally, we study the effect of our memory allocation schemes when message passing steps

are interleaved with the content-based partitioning. We initialize WMBE-MB using the

factor graph, and use each allocation scheme to initialize and update the budget as regions

are added to the cluster tree. After each merge we do one round of forward and backward

message passing on the WMB cluster tree, similar to Algorithm 3.1, before updating the

scores and adding new regions.

Figure 4.11 (a) shows the improvement in the approximation, compared to WMBE-IB (also

with message-passing), for the protein instances. For 1 of the 44 instances, WMBE-IB

used all the available memory before reaching the final bucket. In 60% of instances it

used more memory compared to scope-based WMB with fixed iscope, but still used only ≈

30% of available memory. On these instances, since iscope is very small compared to the

induced width of each instance, message passing improves the upper bound significantly.

The improvement achieved through memory allocation is therefore typically less than was

observed during single pass content-based WMB, but the general ordering of the different

schemes and their use of available memory is the same. UW and PW use the memory

more efficiently, merging mini-buckets early in the elimination order while ensuring that

there is enough memory left to allow merging later as well. Figure 4.11 (b) shows the

same results for linkage analysis instances. As before, the general trends remain the same

as without message passing; we see that UW and PW appear most effective, and achieve

tighter bounds compared to WMBE-IB in all but one instance.

92

UF UU UP UW PF PU PP PW
Memory Allocation Scheme

0

5

10

15

20

25
lo

gZ
iB

 -
 lo

gZ
M

UF UU UP UW PF PU PP PW
Memory Allocation Scheme

-2

-1

0

1

2

3

lo
gZ

iB
 -

 lo
gZ

M

(a) (b)

Figure 4.11: Summarizing the results for different memory allocation schemes over all in-
stances of (a) protein side-chain prediction and (b) uai linkage analysis. The horizontal axis
represents different allocation schemes (see section 4.3.3) and each box plot summarizes the
improvement in the approximation for the corresponding scheme. Positive values indicate
better approximation by WMBE-MB compared to WMBE-IB.

4.5 Discussion and Future Work

We proposed a framework for using any of several memory allocation schemes to bypass the

choice of a single control parameter in content-based WMBE approximation. We studied

several memory distribution schemes and evaluated their effectiveness on variety of real

world problems. There are two main choices to be made when selecting any of the proposed

schemes: first, how to initialize the memory available to each bucket; and second, how to

redistribute the extra memory in case some buckets do not use all the memory allocated to

them. We showed how different initialization techniques and redistribution of extra memory

affect the upper bound on the log partition function, and compared empirical results on two

classes of problem instances, which representing two different regimes of models.

Our results show how effective allocation of memory can improve the approximation com-

pared to using a fixed ibound to control complexity, especially on models with larger or more

variation in the domain size of the variables, and large induced width. It is important to

note that using as much memory as possible is not always the best policy for allocating the

memory to different buckets; for example, the waterfall initialization fails badly because it

fails to save any memory for use with variables late in the elimination ordering. Memory

93

allocation techniques like UW and PW that ensure large regions can be added both to

buckets early in the elimination order and those at the end prove to be more effective. The

uniform or proportional initial distributions reserve some of the available memory to be used

in later buckets, while using waterfall redistribution of extra memory allows excess memory

to accumulate and be used to add larger regions along the way. Uniform initial distribution

with other redistribution techniques does not use the available memory as effectively, and

results in upper bounds that are less tight.

We also discussed how the improvement achieved by different allocation schemes depends

on the amount of extra memory that is available to be distributed among different mini-

buckets. For instances where there is a large memory margin between the memory used

by a scope-based partitioning and the available limit, such as protein problems, all memory

allocation schemes result in significant improvements, with UW and PW providing in the

tightest approximations. However when the memory margin in smaller, as in linkage anal-

ysis instances, only UW and PW consistently result in tighter upper bounds compared to

WMBE-IB.

For problems where there is small memory margin, we showed that running WMBE-MB

initialized to the cluster tree of WMBE-IB with ibound = iscope results in an upper bound

that is at least as good as basic WMBE-IB, for all allocation schemes. However initializing

WMBE-MB with a factor graph can allow us to find tighter bounds when the most effective

allocation schemes, UW and PW , are used.

Finally, we studied the interplay between message passing and memory allocation. Not

surprisingly, message passing and optimization steps interleaved with region selection can

result in tighter approximations compared to the single-pass content based partitioning (this

effect was studied in detail in Chapter 3). Efficient allocation of memory resources can still

give an additional improvement to the upper bound, with UW and PW allocation schemes

94

being empirically most effective across our various problem types and instances.

The interplay between the message passing steps and efficient use of memory by adding larger

regions highlights an important aspect of approximate inference which was not addressed

directly in this chapter. So far, we have focused on two aspects to improve the approxima-

tion: first, by designing a better content-based partitioning framework for region selection

(Chapter 3), and second by using the available memory more effectively via memory-aware

partitioning schemes. While these methods give better bounds on the log partition func-

tion, any of these methods involve more work compared to a simple scope-based weighted

mini-bucket elimination. Given a fixed amount of time, it could be more effective to quickly

compute a scope-based cluster tree and use the additional time to run more message pass-

ing; or it could be more effective to spend the time scoring and select better regions. Which

is the better choice may depend significantly on the problem instance, and may require a

more detailed study of the interplay between these different aspects affecting approximation

quality.

95

Chapter 5

Linear Approximation to ADMM for

MAP inference

5.1 Approximate Inference for MAP

Another fundamental inference task in graphical models is to find the most likely con-

figuration of variables, called maximum a posteriori (MAP) inference, equivalent to the

“most probable explanation” (MPE) task in Bayesian network literature. Unfortunately,

MAP/MPE inference is in general an NP-hard problem, and cannot be solved exactly for

many problems of interest.

One successful class of approximate inference algorithms are based on linear programming

(LP) relaxations. These algorithms come in several different forms. One approach is to solve

the dual of the LP using coordinate descent, employed by MPLP [Globerson and Jaakkola,

2007b] and MSD [Werner, 2007]. Although such methods show good empirical behavior,

they are not guaranteed to reach the global optimum of the LP relaxation. Approaches

based on variants of subgradient descent [Komodakis et al., 2011, Jojic et al., 2010] are

guaranteed to converge globally but are typically slower than coordinate descent approaches

in practice [Jojic et al., 2010].

