
UNIVERSITY OF CALIFORNIA,
IRVINE

Variational Message-Passing: Extension to Continuous Variables and Applications in
Multi-Target Tracking

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Andrew J. Frank

Dissertation Committee:
Alexander Ihler, Co-Chair
Padhraic Smyth, Co-Chair

Rina Dechter

2013

c© 2013 Andrew J. Frank

DEDICATION

To my wonderful wife and parents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction and Background 1
1.1 Contributions . 3
1.2 Probabilistic graphical models . 5

1.2.1 Probabilistic modeling . 5
1.2.2 Exponential family distributions . 8
1.2.3 Conditional independence . 9
1.2.4 Factor graphs . 10

1.3 Exact inference via variable elimination . 11
1.3.1 Elimination as message-passing on a tree 12
1.3.2 Junction tree: variable elimination on a hyper-tree 13

1.4 Approximate inference via variational message-passing 15
1.4.1 Variational inference: a birds-eye view 15
1.4.2 Loopy belief propagation . 18
1.4.3 Tree-reweighted belief propagation 21
1.4.4 Generalized belief propagation . 23
1.4.5 Mini-bucket and weighted mini-bucket 25

2 Computing Track Marginals in the Track-Oriented MHT 29
2.1 Introduction to multi-target tracking . 31

2.1.1 Generative probabilistic model . 31
2.1.2 Data association and the multiple hypothesis tracker 33
2.1.3 Track-oriented multiple hypothesis tracker 38
2.1.4 Other popular algorithms for multi-target tracking 43

2.2 Estimating track marginals . 44
2.2.1 Marginalization via the k-best hypotheses 45

iii

2.2.2 Marginalization via variational message-passing 48
2.2.3 Experimental results . 55

2.3 Additional probabilistic queries . 61
2.3.1 MAP estimation . 62
2.3.2 m-best and diverse m-best . 62
2.3.3 Marginal-MAP inference . 63

2.4 Summary of contributions . 64

3 Online Approximate EM for Parameter Estimation in the TOMHT 65
3.1 Background: parameter estimation with known data associations 66

3.1.1 The Expectation-maximization algorithm 66
3.1.2 EM for linear Gaussian state-space models 68

3.2 Parameter estimation in the TOMHT . 70
3.2.1 E-Step . 70
3.2.2 M-Step . 72
3.2.3 Online updates . 74
3.2.4 Truncated E-step . 74

3.3 Experimental results . 76
3.3.1 Description of simulated data . 77
3.3.2 Evaluation of multi-target tracking output 78
3.3.3 Recovery from poor initial model specification 79
3.3.4 Tracking targets with time-varying dynamics 84

3.4 Summary of contributions . 86

4 Variational message-passing for continuous graphical models 87
4.1 A review of inference methods for continuous graphical models 89

4.1.1 Special case: jointly Gaussian models 89
4.1.2 Discretization . 90
4.1.3 Parametric approximation . 91
4.1.4 Kernel density estimation . 91
4.1.5 Importance sampling . 92

4.2 Extending particle belief propagation . 98
4.2.1 Tree-reweighted PBP . 99
4.2.2 Mean field PBP . 100
4.2.3 Primal bounds on the log-partition function 101

4.3 Experimental results . 105
4.3.1 Case study: Ising-like models . 106
4.3.2 Application to sensor self-localization 111

4.4 Summary of Contributions . 113

5 Conclusion 115
5.1 Summary of contributions . 115
5.2 Future directions . 116

5.2.1 More compact representations of data association hypothesis space . 117
5.2.2 More complex probabilistic queries for the TOMHT 117

iv

5.2.3 Particle belief propagation on region graphs 118
5.3 Parting thoughts . 118

Bibliography 120

A Derivation of the TOMHT Track Posterior Distribution 127

v

LIST OF FIGURES

Page

1.1 Variable elimination as message-passing. 11
1.2 Junction tree variable elimination. 14

2.1 A small multi-target tracking scenario. 33
2.2 Construction of track trees and illustration of n-scan pruning. 40
2.3 Factor graph corresponding to the track trees in Figure 2.2. 49
2.4 Constraint decomposition for GBP. 54
2.5 Example scenes used to evaluate marginalization accuracy. 56
2.6 Average marginalization error vs. running time. 58
2.7 Exact vs. approximate marginals of individual tracks. 59
2.8 Effect of increasing model size on the k-best estimator 60

3.1 Sample data used to evaluate the effect of parameter estimation. 77
3.2 Estimating the dynamics noise covariance matrix. 81
3.3 Sample tracker output, with and without EM. 82
3.4 Estimating the observation noise covariance matrix. 83
3.5 Time-varying position and velocity noise SDs used in simulation. 84
3.6 Tracker performance with time-varying dynamics, with and without EM. . . 85

4.1 Schematic view of particle-based inference. 93
4.2 PBP and TRW-PBP on a 2-D Ising model. 108
4.3 PBP and TRW-PBP on a continuous grid model. 109
4.4 PBP-based bounds on the log-partition function. 110
4.5 PBP and TRW-PBP beliefs in a sensor localization problem. 112

vi

LIST OF ALGORITHMS

Page
1 Track-oriented MHT (TOMHT) [45] . 39
2 k-best estimator for track marginals (KBEST-MARG) 45
3 BP estimator for track marginals (BP-MARG) 51
4 EM for the Track-oriented MHT (TOMHT-EM) 73
5 Particle BP [35] . 95

vii

ACKNOWLEDGMENTS

I would like to thank my advisors, Alex Ihler and Padhraic Smyth, for their guidance and
support on this long journey. They offered me freedom to explore and pressed me to grow.
Together they have shaped the way I think about research and machine learning; although
I have absorbed only a portion of the wisdom they shared over the years, they have taught
me a great deal.

I would also like to thank Rina Dechter, my third committee member. I was fortunate to
take Rina’s belief networks class my first quarter at UCI, and she kindled my interest in
what would become the focal point of my research.

I would like to thank Jim Randerson for his fruitful collaboration. In addition to being an
excellent researcher in his own field, Jim was instrumental in bridging the gap between our
two disciplines.