96

Introduced by Gabay and Mercier [1976], the Alternating Direction Method of Multipliers

(ADMM) has recently become popular as an easy-to-apply method for distributed convex

optimization with good empirical performance on variety of problems [Lin et al., 2011, Boyd

et al., 2011]. However, a direct application of ADMM to the MAP-LP relaxation involves

solving a non-trivial quadratic program at each iteration of the algorithm. To circumvent this

difficulty, two different globally convergent algorithms based on ADMM have been proposed

for MAP-LP relaxations: APLP/ADLP [Meshi and Globerson, 2011] and DD-ADMM [Mar-

tins et al., 2011].

Both of these methods avoid solving the non-trivial quadratic program by introducing addi-

tional auxiliary variables. In particular, Martins et al. [2011] gives a closed-form update for

binary pairwise factors and special “logical constraint” factors; the resulting DD-ADMM al-

gorithm works by converting a general model into this form before solving it. In contrast, the

APLP and ADLP algorithms (which correspond to optimizing the primal and dual MAP-LP

form, respectively) work on general graphs, but introduce multiple copies of the variables

associated with each factor to provide a closed-form update. As a result, both the DD-

ADMM and APLP/ADLP approaches increase the number of variables being updated at

each iteration and their constraints, which can significantly slow convergence and increases

the required memory.

In this work, we choose a different approach to overcome the difficulty of variable updates.

Like DD-ADMM [Martins et al., 2011] we use the augmented Lagrangian of the primal

MAP-LP problem. However, instead of binarizing the graph to obtain closed form updates,

we replace the difficult quadratic local terms by their first order Taylor approximation,

allowing closed form updates at each iteration. Such approximations have been previously

applied to ADMM in problems such as Low-Rank Representation [Lin et al., 2011]. We show

that in practice our algorithm produces better bounds during optimization and improves

convergence time for models with general (non-pairwise or non-binary) factors.

97

5.2 MAP and LP Relaxations

Section 2.2.3 introduced the variational view of MAP inference as well as overcomplete expo-

nential family form. Here we discuss an approximate method based on linear programming

relaxation.

Let x , {x1, . . . , xN} be a vector of discrete random variables, where each xi ∈ Xi, with Xi

a finite set, and let

P (x; θ) ∝ exp
(∑
f∈F

θf (xf) +
∑
i∈V

θi(xi)
)

be a probability distribution over x, expressed in terms of “factors” θf each defined over a

subset of the variables, xf . We abuse notation to use i ∈ f to indicate those variables xi

that are part of xf , and di to be the number of factors f in which variable i participates.

It is helpful to also use the overcomplete exponential family form of undirected graphical

models [Wainwright and Jordan, 2008a, Koller and Friedman, 2009b], so that each factor

θi(xi) can be represented as a vector θi
Tδxi where δxi is a binary indicator vector with one

element, δxi;s, for each state s ∈ Xi, and δxi;s takes value one when xi = s and zero otherwise.

We similarly define θf and δxf over the configurations of xf . Finding the most probable

assignment (or MAP configuration),

x∗ , arg max
x∈χ

P (x ; θ)

can then be framed as an integer linear program over the δxi , δxf .

98

max
(δxf ,δxi)

∑
f∈F

θf
Tδxf +

∑
i∈V

θi
Tδxi

s.t δi ∈ {0, 1} ∀α ∈ {F, V }∑
s

δxα;s = 1 ∀α ∈ {F, V }

∑
xf \xi

δxf = δxi ∀f ∈ F, xi ∈ f

One of the methods most often used to tackle this NP-hard, combinatorial discrete optimiza-

tion is linear programming. To perform this relaxation, we introduce the marginal variables

µi and µf , which are constrained to the so-called local polytope L(G):

L(G) =

∑
xf\i

µf (xf) = µi(xi)

(µi,µf)
∑
xi
µi(xi) = 1

µi(xi) ≥ 0 ∧ µf (xf) ≥ 0

Since every assignment to δxi

and δxf
in the integer problem also satisfies the constraints

of the linear program, the resulting linear programming relaxation

max
(µi,µf)∈L(G)

∑
f∈F

θTfµf +
∑
i∈V

θTi µi (5.1)

is an upper bound to the original integer problem. For a more thorough treatment, see

Wainwright and Jordan [2008a] or Koller and Friedman [2009b].

There are a number of different approaches to solve the LP relaxation (5.1). One approach

is to solve the dual of (5.1) using coordinate descent algorithms, as in MPLP [Globerson

and Jaakkola, 2007b, Werner, 2007]. Another approach is based on variants of subgradient

99

descent [Komodakis et al., 2011, Jojic et al., 2010]; unlike the coordinate descent algorithms,

these are guaranteed to converge to a global optimum. Subgradient descent algorithms such

as dual decomposition [Komodakis et al., 2011] solve the dual by separating its objective

into simple local problems, and using Lagrange multipliers to force the local solutions to

agree on a consensus. In practice it usually takes many iterations to reach a consensus for

variables that appear in many local problems and convergence can be slow.

Using the ADMM framework to solve the LP relaxation combines the advantages of both

approaches, leading to an algorithm that can converge to the global optimum in a time

comparable to coordinate descent algorithms. However, there are a number of different

strategies to solve the LP relaxation using ADMM framework. In the next two sections,

we give an overview of the ADMM framework for convex optimization, and describe its

application to the MAP LP relaxation, including two existing algorithms.

5.3 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers, or ADMM, has gained recent popularity as

an easy-to-use and effective technique for convex optimization [Boyd et al., 2011]. Consider

an optimization over convex functions f and g:

min
x,z

f(x) + g(z) s.t. Ax+Bz = c (5.2)

The ADMM algorithm uses an augmented Lagrangian,

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖2 (5.3)

to enforce the linear constraints, where y is a vector of Lagrange multipliers and ρ > 0 is a

quadratic penalty coefficient. The benefit of including the quadratic penalty is that the dual

100

function can be shown to be differentiable under rather mild conditions [Boyd et al., 2011].

The solution to (5.2) is then obtained as

max
y

min
x,z

Lρ(x, z, y),

and the ADMM method provides an elegant algorithm for finding this saddle point.

ADMM performs iterative updates of the variables, using coordinate descent over the x and

z and subgradient descent over the Lagrange multipliers y at each iteration t:

x(t+1) = arg minLρ(x, z
(t), y(t)) (5.4a)

z(t+1) = arg minLρ(x
(t+1), z, y(t)) (5.4b)

y(t+1) = yt + ρ(Ax(t+1) +Bz(t+1) − c) (5.4c)

Choosing the step size equal to the quadratic penalty ρ ensures the algorithm is monotonic.

5.4 ADMM for MAP-LP

The ADMM algorithm can be applied to the MAP-LP relaxation (5.1) in variety of ways,

depending on how we define the functions f(x), g(z) and how the constraints are enforced.

A simple and direct application of (5.3) to the LP (5.1) is:

max
(µi,µf)∈P(µ)

∑
f∈F

θTf µf +
∑
i∈V

θTi µi

+
∑
f∈F
i∈f

λTif (Aifµf − µi)−
∑
f∈F
i∈f

ρ

2
‖Aifµf − µi‖2

(5.5)

where µf , µi take the roles of the x, z in ADMM, and we enforce that the µ (µi and µf)

101

live in the probability simplex P(µ) =
{
µ > 0|1Tµ = 1

}
. Lagrange multipliers enforce local

consistency (L) among the µ, and Aifµf marginalizes µf with respect to variable i.

Unfortunately, (5.5) is difficult to optimize. Updating µi and µf at each iteration involves

solving the following kind of subproblems, where h(x) is a linear function of x:

min
x∈P(x)

h(x) +
ρ

2
‖Ax− w‖2 (5.6)

When fixing µf variables, to update µi variables, optimization (5.6) involves a quadratic

term
∑

f ‖wif −µi‖2; its solution can be easily computed in closed form using a partitioning

technique [Duchi et al., 2008], described for completeness Section 5.4.3. However when fixing

µi, optimizing for µf involves the quadratic term
∑

i ‖Aifµf − wi‖2 under the constraint

µf ∈ P(x), for which a general closed-form solution is not easy to compute.

5.4.1 APLP/ADLP

To overcome these difficulties, a common strategy is to introduce auxiliary variables and

reformulate the optimization such that it involves solving only QPs with identity mappings

at each step. The APLP algorithm [Meshi and Globerson, 2011] uses this strategy and

formulates a primal MAP-LP relaxation with auxiliary variables. APLP keeps a copy µ̄if

of the factor marginals µf for each variable i ∈ f and enforces marginalization constraints

over these copies:

max
(µi,µf)∈P(µ)

µ̄if)

∑
f∈F

θTf µf +
∑
i∈V

θTi µi

+
∑
f∈F
i∈f

yTf (µf − µ̄if)−
∑
f∈F
i∈f

ρ

2
‖µf − µ̄if‖2

+
∑
f∈F
i∈f

λTif (µi −Aif µ̄if)−
∑
f∈F
i∈f

ρ

2
‖µi −Aif µ̄if‖2

(5.7)

102

Then, updating µi or µf involves solving an identity-mapping QP constrained to the proba-

bility simplex; this can be done efficiently via partitioning (see section 5.4.3). Moreover, µ̄if

can also be computed efficiently, since it requires inverting Q = I+AT
ifAif , a block-diagonal

binary matrix (its entries are zero or one) whose inverse can be computed efficiently in closed

form. For more details see Meshi and Globerson [2011].

Although introducing such auxiliary variables makes each step of the algorithm more efficient,

the increased number of variables in the optimization, and increased number of constraints

to enforce, means that ADMM often needs more iterations to converge. This effect can be

seen in our the experiments section.

Meshi and Globerson (2011) also introduced an ADLP algorithm that formulates the dual of

the LP (5.1) as an ADMM optimization problem. Formulating the dual problem requires in-

troducing fewer auxiliary variables; this tends to make ADLP significantly faster to converge

than the primal APLP [Meshi and Globerson, 2011]. Because of this, in our experiments we

compare to ADLP rather than APLP.

5.4.2 DD-ADMM

Another approach to making each update of ADMM for the MAP-LP tractable is given by

Martins et al. [2011] in the DD-ADMM algorithm. They formulate the primal LP as:

max
(µ̄i,µif ,µf)∈L(G)

∑
f∈F

(
θTfµf +

∑
i∈V

1

di
θTi µif

)
+
∑
f∈F
i∈f

λTif (µif − µ̄i)−
∑
f∈F
i∈f

ρ

2
‖µif − µ̄i‖2

(5.8)

They then note that the resulting quadratic forms can be solved in closed form for two

specific cases corresponding to binary-valued xi: when the factors are pairwise (involves

only two variables), or when they take on specific logical constraints, such as enforcing an

103

Algorithm 5.1 Efficient projection on to the l ball

Input: A vector v ∈ Rn and a scalar z > 0
Sort v into ν : ν1 ≥ ν2 ≥ . . . ≥ νp

Find J , the largest j such that νj −
1

j

(j∑
r=1

νr − z
)
> 0

Define S =
1

J

(J∑
i=1

νi − z
)

Output: w s.t. wi = max {vi − S, 0}

“exclusive-or”. They propose to apply this to general graphical models by “binarizing” the

model, creating a binary variable for each variable and state xi = s, and for each clique state

xf = (s1 . . . s|f |). They argue that the overhead in terms of number of factors and time per

update is minimal.

However, what is not obvious is that these many inter-related variables also create many

more dependencies to be enforced. Consequently, although the time per iteration is similar

to coordinate descent or subgradient methods, the number of iterations required to converge

may increase. In our experiments, we find this effect can be significant.

5.4.3 Quadratic Programs and Identity Matrix

Several components of ADMM based frameworks require optimizing a quadratic form with

identity matrix over a probability simplex, i.e., a Euclidean projection onto the simplex.