I am grateful to the School of ICS for supporting me with a Dean’s Fellowship. The remainder
of my research was funded by grants from the Office of Naval Research (MURI grant N00014-
08-1-1015) and the NSF (grant IIS-1065618).

Of course, my experience at UCI has been largely shaped by my peers. There are too many
to name, so I will just acknowledge the students of the Smyth, Ihler, Dechter, Baldi, and
Welling labs as the finest bunch of friends and coworkers one could hope for.

Finally, I would like to thank my wife, Dr. An Tyrrell, who has been a constant source of
love, support, and happiness in my life. And my parents, Andy and Joan, who taught me
that nothing is out of reach.

viii

CURRICULUM VITAE

Andrew J. Frank

EDUCATION

Doctor of Philosophy in Computer Science 2013
University of California, Irvine Irvine, CA

Masters of Science in Computer Science 2009
University of California, Irvine Irvine, CA

Bachelor of Science in Computer Science 2007
Washington University in St. Louis St. Louis, MO

Bachelor of Science in Electrical Engineering 2007
Washington University in St. Louis St. Louis, MO

ix

ABSTRACT OF THE DISSERTATION

Variational Message-Passing: Extension to Continuous Variables and Applications in
Multi-Target Tracking

By

Andrew J. Frank

Doctor of Philosophy in Computer Science

University of California, Irvine, 2013

Alexander Ihler and Padhraic Smyth, Co-Chairs

This dissertation focuses on both the application and development of variational inference

algorithms for probabilistic graphical models. First, we propose a new application of graph-

ical models and approximate inference in the multi-target tracking domain. By constructing

a factor graph representation of the track-oriented multiple hypothesis tracker, we enable the

application of variational inference algorithms to efficiently estimate marginal probabilities

of possible tracks. We then show that that these track marginals are the key ingredient in

a multi-target generalization of the standard expectation-maximization algorithm used for

parameter estimation in single-target tracking. The resulting online estimation algorithm

makes the tracker robust to parameter misspecification and can improve performance in set-

tings with non-stationary target dynamics. Next, we develop a general framework to extend

algorithms for approximate marginalization in discrete systems to work with continuous-

valued graphical models. We extend the particle belief propagation algorithm, which uses

importance sampling to lift the sum and product operations of belief propagation from a

variable’s continuous domain into an importance-reweighted particle domain. We demon-

strate that this framework admits other variational inference algorithms such as mean field

and tree-reweighted belief propagation, and that they confer similar qualitative benefits to

continuous-valued models as in the discrete domain.

x

Chapter 1

Introduction and Background

Statistical modeling has emerged as one of the most successful tools for modern machine

learning applications. Fundamentally, machine learning is about extracting insight from data

and making predictions. Statistics provides a rigorous and flexible framework for learning

structured representations of raw data, and probabilistic inference provides the correspond-

ing tools to use these structured representations to extract insight and make predictions.

This dissertation focuses on inference, proposing a new strategy for approximate inference

in continuous-valued models and applying existing algorithms to the problem of multi-target

tracking.

Graphical models [40] serve as a common language for expressing statistical modeling as-

sumptions. In addition to facilitating communication and exploration of modeling tech-

niques, this common language serves as a substrate on which general purpose inference al-

gorithms can operate, partially decoupling the domain-specific model-building process from

the domain-independent learning and inference processes. As a result, graphical models have

enabled successful machine learning applications in areas ranging from text analysis [13, 46]

to neural imaging [86].

1

Chapters 2 and 3 of this dissertation propose a novel application of graphical models and

approximate inference algorithms to the problem of multi-target tracking. Specifically, we

focus on the track-oriented multiple hypothesis tracker (TOMHT) [45, 10], which is typically

viewed as an approximate optimization algorithm for identifying the single most likely set

of target trajectories (tracks) from a collection of sensor data. We formulate the modeling

assumptions behind the TOMHT in the language of graphical models, revealing a rich con-

ditional independence structure that admits efficient application of approximate marginal-

ization algorithms like belief propagation [56]. In experiments on simulated sensor data, we

investigate the use of several approximate inference algorithms for the purpose of estimating

the marginal probabilities of possible tracks. We then develop an expectation-maximization

(EM) algorithm for learning parameters of the tracking model. This learning algorithm re-

quires track marginals as inputs, and we show that approximate marginals computed via

belief propagation are sufficiently accurate in the context of this learning algorithm to im-

prove tracker performance.

Chapter 4 transitions away from multi-target tracking and focuses instead on a methodologi-

cal extension of approximate inference algorithms. As previously mentioned, one of the most

attractive aspects of the graphical model framework is that it enables application of general

purpose inference algorithms in a domain independent manner. Consequently, considerable

work has gone into advancing the state of the art for approximate inference in graphical

models [37, 82, 75, 79].

Unfortunately, many of these more advanced methods are applicable only to graphical mod-

els with discrete random variables. This restriction effectively creates a wall between discrete

and continuous-valued graphical models, splitting the spaces of models and inference algo-

rithms into two incompatible sets and detracting from the promise of graphical models as

tools for truly general purpose inference. To this end, we propose a framework based on

the particle belief propagation algorithm [35] for extending these algorithms to continuous-

2

valued graphical models. Our experiments show that the extensions of these recent discrete

inference algorithms to continuous models confer the same benefits as in the discrete domain.

The contributions of this dissertation share a common theoretical foundation of probabilistic

graphical models and approximate inference algorithms. In the remainder of this chapter, we

first provide a structured summary of the dissertation’s main contributions and then review

the shared theoretical foundations, introducing notation that will be drawn on in subsequent

chapters.

1.1 Contributions

This section summarizes the main contributions of this dissertation, organized by chapter:

Chapter 2

• We present a novel factor graph formulation of the TOMHT’s probabilistic model.

• We propose variational message-passing on the factor graph as a novel method for

approximating track marginal probabilities in the TOMHT.

• We conduct an empirical evaluation of two approaches to approximating track marginal

probabilities – our new approach using variational message-passing, and an existing

approach based on the k-best data association hypotheses.

Chapter 3

• We develop a novel approximate EM algorithm for estimating parameters of the TOMHT

model. The E-step of this algorithm uses approximate track marginals, computed as

3

in Chapter 2.