Duchi et al. [2008] describe an efficient algorithm for this projection, which can be more

formally described as:

min
w

1

2
‖w − v‖2

2 s.t. wi ≥ 0,
n∑
i=1

wi = z (5.9)

with z = 1 for the probability simplex. The solution to (5.9) can be found using Algorithm

5.1.

104

5.5 Linearized ADMM Algorithm

Ideally, since auxiliary variables increase the number of iterations required for convergence,

we would prefer to solve the original, direct application of ADMM in (5.5). As discussed, the

major obstacle in doing so is a difficult quadratic program when updating the µf . In this

section, we will sidestep this difficulty using a proximal linearization technique, and derive

a Linearized Augmented Primal LP (LAPLP) algorithm with fewer auxiliary variables and

faster convergence.

Consider again the primal MAP LP relaxation (5.5). This leads to the following updates at

each iteration:

µ
(t+1)
f = arg max

µf∈P(µ)

w
(t)T
f µf −

ρ

2
µTfQfµf (5.10a)

w
(t)
f = θf +

∑
f :i∈f

AT
if (λ

(t)
if +ρµ

(t)
i)

Qf =
∑
i∈f

AT
ifAif

µ
(t+1)
i = arg max

µi∈P(µ)

w
(t+1)T
i µi −

ρ di
2
µTi µi (5.10b)

w
(t+1)
i = θi +

∑
f :i∈f

(
−λ(t)

if +ρAifµ
(t+1)
f

)

λ
(t+1)
if = λ

(t)
if −ρ

(
Aifµ

(t+1)
f − µ(t+1)

i

)
(5.10c)

Optimization (5.10b) is a quadratic program with an identity mapping, constrained to the

probability simplex, which can be solved efficiently via partitioning (see section 5.4.3). How-

ever, as discussed, computing a closed form solution to optimization (5.10a) with the non-

105

Algorithm 5.2 Linearized APLP

Input: factor graph (G), penalty parameter ρ and maximum iterations T
Initialize λif = 0 for all factors f ∈ F and all i ∈ f
Initialize µf = MAP (θf) for all factors f ∈ F
Initialize µi = MAP (θi) for all variables i ∈ V
for t = 1 to T do

for each f ∈ F do
Update µ

(t+1)
f = Quad(µf) by solving (5.12)

Update µ
(t+1)
i = Quad(µi) by solving (5.10b)

Update λ
(t+1)
if = λ

(t)
if −ρ

(
Aifµ

(t+1)
f − µ(t+1)

i

)
end for

end for

identity mappingQf and linear constraints on µf is not trivial. In order to find a closed form

solution to optimization (5.10a) without introducing auxiliary variables, we rewrite (5.10a)

as:

µ
(t+1)
f = arg min

µf∈P(µ)

− θTf µf +
ρ

2

∑
i:i∈f

‖Aifµf − µi −
1

ρ
λif‖2

The quadratic term can be approximated by a first order Taylor expansion around the current

estimate, plus a proximal term (e.g., Martinet 1970, Rockafellar 1976), giving:

µ
(t+1)
f = arg min

µf∈P(µ)

−θTf µf (5.11)

+
∑
i:i∈f

〈µf − µ
(t)
f ,A

T
if (ρ(Aifµ

(t)
f − µ

(t)
i)− λ(t)

if)〉

+
∑
i:i∈f

ρ ηAif
2
‖µf − µ

(t)
f ‖

2

where 〈 〉 is the vector product and ηAif > 0 is a proximal coefficient that will influence the

106

xi

θi

θf
xj

θj

θg

µi
µf

µjf
µ̄j

µjg

µg

µi

µfi
µ̄f

µfj
µj

µgj

µ̄g

µi µf
µj

µg

(a) Factor graph (b) DD-ADMM (c) APLP (d) LAPLP (this work)

Figure 5.1: Auxiliary variables and updates in different frameworks. Double lines indicate
enforced equality (an identity quadratic term); arrows indicate enforced marginal equality (a
non-identity term for µf ’s update). ADMM alternates between updating all shaded nodes,
then all unshaded nodes. (a) A portion of the original factor graph. (b) DD-ADMM binarizes
each variable (not shown) and creates a copy µ̄i of variable marginals µi on which it enforces
probability simplex constraints. (c) APLP creates a copy µfi of joint marginals µf for each
variable i ∈ f , since a single outgoing non-identity marginalization constraint can be enforced
in closed form. (d) Our linearized algorithm creates no copies, and linearizes the resulting
non-trivial quadratic term on µf due to more than one outgoing marginalization constraint
(arrow).

convergence of the algorithm. Eq. (5.11) can be further simplified to

µ
(t+1)
f = arg min

µf∈P(µ)

wT
fµf +

ρηA
2
‖µf − µ

(t)
f ‖

2 (5.12)

wf = −θf +
∑
i:i∈f

(ρ(Aifµ
(t)
f − µ

(t)
i)− λ(t)

if)TAif

ηA =
∑
i:i∈f

ηAif

which is a QP with an identity mapping, that (as before) we can solve efficiently via parti-

tioning. The procedure is summarized in Algorithm 5.2.

A similar linearization technique was used by Lin et al. [2011] to solve ADMM updates for

a low-rank representation problem, a type of subspace clustering task. Linearization has

significant advantages: it makes the auxiliary variables unnecessary, saving memory and

avoiding updates to those variables. Moreover, without the extra constraints introduced by

the auxiliary variables, the convergence (in terms of number of iterations) is also faster.

107

We illustrate the number of auxiliary variables introduced, along with the ADMM update

pattern, for a small part of a factor graph in Figure 5.1. Figure 5.1(a) shows a factor graph,

with variables as circles and factors as squares. Figure 5.1(b)–(d) illustrate the dependence

and updates of the DD-ADMM, APLP, and LAPLP algorithms. The alternating ADMM

updates are shown using shaded and unshaded nodes; squares indicate marginals over clique

configurations (µf) and circles indicate marginals over variable configurations (µi). Equality

constraints are indicated using double lines, and marginalization constraints using arrows,

pointing in the direction of the marginalization. The LAPLP update has significantly less

variable duplication (some of the duplication of DD-ADMM is not visualized); its difficult

quadratic update (5.10a) is visible as squares (e.g., µf) with more than one outgoing arrow.

5.6 Performance Analysis

5.6.1 Parameter Selection

Our linearized ADMM is guaranteed to converge to the global optimum if ηAif ≥ ‖Aif‖2;

see Lin et al. [2011]. For this reason, we usually set ηA in (5.12) as

ηA = ‖A‖2 =
∑
i∈f

‖Aif‖2;

However, our experiments show that in practice and for the range of quadratic penalty terms

ρ that are of interest, linearized ADMM converges to the global optimum even when ηA is

set to smaller values. We compare the results for setting ηA = ‖A‖ = (
∑

i∈f ‖Aif‖2)
1
2 and

ηA = 2‖A‖ as well. Our experiments show that choosing smaller values for ηA results in

faster convergence to global optimum. However, special care needs to be made when choosing

the penalty ρ to make sure the algorithm converges to the global optimum.

108

Selecting the penalty parameter ρ is an important issue when using any of the ADMM based

algorithms. Setting ρ very small or very large makes ADMM based algorithms slow. In

our experiments we studied the effect of choosing the penalty by cross validation. To do

so, we run the ADMM based algorithms on a small number of instances in a problem class

using a range of penalty terms ρ, and select the best penalty on those for the remaining

instances in the same class. Figure 5.3 (bottom) and Figure 5.4 (bottom) compare the

relative convergence times when using this selected penalty for all problems, compared to

the case where the best value of penalty is chosen for each problem independently. As the

results show, the relative convergence time of ADMM based algorithms does not change in

the two different settings. However, this choice of ρ slows down ADMM based algorithms

compared to MPLP.

5.6.2 Experimental Results

To evaluate our linearized augmented primal LP (LAPLP) algorithm, we compare it with

the two other ADMM based algorithms for finding approximate MAP solutions, DD-ADMM

by Martins et al. [2011] and ADLP by Meshi and Globerson [2011] (since it is faster than

the more comparable APLP updates from the same work) as well as the coordinate descent

algorithm MPLP [Globerson and Jaakkola, 2007b]. For ADLP, we use the implementation

provided in the Darwin C++ framework [Gould, 2012]. For DD-ADMM, we use the code

provided online by the authors1.Note that the DD-ADMM code includes some basic “message

scheduling” heuristics, updating only those variables whose neighbors have changed signifi-

cantly at each iteration. Since the ADLP implementation does not perform scheduling, we

disabled this aspect of DD-ADMM and did not include scheduling in our own implementation

of LAPLP.

We evaluate the algorithms on different sets of problems including Potts models, pedigree

1http://www.ark.cs.cmu.edu/AD3

109

http://www.ark.cs.cmu.edu/AD3

0

1

2

3

|A| 2|A| |A|^2

vs. BDD−ADMM(D3)

0

1

2

3

|A| 2|A| |A|^2

vs. ADLP(D3)

0

1

2

3

|A| 2|A| |A|^2

vs. BDD−ADMM(D7)

0

1

2

3

|A| 2|A| |A|^2

vs. ADLP(D7)

0

1

2

3

|A| 2|A| |A|^2

vs. BDD−ADMM(D11)

0

1

2

3

|A| 2|A| |A|^2

vs. ADLP(D11)

Figure 5.2: Comparison of convergence time of LAPLP with DD-ADMM (binarized) and
ADLP for different Potts models. Log relative convergence time − log(tc(LAPLP)/tc(XLP))
is used for comparison, where tc(LAPLP) is the convergence time of the LAPLP algorithm
(tolerance=1e-4) and tc(XLP) is the convergence time of XLP. Here XLP represents any of
the algorithms DD-ADMM, ADLP, or MPLP. MPLP converges to local optimum in these
experiments.

trees and protein side-chain prediction. To compare different methods we use relative conver-

gence time − log(tc(LAPLP)/tc(XLP)), where tc(LAPLP) is the convergence time of LAPLP

algorithm (tolerance=1e-4) and tc(XLP) is the convergence time of XLP algorithm, where

XLP is one of DD-ADMM, ADLP or MPLP.

Potts Models To compare different algorithms on Potts models, we generated 20x20 Potts

models with single node log-potentials chosen as θi(xi) ∼ U [−1, 1] and edge log potentials

as θi,j(xi, xj) ∼ U [−5, 5] if xi 6= xj and 0 otherwise. We generated models with different

variable cardinalities (3, 7 and 11) to study the effect of model size on different algorithms.

Figure 5.2 compares the convergence time of LAPLP to DD-ADMM (binarized) and ADLP,

averaged over 10 models of the same size (models with multi-valued variables with 3, 7

110

−2

0

2

|A| 2|A| |A|^2

vs. BDD−ADMM(Best)

−2

0

2

|A| 2|A| |A|^2

vs. ADLP(Best)

−2

0

2

|A| 2|A| |A|^2

vs. MPLP(Best)

−2

0

2

|A| 2|A| |A|^2

vs. BDD−ADMM(CV)

−2

0

2

|A| 2|A| |A|^2

vs. ADLP(CV)

−2

0

2

|A| 2|A| |A|^2

vs. MPLP(CV)

Figure 5.3: Comparison of convergence time of LAPLP with DD-ADMM (binarized) and
ADLP on pedigree trees when using the best penalty ρ for each model (top) and choosing the
penalty ρ using cross validation. Log relative convergence time − log(tc(LAPLP)/tc(XLP))
is used for comparison, where tc(LAPLP) is the convergence time of the LAPLP algorithm
(tolerance=1e-4) and tc(XLP) is the convergence time of XLP. Here XLP represents any of
the algorithms DD-ADMM, ADLP, or MPLP.

and 11 different values respectively). As can be seen LAPLP is faster than both ADLP

and DD-ADMM. Its important to note that MPLP often converges to local optima in these

experiments, while ADMM based algorithms are able to find the global optimum.