• We demonstrate experimentally that the EM algorithm makes the TOMHT robust to

parameter misspecification, even when using approximate track marginals estimated

via BP.

• We compare performance of the EM-enabled TOMHT using three different track

marginal estimators, and show that the BP-based marginal estimator results in better

performance than other estimators of comparable speed.

• We demonstrate that online EM can improve tracker performance relative to the best

static-parameter tracker when the true target dynamics model changes over time.

Chapter 4

• We introduce a general framework for extending variational message-passing algorithms

to work on continuous graphical models via particle BP.

• For the case of tree-reweighted BP, we demonstrate experimentally that its qualitative

characteristics carry over directly to continuous problems.

• We provide a finite sample analysis of the weighted mini-bucket primal bound on the

partition function.

• In a simulated sensor self-localization problem, we demonstrate that tree-reweighted

particle BP represents uncertainty more accurately than particle PB when the true

marginal distributions are multimodal.

4

1.2 Probabilistic graphical models

Graphical models [40] have grown to be the lingua franca of large-scale probabilistic mod-

eling. Their use offers two main benefits. First, they compactly summarize a large number

of modeling assumptions. This aids in communication between researchers, allowing one to

understand the essence of a complex probabilistic model at a glance. Second, as we will see in

the next section, they provide a common structure on which generic inference algorithms can

operate. This section briefly motivates the use of probabilistic modeling, and then develops

factor graphs, a specific type of graphical model.

1.2.1 Probabilistic modeling

Many deterministic real-world phenomena can be well approximated by random processes.

As an example, consider the process of digitizing a black and white photograph. Let x denote

the resulting m×n image produced by an ideal scanner that creates perfectly faithful copies

of its input. Further, let xs ∈ [0, 255] denote the intensity value of the sth pixel of x, with

s ranging from 1 to mn. In practice our scanner is unlikely produce x, but x is the image

we would like to obtain. Now consider a more realistic scenario, where the output image is

a corrupted representation of the original photograph. Specks of dust in the scanner bed,

imperfections in its manufacturing, and a variety of other factors will conspire to produce

an imperfect digital copy z.

Thus, we can view the digitization process as an extremely complex deterministic function

that takes x as an input and produces a corrupted output, z. This view is illustrated in the

following diagram:

x z = f(x) z

5

where f is the corrupting processing. If we could precisely characterize f , it would be possible

to reverse its effects (at least partially – f may not be invertible) and end up with an image

x′ that is close to our ideal image x.

Of course, in practice it is impossible to measure every speck of dust, the exact degree of

warping of the scanner’s surface, etc. This is where probabilistic modeling comes to the

rescue: instead of trying to exactly represent the impossibly complex corrupting process, we

can approximate it with a much simpler random process. This view of the world is illustrated

as follows:

x ∼ Pr(X) z ∼ Pr(Z |X = x) z

In this view, X and Z are random variables distributed according to a joint probability

distribution Pr(X,Z). Notably absent is the complicated function f – as long as we can

characterize the relative probabilities of all possible (x, z) pairs, we need not concern our-

selves with exactly how the corrupting process works.

Inference

Armed with a probabilistic model for X and Z, we can attempt to recover the ideal image

x by performing inference. One natural reconstruction is the maximum a posteriori (MAP)

estimate of X:

x′ = arg max
x

Pr(X = x | Z = z). (1.1)

The MAP estimate is the most likely value of X conditioned on our corrupted image, z.

Alternatively, we may want to pick the most likely value for each pixel separately, with-

out regard for compatibility with the other pixels in our reconstruction. This equates to

6

computing the marginal posterior modes (MPM) of our distribution:

x′s = arg max
xs

Pr(Xs = xs | Z = z)

= arg max
xs

∑
X:Xs=xs

Pr(X = x | Z = z).
(1.2)

where the notation X : Xs = xs indicates summing over all images where pixel Xs takes on

value xs. Collectively, the processes of optimizing, marginalizing, and conditioning on some

or all of the variables of a model are referred to as probabilistic inference.

Learning

Computation of the MAP and MPM estimates in the previous section relies on knowledge

of the joint distribution Pr(X,Z) – where would we get such a distribution in practice?

Typically, the answer is to learn this distribution from data, using, e.g., maximum likelihood

estimation. Assume we have access to a large collection of image pairs, {(x(p), z(p))}, where

the x(p) were produced by an extremely accurate scanner and the z(p) by our scanner of

interest. Further, suppose our joint distribution is parameterized by a vector θ – in the

simplest case there could be an element of θ corresponding to every possible (x, z) pair, but

more parsimonious representations are possible. The maximum likelihood estimate for θ is

given by:

θ̂ML = arg max
θ

∏
p

Pr(X = x(p),Z = z(p);θ) (1.3)

If we did not have access to the extremely accurate scanner and our dataset were comprised

only of the {z(p)}, we could still perform maximum likelihood estimation by marginalizing

7

over X:

θ̂ML = arg max
θ

∏
p

∑
X

Pr(X = x,Z = z(p);θ) (1.4)

In this case, more restrictive modeling assumptions would be necessary to ensure identifia-

bility [2]. Note that learning in this partially observed case uses inference (marginalization)

as a subroutine.

1.2.2 Exponential family distributions

In the previous section we considered a probability distribution with arbitrary parameter-

ization. We now turn our focus to distributions of a particular form: exponential family

distributions [76]. An exponential family distribution on a random vector X = [X1 · · ·Xn]

with parameters θ can be written as follows:

Pr(X = x;θ) = exp (θ · φ(x)− A(θ)) , (1.5)

where φ(x) = [φ1(x) · · ·φm(x)] is a vector of sufficient statistics and A(θ), called the log

partition function, ensures that Pr(X) is properly normalized:

A(θ) = log
∑
X

exp (θ · φ(x)) (1.6)

For continuous-valued variables, the summation is replaced by an integral.

It is common for each sufficient statistic to be a function of only a subset of the variables,

Xu ⊂X. To make this explicit, we will use the notation φ(x) = [φ1(x1) · · ·φm(xm)], where

xu is the subvector of x corresponding to the domain of φu. It is also common to see this

8

alternate form:

Pr(X = x;θ) =
1

Z
f(x;θ) =

1

Z

m∏
u=1

fu(xu;θ), (1.7)

where f(x) is the unnormalized joint distribution, the fu(xu;θ) are nonnegative functions,

and Z =
∑
x f(x;θ). Note that we use a bold font to emphasize that xu is a subvector,

unlike the single value xs. In this form, the fu are called factors or potential functions and

Z is the partition function. Notationally, the dependence of f on θ is often suppressed and

it is understood that the factors, themselves, define the distribution. We also frequently use

the letters u and v to index factors, and the letters s and t to index variables.

The class of exponential family distributions includes a wide variety of common distributions,

including Gaussian, “multinoulli”, Poisson, exponential, and many more. Further, as we

will see in Section 1.4.1, it possesses some convenient analytical properties which make it

possible to define generic inference algorithms capable of operating on any exponential family

distribution.

1.2.3 Conditional independence

In Section 1.2.1 we considered a joint probability distribution Pr(X,Z), where each variable

had a domain size of 256 and there were mn variables – one for each pixel in an image. For

any reasonably sized image, the product mn will be in the thousands, if not millions. Thus,

the joint probability mass function (PMF) Pr(X,Z) – a table of 256mn numbers – is far too

large to represent without further modeling assumptions.

Conditional independence is one modeling tool we can use to simplify a joint distribution.

Given a joint distribution over random variables X1 . . . Xn, variables XA and XB are said to

9

be conditionally independent given XC iff

Pr(XA | XB, XC) = Pr(XA | XC). (1.8)

This relationship is often abbreviated with the notation XA⊥⊥XB | XC , and the same

statement holds when XA, XB, and XC are sets rather than individual variables.

By asserting conditional independence relationships in our modeling assumptions we can

reduce the amount of space and computation needed to represent and perform inference on

a joint probability distribution. To see this, consider the chain rule decomposition of a joint

distribution over X1 . . . Xn:

Pr(X1 . . . Xn) = Pr(X1) Pr(X2 | X1) . . .Pr(Xn | X1 . . . Xn−1) (1.9)

Each term is a conditional probability table (CPT) with size exponential in its scope. If we

assert a large collection of conditional independencies, we can apply Equation 1.8 to each

of the CPTs and reduce the size of the conditioning sets. The result is that even high-

dimensional joint distributions are amenable to efficient representation and inference if the

right conditional independence relationships hold (or appropriate approximating assumptions

are made).

1.2.4 Factor graphs

Factor graphs [44], a specific type of graphical model, provide a compact, visual represen-

tation of the conditional independencies present in a distribution. Suppose we have a joint

distribution over X = [X1 . . . Xn] in the form of Equation 1.7. The factor graph represen-

tation of Pr(X) is a bipartite graph, G = (X,F), consisting of variable nodes and factor

nodes. The graph G includes n variable nodes, one for each Xs ∈ X, and m factor nodes,

10

X1

X2

X3

X4

X5

mX5�X3(x3)

mX4�X2(x2)
mX2�X1(x1)

mX3�X1(x1)

Figure 1.1: A sample factor graph. This graph
corresponds to a distribution that factorizes as
Pr(x) ∝ f(x1, x2)f(x2, x4)f(x1, x3)f(x3, x5).
The annotated arrows (messages) surrounding
the graph illustrate the variable elimination
process used to compute the marginal Pr(x1),
as described in Section 1.3.

one for each factor fu in Equation 1.7. Edges connect each factor node to the variables in its

scope. In a common abuse of notation, we use the same symbols to represent each variable

node and its associated variable Xs, and similarly for each factor node and its associated

function fu; it should be clear from the context what is intended. For convenience, let Xu

denote the set of variables neighboring factor fu, and Fs denote the set of factors neighboring

variable Xs. An example of a factor graph is shown in Figure 1.1.

The connectivity of G captures the conditional independence structure of Pr(X) in the

following sense: if all paths from XA to XB pass through XC , then XA⊥⊥XB | XC . As

before, the above statement is also true when XA, XB, and XC are sets of variables. For

example, the graph in Figure 1.1 implies X3⊥⊥X2 | X1, but does not imply X5⊥⊥X1 | X2.

This correspondence enables the development of efficient exact and approximate inference

algorithms that leverage a distribution’s conditional independencies through its factor graph

structure [56, 44, 76].

1.3 Exact inference via variable elimination

As alluded to in the previous section, it is possible to leverage the structure of a factor

graph to implement efficient algorithms for probabilistic inference. This section focuses on

computing marginal probabilities and the partition function, but similar algorithms exist for

11

computing other quantities such as the mode.

1.3.1 Elimination as message-passing on a tree

Variable elimination [17, 18, 85] is a marginalization algorithm that proceeds by summing

out variables one after another, taking advantage of conditional independencies whenever

possible to reduce computational complexity. Consider computing the marginal probability

of X1 in the distribution described by Figure 1.1. The näıve approach simply sums over the

joint PMF:

Pr(X1) ∝
∑

X2,X3,X4,X5

f(X1, X2)f(X2, X4)f(X1, X3)f(X3, X5), (1.10)

which has complexity O(d5) when each variable has domain size d. The order in which the

variables are summed out is called the elimination order. By choosing a good elimination

order and rearranging the factor terms, we can significantly reduce the complexity:

Pr(X1) ∝
(∑

X2

f(X1, X2)
∑
X4

f(X2, X4)︸ ︷︷ ︸
mX4�X2︸ ︷︷ ︸

mX2�X1

)(∑
X3

f(X1, X3)
∑
X5

f(X3, X5)︸ ︷︷ ︸
mX5�X3︸ ︷︷ ︸

mX3�X1

)
(1.11)

Note that by grouping the factor terms in this way, each summation ranges over a function

of only two variables. Thus, this expression computes Pr(X1) with computation only O(d2).

The efficiency of Equation 1.11 hinges on the elimination order and the grouping of the

factors. To simplify the bookkeeping involved, it is convenient to conceptualize the compu-

tation as message-passing between nodes of the distribution’s factor graph. Each summa-

tion produces an intermediate result that can be viewed as a message being passed from

the summed-out variable to the variable over which the resulting intermediate function is

12

defined. The braces underneath Equation 1.11 indicate the correspondence between sum

operations and messages, and the same messages are illustrated alongside the factor graph

in Figure 1.1.