Pedigree Models We also compared the algorithms on pedigree models from UAI 2008 bi-

ological linkage analysis problems. These models involve non-pairwise factors with variables

that have cardinalities between 2 and 7. Of the total 19 pedigree models, MPLP converged

to local optima in 3 experiments. Figure 5.3 (top) compares the convergence time of LAPLP

to DD-ADMM, ADLP and MPLP. As shown here, MPLP can converge faster than ADMM

based algorithms in some models but it has the potential to converge to local optima. As in

our other experiments, the linearized ADMM converges faster than existing globally conver-

gent approaches. This shows that linearizing the quadratic term helps improve convergence

111

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s BDD−ADMM(Best)

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s ADLP(Best)

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s MPLP(Best)

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s BDD−ADMM(CV)

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s ADLP(CV)

−6
−4
−2

0
2

|A| 2|A| |A|^2

v.s MPLP(CV)

Figure 5.4: Comparison of convergence time of LAPLP with DD-ADMM(binarized) and
ADLP on protein side-chain prediction when using the best penalty ρ for each model
(top) and choosing the penalty ρ using cross validation. Log relative convergence time
− log(tc(LAPLP)/tc(XLP)) is used for comparison, where tc(LAPLP) is the convergence
time of the LAPLP algorithm (tolerance=1e-4) and tc(XLP) is the convergence time of
XLP. Here XLP represents any of the algorithms DD-ADMM, ADLP, or MPLP.

time by avoiding the introduction of auxiliary variables and their corresponding constraints.

Protein Side-chain Prediction Finally we evaluate the algorithms on protein side-chain

prediction problems from Yanover and Weiss [2003] and Yanover et al. [2006]2. We use

the set of “large” model instances, containing 20 problems of between 300 − 1000 amino

acids (variables), each with 2 − 81 possible states (average cardinality ≈ 20) and pairwise

potential functions. These results show that ADLP’s convergence time is less affected by

model size compared to DD-ADMM (binarized) and LAPLP, and convergence time of the

three algorithms are comparable in half of the experiments. MPLP convergence time is much

faster when it finds the global optimum. The results of these experiments are summarized

in Figure 5.4 (top).

2http://cyanover.fhcrc.org/proteinMRFs.html

112

http://cyanover.fhcrc.org/proteinMRFs.html

Figure 5.5 compares the behavior of LAPLP, ADLP and DD-ADMM across the three sets of

problems. Since different models have different energy values and times to convergence, to

plot average performance we compute the normalized energy for each algorithm, consisting

of the percentage increase in energy over the optimal value of the LP at convergence, and

plot it against the percentage of time used compared to the convergence time for our LAPLP

method on that model.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Progress(%)

N
or

m
al

iz
ed

 E
ne

rg
y(

%
)

Potts Model (D3)

DD−ADMM
Linearized
ADLP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Progress(%)

N
or

m
al

iz
ed

 E
ne

rg
y(

%
)

Potts Model (D11)

DD−ADMM
Linearized
ADLP

(a) Potts Models (D3) (b) Potts Models (D11)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Progress(%)

N
or

m
al

iz
ed

 E
ne

rg
y(

%
)

Pedigree Models

DD−ADMM
Linearized
ADLP

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Progress(%)

N
or

m
al

iz
ed

 E
ne

rg
y(

%
)

Average

DD−ADMM
Linearized
ADLP

(c) Pedigree Models (d) Protein Models

Figure 5.5: Comparing average run time of different ADMM algorithms. We show the
percent increase in energy over the optimal LP value, relative to the percentage of time to
our LAPLP algorithms convergence, averaged across problem instances. Here LAPLP is
fastest, closely followed by ADLP, with the binarized DD-ADMM slower for much of the
runtime but catching up near the end.

113

5.7 Discussion

In this chapter, we presented an algorithm based on the Alternating Direction Method of

Multipliers (ADMM) for approximate MAP inference using its linear programming relax-

ation. Our algorithm is based on augmenting the primal MAP-LP with a quadratic term

that enforces strict convexity of the Lagrangian, and solving this quadratic form by lin-

earization with an additional proximal term. Importantly, we find that performing such

approximate solutions does not significantly affect the convergence time of the ADMM al-

gorithm. We compared our algorithm with two existing ADMM-based algorithms on Potts

models, pedigree trees and protein side-chain prediction problems for approximate MAP

inference, showing that our linearized primal MAP-LP algorithm can solve MAP inference

faster than methods based on auxiliary variables in models with non-binary variables. We

also showed that a cross validation procedure can be used to choose the penalty term ρ for

a problem class.

Several practical improvements can be considered over our basic algorithm. One is to use

an adaptive penalty parameter ρ, which may improve convergence in practice. However,

the theoretical convergence guarantees of ADMM may no longer hold. Another potential

improvement is to use a scheduling method [Elidan et al., 2006, Tarlow et al., 2011] to select

which sub-problems to solve during each iteration of ADMM. As a simple example, we need

only solve each local sub-problem µf if some neighboring consensus variable µi has been

changed at the previous iteration, since otherwise the previous results can be simply re-used.

114

Chapter 6

Conclusions and Future Directions

Despite the fact that exact inference in graphical models is fundamentally difficult, the

ubiquity and importance of graphical models for knoweldge representation and reasoning

in a wide variety of domains has meant an increasing reliance on approximate inference

algorithms. In this thesis, we have focused on several aspects of approximate inference, and

in particular, variational bounding techniques, that affect the quality of the approximation.

In Chapter 3, we focused on finding better regions, a key component of many approximate

inference bounds. Mini-bucket elimination avoids the space and time complexity of exact

inference by using a top-down partitioning approach that mimics the construction of a junc-

tion tree and aims to minimize the number of regions subject to a bound on their size;

however, standard mini-bucket approaches rarely take into account the functions’ values. In

contrast, message passing algorithms often use ”cluster pursuit” methods to select regions,

a bottom-up approach in which a pre-defined set of clusters (such as triplets) is scored and

incrementally added. We developed a hybrid approach that balances the advantages of both

perspectives, providing larger regions chosen in an intelligent, energy-based way, by defining

a scoring function that computes a local estimate of the bound’s improvement to select better

regions. We combined our proposed scoring function with the message passing framework of

weighted mini-bucket elimination in order to better estimate the true impact of the regions

on the approximation. Finally, we proposed an efficient structure update procedure that

115

incrementally updates the join graph of mini-bucket elimination after new regions are added

in order to avoid starting from scratch after each merge.