In this way, the marginal distribution of a variable Xs in a tree-structured graph can be

efficiently computed by rooting the graph at Xs and passing messages from the leaves to

the root. A subsequent pass of messages from the root back out to the leaves is sufficient

to compute the marginals of the remaining variables, and the partition function can be

computed simply by summing over the final variable rather than normalizing. As we will see

in Section 1.4.1, the message-passing view of the computation can be further decomposed

into messages from factors to variables and from variables to factors; this more fine-grained

view is convenient when some factors are defined over more than two variables.

1.3.2 Junction tree: variable elimination on a hyper-tree

Just as marginalization of a tree-structured distribution can be viewed as message-passing

over its factor graph, marginalization of non-tree-structured distributions can be viewed as

message-passing over a specific type of hyper-graph called a junction tree. A junction tree

is a tree-structured graph in which each node is associated with a set of variables. The set

of variables associated with a node is termed its scope, and the intersection between scopes

of adjacent nodes is called a separator set. A junction tree must satisfy the following two

conditions:

• For each factor fu, the domain Xu is fully contained in the scope of at least one node.

• All separator sets must be non-empty.

• For each variable Xs, the set of nodes whose scope contains Xs forms a single connected

component.

13

X1

X2

X3

X4

X5

(a)

1, 2, 3 2, 3, 4 3, 4, 5

m345�234(x3, x4)

m234�123(x2, x3)

(b)

Figure 1.2: (a) A “loopy” factor graph. (b) A junction tree consistent with the factor graph
in (a). Variable elimination on this distribution can be viewed as message-passing over this
junction tree structure.

Given a junction tree for a distribution, the marginal distribution of a variable or set of

variables can be computed via message-passing analogously to the tree-structured case. As

an example, consider the factor graph shown in Figure 1.2a, which results from adding a

single factor to the graph in Figure 1.1 such that it is no longer a tree.

To compute the marginal Pr(x1), using the same elimination order as before, we must perform

the following computation:

Pr(X1) ∝
∑
X2

f(x1, x2)
∑
X3

f(x1, x3)
∑
X4

f(x2, x4)
∑
X5

f(x3, x5)f(x4, x5)︸ ︷︷ ︸
m345�234︸ ︷︷ ︸

m234�123

)
(1.12)

The summations result in intermediate functions that can be viewed as messages being passed

between nodes of the junction tree, as indicated by the underbraces. Marginalization via

message-passing on a junction tree has time complexity exponential in the size of the largest

scope and space complexity exponential in the size of the largest separator set [17, 18, 38].

The size of the largest region minus one is known as the induced width of the graph, and

the minimal induced width across all possible elimination orderings is known as the tree-

width [17, 18]. Finding an elimination order that results in a graph of low induced width is

an important step in efficient, exact inference [39, 25]. For some probability distributions,

however, the tree-width is simply too large for exact inference to be tractable; in these cases

14

we can consider inexact alternatives, as described in the next section.

1.4 Approximate inference via variational

message-passing

The calculus of variations provides a general framework for exact and approximate infer-

ence [76]. This section first introduces the framework, and then shows how several specific

instantiations lead to well known approximate inference algorithms.

1.4.1 Variational inference: a birds-eye view

At the heart of the variational inference framework is the following formulation of the log

partition function [76]:

A(θ) = logZ = max
µ∈M

Eµ [log f(X)] + H(µ), (1.13)

where µ is a vector of mean parameters, H(µ) is the entropy of the exponential family

distribution with mean parameters µ, and M, known as the marginal polytope, is the set

of all valid mean parameter vectors. This relationship, which arises as the conjugate dual

of A(θ), offers an alternate way to compute the partition function via optimization rather

than summation. Further, the optimum of Equation 1.13 is achieved when µ corresponds

exactly to the marginal probabilities of the sufficient statistics of Pr(X). Thus, by optimizing

Equation 1.13 we can compute both marginals and the partition function.

Unfortunately, the optimization of Equation 1.13 is more difficult than it may seem at first

glance. The marginal polytope is often extremely complex, requiring an intractably large

15

number of linear constraints to characterize its boundary, and the entropy function gener-

ally has no closed-form expression in terms of the mean parameters [76]. These difficulties

lead one to approximate both M and H(µ), and different choices of approximation lead to

different approximate inference algorithms.

The following subsections introduce several of the most common variational inference algo-

rithms. To keep the notation consistent throughout, assume that in each case we begin with

a joint distribution Pr(X) over discrete variables X1 · · ·Xn that is consistent with the factor

graph G = ({Xs}ns=1, {fu}mu=1), i.e.,

Pr(X) ∝
m∏
u=1

fu(Xu).

Näıve mean field

Näıve mean field inference [76, 37] replaces the constraint set M with an inner bound

MMF ⊆M corresponding to the subset of mean parameter vectors consistent with fully in-

dependent distributions. This approximation makes the constraint set tractable – it reduces

to a set of decoupled normalization constraints on each variable’s mean parameters – and

also guarantees that the entropy term is computable in closed form:

H(µ) = −
n∑
s=1

∑
Xs

µs;xs log µs;xs (1.14)

where µs;xs is the mean parameter corresponding to the event Xs = xs. Thus, näıve mean

field solves the following optimization:

AMF (θ) = max
µ∈MMF

Eµ [log f(X)] + H(µ), (1.15)

16

Typically, this optimization is performed via coordinate ascent. Constructing the Lagrangian,

setting the gradient with respect to µs(xs) equal to zero, and solving yields the following

update:

µs(xs) ∝
∏
fu∈Fs

exp

 ∑
Xu\Xs

log fu(xu)
∏

xj∈Xu\Xs

µj(xj)

 (1.16)

Näıve mean field is typically implemented by repeatedly iterating over the variables in se-

quence, updating each in turn according to Equation 1.16 until reaching convergence. Con-

vergence is guaranteed, but because the constraint set MMF is non-convex it will converge

to a local optimum.

At convergence, the mean parameters µ can be used as estimates of the marginals of Pr(X).

Approximate marginals computed via variational inference are called beliefs, often written

as:

bs(xs) = µs(xs) (1.17)

bu(xu) =
∏

Xs∈Xu

µs(xs) (1.18)

For the sake of consistency with other message-passing algorithms on factor graphs, we can

decompose the update equation into two steps. The resulting algorithm includes two types

of message: variable messages, which pass information from a variable node to a factor node,

and factor messages, which pass information from a factor to a variable. The corresponding

17

updates are as follows1:

mXs�fu(xs) ∝
∏
fv∈Fs

exp (mfv�Xs(xs)) (1.19)

mfu�Xs(xs) ∝
∑
Xu\Xs

log fu(xu)
∏

Xt∈Xu\Xs

mXt�fu(xt) (1.20)

bs(xs) ∝
∏
fu∈Fs

exp (mfu�Xs(xs)) (1.21)

Note that the only difference between the mean field variational formulation of the log

partition function (Equation 1.15) and the exact variational form (Equation 1.13) is that

mean field optimizes over a tractable subset of the constraint set. As a result, mean field

produces a lower bound on the log partition function: AMF (θ) ≤ A(θ). This lower bound

can be computed from the current beliefs at any stage of the algorithm (even prior to

convergence) as follows:

AMF (θ) =
m∑
u=1

∑
Xu

log fu(xu)
∏

Xs∈Xu

bs(xs)−
n∑
s=1

∑
Xs

bs(xs) log bs(xs). (1.22)

1.4.2 Loopy belief propagation

Whereas mean field optimizes over a tractable subset ofM, loopy belief propagation (BP) [76,

83] optimizes over a tractable superset,ML. The true marginal polytope contains only mean

vectors that are consistent in the sense that there exists some joint exponential family dis-

tribution with the corresponding marginals. The set ML, called the local polytope, enforces

a weaker notion of local consistency, requiring only that the mean vectors µ satisfy the

1Note that message from a variable to a neighboring factor is just the variable’s belief. We define them
separately here to draw a parallel to later algorithms where they will not be the same.

18

following:

∑
Xu\Xs

µu(xu) = µs(xs) ∀u ∈ {1 . . .m},∀Xs ∈Xu. (1.23)

In other words, the beliefs of any two factors must be locally consistent with respect to their

marginal beliefs on each shared variable. When the factor graph corresponding to Pr(X)

is a tree, these constraints (along with normalization constraints) are sufficient to exactly

characterize M; when the factor graph is not a tree, ML is an outer approximation to M.

Since ML contains mean parameters that do not correspond to the marginals of any valid

joint distribution, the beliefs produced by BP are sometimes called pseudomarginals.

This approximation ofM does not guarantee a tractable form of the entropy term. In fact,

for vectors µ ∈ ML that do not correspond to a valid joint distribution, the concept of

entropy is not even well defined. Thus, the entropy term must be approximated separately.

Tree-structured distributions have the following convenient representation as a function of

µ:

Pr(X = x) =
∏
Xs∈X

µs(xs)
∏
fu∈F

µu(xu)∏
Xs∈Xu

µs(xs)
(1.24)

The entropy of a distribution with this form is easily computable. BP replaces the exact

entropy H(µ) with the Bethe entropy, HBethe(µ), which simply assumes the factorization

structure of Equation 1.24 even when the graph is not a tree:

HBethe(µ) = −
m∑
u=1

∑
Xu

bu(xu) log bu(xu) +
n∑
s=1

(1− |Fs|)
∑
Xs

bs(xs) log bs(xs). (1.25)

The resulting variational form is as follows:

ABethe(θ) = max
µ∈ML

Eµ [log f(X)] + HBethe(µ). (1.26)

19

BP optimizes the above objective using fixed-point iteration, where each of the updates can

be viewed as a message passed between two adjacent nodes of the factor graph. The message

updates for BP are as follows:

mfu�Xs(xs) ∝
∑
Xu\Xs

fu(xu) ∏
Xt∈Xu\Xs

mxt�fu(xt)

 (1.27)

mXs�fu(xs) ∝
∏

fv∈Fs\fu

mfv�Xs(xs) (1.28)

On tree-structured graphs, passing these messages inward from leaves to the root performs

exact variable elimination as described in Section 1.3.

Beliefs can be computed as follows:

bs(xs) ∝
∏
fu∈Fs

mfu�Xs(xs) (1.29)

bu(xu) ∝ fu(xu)
∏

Xs∈Xu

mXs�fu(xs) (1.30)

Unlike mean field, loopy BP does not provide a bound on the log partition function. However,

one can evaluate Equation 1.26 at a fixed point of the algorithm to produce an estimate:

ABP (θ) =
m∑
u=1

∑
Xu

log fu(xu)bu(xu)−
m∑
u=1

∑
Xu

bu(xu) log bu(xu)

+
n∑
s=1

(1− |Fs|)
∑
Xs

bs(xs) log bs(xs)

(1.31)

This estimate is exact for tree-structured graphs and quite accurate for many non-tree graphs,

as well [54, 33].

In general, on non-tree graphs the fixed-point iteration of Equations 1.27-1.28 are not guar-

anteed to converge. Convergence is assessed either in terms of the log-partition function

estimate or the message values. In either case, if the value(s) change by less than a prespec-

20

ified tolerance between iterations we consider the algorithm to have converged. To make

convergence more likely, some form of damped updates are often used in place of Equa-

tions 1.27-1.28. For example [31]:

logmt+1
fu�Xs(xs) = logmt

fu�Xs(xs) + ε
[
logmFull

fu�Xs(xs)− logmt
fu�Xs(xs)

]
, (1.32)

where mt denotes the message value at iteration t, mFull denotes the “full”, undamped

message update as defined by Equation 1.27, and ε is a step size parameter. The message-

passing schedule – the order in which one cycles through message updates – can also affect

the likelihood of convergence [70].