In Chapter 4, we studied how efficient use of available memory can improve the quality of

inference. We described how controlling the complexity of inference using ibound can result

in an inefficient use of resources and proposed memory-aware alternatives. By using our

incremental construction of the join graph, we proposed to track the memory requirement

of the approximation as it is built; we then extended this framework to use a more flexible

set of controls on the join graph complexity, expressed in terms of a single or set of memory

budgets, and proposed a number of ways of setting the initial memory budgets and of re-

allocating during construction. Together, these give a more fine-grained control over the

approximation complexity than a single ibound parameter. We showed experimentally that

using an allocation technique that first distributes the memory between different buckets

proportionally to the scope-based MBE construction, and then shifts any extra memory

along the elimination order, can use the available memory more efficiently and give tighter

bounds by allowing larger regions to be added to the approximation.

In Chapter 5, we focused on maximum a posteriori (MAP) inference and its linear pro-

gramming (LP) relaxation, a commonly used and successful class of approximate inference

algorithms. We discussed how the augmented Lagrangian method can be used to overcome

a lack of strict convexity in LP relaxations, and how the Alternating Direction Method of

Multipliers (ADMM) provides an elegant algorithm for finding the saddle point of the aug-

mented Lagrangian. We characterized different formulations of the ADMM-based algorithm

using a graphical approach, discussed the challenges and presented an ADMM-based algo-

rithm to solve the primal form of the MAP-LP, using closed form updates based on a linear

approximation technique. We showed how our technique’s efficient, closed form updates

converge to the global optimum of the LP relaxation and compared our algorithm to two

existing ADMM-based MAP-LP methods, showing that our technique is faster on general,

116

non-binary or non-pairwise models.

To conclude, in this thesis we have focused on several problems related to the quality of

approximate inference algorithms in graphical models, including choosing better-quality re-

gions for the approximation, using the available memory more efficiently, and finally using

more efficient optimization algorithms. In light of our results, several interesting directions

are opened for future research, discussed next.

Models with determinism. Budget based memory allocation for content-based WMBE can

be particularly useful when reasoning about models with a significant amount of determinism.

In these models, particular assignments to variables have zero probability; in this setting,

a sparse representation of factors (keeping track of only non-zero entries, rather than the

full table) may offer advantages. For these models, scope-based partitioning methods, and

complexity control using an ibound parameter, do not provide a realistic estimate of the

memory required by the model. With content-based WMBE however, since we are using the

function values to decide which regions to add to the approximation, we can also evaluate the

memory required by a merge, taking into account the amount of determinism present in the

factors. Budget-based memory allocation schemes are then also applicable, and by providing

a more accurate estimate of the required memory, could allow more or larger regions to be

added to the approximation. However, the amount of determinism in the models directly

affects the potential improvement from a sparse representation of factors and requires further

study.

Memory-aware region selection. Another potential improvement to the content-based

memory-aware WMBE comes by defining scoring functions that also take into account the

amount of memory used by each merge. Our current framework uses an estimate of the

memory required by a merge only to decide if a merge should be scored or not; but several

“small” merges could be more useful than a single “large” merge. A very simple way to

117

include the memory used by a merge into the scoring function would be to use it as a

tiebreaker when two different merge choices have the same potential improvement to the

bound. More sophisticated methods of including such information to score and select regions

is a potential future direction for research.

Anytime bounds. Finally, it is important to look at the anytime behavior of different

approaches. The original mini-bucket elimination is a one-time, non iterative approach,

and does not provide an upper bound until it is done will all possible merges, and used

an amount of memory corresponding to its final size. While an anytime version can be

constructed by simply building mini-buckets of increasing ibound, this is inefficient – the

previous bound is discarded at each step, and much of the work may be repeated when

constructing the next bound. On the other hand, our incremental framework sidesteps this

limitation; it naturally allow us to compute an approximation early (corresponding to a low

ibound), and then continues to provide steadily improving bound values as the region merging

process continues. An important question is then how to balance between message passing

(improving the bound for a fixed set of regions), and merging (tightening the bound, but

resulting in more computational complexity). In particular, how we can rapidly move from

one set of regions to the next in a way that results in good anytime behavior? Again, the

significant diversity of models across different domains requires extensive study to develop a

robust procedure.

118

Bibliography

D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations for map-mrf inference: A local
primal-dual gap based separation algorithm. JMLR - Proceedings Track, 15:146–154, 2011.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

A. Choi and A. Darwiche. Relax, compensate and then recover. In New Frontiers in Artificial
Intelligence - JSAI-isAI 2010 Workshops, LENLS, JURISIN, AMBN, ISS, Tokyo, Japan,
November 18-19, 2010, Revised Selected Papers, pages 167–180, 2010.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(12):41 – 85, 1999.

R. Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003. ISBN 1558608907.

R. Dechter and I. Rish. A scheme for approximating probabilistic inference. In Proc. Un-
certainty in Artificial Intelligence (UAI), pages 132–141, 1997.

R. Dechter and I. Rish. Mini-buckets: A general scheme of approximating inference. Journal
of ACM, 50(2):107–153, 2003.

J. Duchi, S. S. Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the L1-ball
for learning in high dimensions. In Proceedings of the 25th international conference on
Machine learning, ICML ’08, pages 272–279, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-205-4. doi: 10.1145/1390156.1390191. URL http://dx.doi.org/10.1145/

1390156.1390191.

G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: Informed scheduling
for asynchronous message passing. In Proceedings of the Twenty-second Conference on
Uncertainty in AI (UAI), pages 165–173, Boston, Massachussetts, 2006.

G. Elidan, A. Globerson, and U. Heinemann. PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/, 2012.

M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.
Bioinformatics, 18, 2002.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers and Mathematics with Applications, 2(1):17
– 40, 1976. ISSN 0898-1221. doi: 10.1016/0898-1221(76)90003-1. URL http://www.

sciencedirect.com/science/article/pii/0898122176900031.