1.4.3 Tree-reweighted belief propagation

Tree-reweighted belief propagation (TRW) [76, 75] optimizes over the same constraint set as

BP but uses a different approximation of the entropy. In particular, TRW approximates the

entropy of a distribution with a convex combination of entropies of tree-structured subgraphs,

which is an upper bound on the true entropy. The combination of a convex outer bound on

M and a convex upper bound on H(µ) means that the TRW objective is convex and its

optimum provides an upper bound on the true log-partition function.

Thus, TRW optimizes the following objective:

ATRW (θ) = max
µ∈ML

Eµ [log f(X)] + HTRW (µ). (1.33)

21

The TRW entropy can be written as follows:

HTRW (µ) =
m∑
u=1

ρu
∑
Xu

bu(xu) log bu(xu)

+
n∑
s=1

(
1−

∑
fu∈Fs

ρu

)∑
Xs

bs(xs) log bs(xs),

(1.34)

where the ρ = {ρu}mu=1 are factor weights associated with the convex combination of subtrees.

Each subtree has an associated tree weight, and a factor weight ρu is equal to the sum of the

tree weights corresponding to trees that include factor fu. Writing the entropy in terms of

factor weights rather than tree weights makes it possible to efficiently perform computations

over a very large, but implicit, set of trees.

Again constructing the Lagrangian and setting gradients equal to zero, we recover the fol-

lowing message-passing and belief update equations:

mfu�Xs(xs) ∝
∑
Xu\Xs

fu(xu)
1/ρu

∏
Xt∈Xu\Xs

mXt�fu(xt) (1.35)

mXs�fu(xs) ∝
∏

fv∈Fsmfv�Xs(xs)
ρv

mfu�xs(xs)
(1.36)

bs(xs) ∝
∏
fu∈Fs

mfu�Xs(xs)
ρu (1.37)

bu(xu) ∝ fu(xu)
1/ρu

∏
Xs∈Xu

mXs�fu(xs). (1.38)

Plugging the entropy approximation into Equation 1.33 gives the following form for the TRW

upper bound on the log-partition function:

ATRW (θ) =
m∑
u=1

∑
Xu

log fu(xu)bu(xu)−
m∑
u=1

ρu
∑
Xu

bu(xu) log bu(xu)

+
n∑
s=1

(
1−

∑
fu∈Fs

ρu

)∑
Xs

bs(xs) log bs(xs).

(1.39)

22

Note that this is only guaranteed to be an upper bound for beliefs corresponding to the

optimum of Equation 1.33, i.e., after message-passing has reached convergence.

The TRW bound is a function of the factor weight vector, ρ. Ideally, one would like to

choose ρ to achieve the tightest possible upper bound. Since Equation 1.39 is convex in ρ

and the space of valid ρ is convex, it is possible to optimize over ρ in an outer loop via a

conditional gradient algorithm [75].

1.4.4 Generalized belief propagation

Generalized belief propagation (GBP) [76, 83, 82] refers to a family of algorithms similar to

loopy BP but which use tighter outer bounds on M and more complex approximations to

the entropy function. A GBP approximation is specified by a set of regions and counting

numbers.

A region is simply a subset of variables, Xα ⊆ X. The set of regions, R, determines the

constraint setMGBP : whereas BP requires that any two factor beliefs agree on the marginal

beliefs of individual variables in their intersection, GBP requires that any two region beliefs

agree on the belief of their entire intersection. These constraints can be summarized as

follows:

∑
Xα\Xβ

bα(xα) =
∑

Xβ\Xα

bβ(xβ) ∀α ∈ R, β ∈ R. (1.40)

There are many ways to select regions for GBP. One simple method is to construct a junc-

tion graph (which satisfies all the same properties as a junction tree but need not be tree-

structured) and create one region for each node and separator set [82]. The set of all regions

forms a directed region graph in which ancestry is determined by set inclusion: for a given

region α, its ancestors an(α) = {γ ∈ R : Xα ⊂ Xγ} are the regions whose scopes are

23

supersets of α’s, and its descendants de(α) = {β ∈ R : Xα ⊃ Xβ} are the regions whose

scopes are subsets.

The counting numbers, one for each region, specify the entropy approximation:

HGBP (µ) =
∑
α∈R

cαH(µα), (1.41)

where cα is the counting number for region α. Different sets of counting numbers result

in different entropy approximations and, correspondingly, different GBP algorithms. In

principle one can set them arbitrarily, but it is generally recommended that they satisfy the

following criteria [82]:

∑
α∈R(fu)

cα = 1 u = 1, . . . ,m

∑
α∈R(Xs)

cα = 1 s = 1, . . . , n

(1.42)

where R(fu) is the set of regions containing factor fu and R(Xs) is the set of regions whose

scope contains variable Xs.

Together, the two approximations result in the GBP form of the log-partition function:

AGBP (θ) = max
µ∈MGBP

Eµ [log f(X)] + HGBP (µ), (1.43)

On a junction tree, Equation 1.43 is equivalent to Equation 1.13 and GBP performs exact

inference. Also note that BP can be viewed as a special case of GBP, where the region set is

R = F ∪X and the counting numbers are cu = 1 for all factors fu and cs = 1− |Fs| for all

variables Xs. Intuitively, choosing larger regions can be thought of as interpolating between

Equation 1.26 and Equation 1.13.

As with the previous variational formulations, we can solve the constrained optimization in

24

Equation 1.43 via the method of Lagrange multipliers. This results in fixed-point updates

that can be viewed as messages passing from parent to child regions. When regions are chosen

based on a junction graph as described above, the message and belief update equations are

as follows [78]:

mα�β(xβ) ∝
∑
Xα\Xβ

bα(xα)

bβ(xβ)
mold
α�β(xβ) (1.44)

bα(xα) ∝
∏
u∈α

fu(xu)
∏

γ∈an(∆α)\∆α, β∈∆α

mγ�β(xβ) (1.45)

where ∆α = α ∪ de(α).