119

http://dx.doi.org/10.1145/1390156.1390191
http://dx.doi.org/10.1145/1390156.1390191
http://www.sciencedirect.com/science/article/pii/0898122176900031
http://www.sciencedirect.com/science/article/pii/0898122176900031

A. Globerson and T. Jaakkola. Approximate inference using conditional entropy decompo-
sitions. In In Proceedings of the 11th International Conference on Artificial Intelligence
and Statistics (AISTATS-07), 2007a.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms
for MAP LP-relaxations. In Advances in Neural Information Processing Systems, 2007b.

S. Gould. Darwin, 2012. http://mloss.org/software/view/362/.

T. Hazan, J. Peng, and A. Shashua. Tightening fractional covering upper bounds on the
partition function for high-order region graphs. In Uncertainty in Artificial Intelligence,
2012.

A. Ihler, N. Flerova, R. Dechter, and L. Otten. Join-graph based cost-shifting schemes.
In Uncertainty in Artificial Intelligence (UAI), pages 397–406. ”AUAI Press”, Corvallis,
Oregon, Aug. 2012.

V. Jojic, S. Gould, and D. Koller. Fast and smooth: Accelerated dual decomposition for
MAP inference. In Proceedings of International Conference on Machine Learning (ICML),
2010.

K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics
from specification dependencies. Artificial Intelligence, 129(1-2):91–131, 2001.

K. Kask, A. Gelfand, L. Otten, and R. Dechter. Pushing the power of stochastic greedy
ordering schemes for inference in graphical models. In AAAI’11, pages –1–1, 2011.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009a.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009b.

N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing MRFs by repairing
cycles. pages 806–820, 2008.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via
dual decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
33(3):531 –552, march 2011. ISSN 0162-8828. doi: 10.1109/TPAMI.2010.108.

Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty
for low-rank representation. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
612–620. 2011.

Q. Liu and A. Ihler. Bounding the partition function using hölder’s inequality. In L. Getoor
and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 849–856, New York, NY, USA, June 2011. ACM.
ISBN 978-1-4503-0619-5.

120

http://mloss.org/software/view/362/

R. Marinescu and R. Dechter. Best-first and/or search for most probable explanations. In
Uncertainty in Artificial Intelligence (UAI), 2007.

R. Marinescu, R. Dechter, and A. Ihler. AND/OR search for marginal MAP. In International
Conference on Uncertainty in Artificial Intelligence (UAI), pages 563–572, 2014.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives.
Revue Française dInformatique et de Recherche Opérationelle, 4:154–158, 1970.

A. L. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An
augmented Lagrangian approach to constrained MAP inference. In ICML, pages 169–176,
2011.

O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relaxation.
In ECML/PKDD (2), pages 470–483, 2011.

L. Otten, A. Ihler, K. Kask, and R. Dechter. Winning the PASCAL 2011 MAP challenge
with enhanced and/or branch-and-bound. NIPS Workshop DISCML, 18, 2012.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 14(5):877, 1976.

E. Rollon and R. Dechter. Evaluating partition strategies for mini-bucket elimination. In
International Symposium on Artificial Intelligence and Mathematics (ISAIM 2010), Fort
Lauderdale, Florida, USA, January 6-8, 2010, 2010.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening lp relaxations
for map using message passing. In Uncertainty in Artificial Intelligence, pages 503–510,
2008.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to Dual Decomposition for Inference,
chapter 1. MIT Press, 2010.

D. Tarlow, D. Batra, P. Kohli, and V. Kolmogorov. Dynamic tree block coordinate ascent.
In ICML, pages 113–120, 2011.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008a.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Found. Trends Mach. Learn., 1(1-2):1–305, 2008b.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds on the
log partition function. IEEEJIT, 51(7):2313–2335, jul 2005.

M. Welling. On the choice of regions for generalized belief propagation. In Uncertainty in
Artificial Intelligence, pages 585–592, 2004.

121

T. Werner. A linear programming approach to max-sum problem: A review. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29(7):1165 –1179, july 2007. ISSN 0162-
8828. doi: 10.1109/TPAMI.2007.1036.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane algorithm for
soft constraint optimization (map-mrf). In Computer Vision and Pattern Recognition,
2008.

C. Yanover and Y. Weiss. Approximate inference and protein-folding. In S. T. S. Becker
and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages
1457–1464. MIT Press, Cambridge, MA, 2003.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propaga-
tion - an empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006.

122

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Examples of graphical models
	Inference
	Approximate Inference
	Summary of Contributions

	Background
	Elimination Based Inference
	Bucket Elimination
	Mini-bucket Elimination.
	Weighted Mini-bucket

	Variational Methods
	Exponential Family and Marginal Polytope
	WMBE - The Variational View
	Variational Methods for Maximization

	Incremental Region Selection for Mini-bucket Elimination Bounds
	 Region Choice for MBE
	 Partitioning Methods
	 Variational bounds.

	 A Hybrid Approach
	 Initializing a join tree
	 Message Passing
	 Adding new regions
	 Updating graph structure

	 Discussion
	 Empirical Evaluation
	 Conclusion

	Improving Resource Usage in Mini-bucket Elimination
	Introduction
	State of the Art
	Content-based region choices
	Inefficient memory allocation

	Memory awareness
	Baseline Methods
	Memory Budget for Weighted MBE
	Memory Allocation Schemes

	Empirical Evaluation
	Content Based Partitioning
	Content Based Partitioning with Message Passing

	Discussion and Future Work

	Linear Approximation to ADMM for MAP inference
	Approximate Inference for MAP
	MAP and LP Relaxations
	Alternating Direction Method of Multipliers
	ADMM for MAP-LP
	APLP/ADLP
	DD-ADMM
	Quadratic Programs and Identity Matrix

	Linearized ADMM Algorithm
	Performance Analysis
	Parameter Selection
	Experimental Results

	Discussion

	Conclusions and Future Directions
	Bibliography