1.4.5 Mini-bucket and weighted mini-bucket

Mini-bucket (MB) [19] is an approximate marginalization algorithm based on direct ap-

proximation of the variable elimination procedure in its primal form, rather than the dual

formulation used by the algorithms presented in earlier subsections. Recall the loopy factor

graph of Figure 1.2. Exact variable elimination has complexity O(d3), due to computations

like the following:

∑
X5

f(x3, x5)f(x4, x5) (1.46)

which sums over a function of three variables. MB instead computes a bound on this quantity

using the following inequalities:

∑
X1

5

f(x3, x
1
5) min

X2
5

f(x4, x
2
5) ≤

∑
X5

f(x3, x5)f(x4, x5)

≤
∑
X1

5

f(x3, x
1
5) max

X2
5

f(x4, x
2
5),

(1.47)

25

where the variable X5 has been “split” into two distinct replicates, X1
5 and X2

5 . Note that

the upper and lower bounds can be computed in O(d2), as opposed to O(d3) for the exact

computation. More generally, MB operates by splitting variables whenever necessary to

avoid elimination operations over functions with scopes above a prespecified limit called the

ibound. As a result, the each elimination in complexity of MB is exponential in the ibound

rather than exponential in the induced width.

The inequalities of Equation 1.47 hold whenever all but one replicate of a variable is elimi-

nated using max or min and the final copy is eliminated via summation. This non-iterative,

primal form of this bound has some advantages over the dual formulations of the previous

subsections. Since the bound can be computed deterministically in a single pass, convergence

is not an issue. Further, since it does not depend on the exact solution of a fixed-point iter-

ation algorithm, sample-based approximations of the bound are more amenable to analysis

than, e.g., TRW.

Weighted mini-bucket (WMB) [48] is a recent generalization of MB that replaces the in-

equalities in Equation 1.47 with Hölder’s inequality [30]. The upper bound in Equation 1.47

becomes:

∑
X5

f(x3, x5)f(x4, x5) ≤
w1∑
X1

5

f(x3, x
1
5)

w2∑
X2

5

f(x4, x
2
5), (1.48)

where w1 + w2 = 1, w1 > 0, w2 > 0, and

w∑
X

f(x) ≡

(∑
X

f(x)1/w

)w

(1.49)

is a weighted summation operator.

26

More generally, Hölder’s inequality states that

∑
X

∏
i

fi(x) ≤
∏
i

wi∑
X

fi(x), (1.50)

where
∑

iwi = 1 and ∀i wi > 0. A related bound exists with the reverse inequality sign,

but we do not focus on it here. The resulting upper bound on the log-partition function,

assuming elimination order o = [X1 . . . Xn], can be written as follows:

AWMB(θ) = log

 w̄n̄∑
X̄n

· · ·
w̄1∑
X̄1

m∏
u=1

f̄u(x̄u)

 , (1.51)

where X̄ is an expanded variable set including replicates X1
s . . . X

Rs
s of each original variable

Xs, f̄ is the corresponding set of factors defined over X̄, and w̄ is a vector of positive weights

such that, for each variable Xs, the weights corresponding to its replicates sum to one. As in

TRW, the weights w̄ can be optimized to tighten the upper bound. The extended variable

set X̄ is created as in mini-bucket, first choosing an elimination order, o, and then splitting

a variable into replicates whenever the function to be summed over exceeds the ibound.

As noted in [19, 48], MB and WMB elimination can be viewed as message-passing on a

junction tree. Let ō be the trivial extension of o to the extended variable set X̄, where

all replicates of each variable are sequentially eliminated in the same order as in o. Let k

be a linear index into ō. Then the eliminations in Equation 1.51 correspond to message

computations on a junction tree over X̄ with cliques {ck}n̄k=1, where ck includes X̄k and all

of its neighbors that follow it in order ō. The messages are computed as follows, in a single

pass from the leaves to the root:

mk�l(x̄cl) =

∑
x̄k

f̄ck(xck) ∏
j:k∈p̄a(j)

mj�k(xsjk)

1/w̄k

w̄k

, (1.52)

27

where skl = ck ∩ cl is the separator set between cliques k and l.

MB can be recovered as a limiting case of WMB, where the max and min operators are

replaced by weighted summations with weights set to 0+ and 0−, respectively. WMB,

and thus MB, can also be formulated in the same variational framework as the previous

algorithms, but in this work we focus only on their convenient primal form.

28

Chapter 2

Computing Track Marginals in the

Track-Oriented MHT

Multi-target tracking is a core component of many real-world sensing systems in applications

including air defense, autonomous navigation, video surveillance, and robotics [47, 22, 62, 66].

Due to imperfect or low-information sensors, many such systems must handle an uncertain

correspondence between sensor observations and real-world targets. Resolving this uncer-

tainty is known as the data association problem, and it is the fundamental reason why

optimal estimators for multi-target state estimation are generally intractable [53].

Despite its intractability, the problem’s practical importance has motivated numerous al-

gorithms based on simplifying assumptions, approximations, and computational shortcuts.

The track-oriented multiple hypothesis tracker (TOMHT) [45], originally proposed in 1990,

is one such algorithm. The TOMHT is generally considered to be among the most effec-

tive approaches for tracking in cluttered environments given medium to high computational

resources [10, 60, 71]. Broadly speaking, the TOMHT works by implicitly representing all

29

possible joint data associations within a temporal sliding window, postponing hard decisions

until observations fall behind the window’s trailing edge. At each step the TOMHT reports

the most likely data association for all observations processed up to that point, placing it in

the category of MAP-based algorithms for data association.

Although the TOMHT makes hard data association decisions outside the sliding window, its

internal data structures define a full posterior distribution over the space of possible associ-

ations within the window. The MAP estimate typically computed by the TOMHT is only

one of several possible summaries of this posterior. The distribution’s entropy, for instance,

conveys a measure of uncertainty that could be used to dynamically adjust the length of

the sliding window. Marginal probabilities of individual tracks could be useful as part of a

real-time display for the tracker operator or, as we explore in Chapter 3, as a component of

an expectation maximization (EM) algorithm for estimating system parameters.

In this chapter we provide a novel formulation of the TOMHT in the language of graphical

models. This formulation enables the use of efficient, general purpose algorithms for approx-

imating intractable probabilistic queries. In particular, we focus on the computation of track

marginal probabilities. Even in the TOMHT’s pruned data association space, marginaliza-

tion is intractable. To this end we first identify two families of approximate estimators for

the track marginals. The first technique follows a well-known approach based on exact com-

putation of the k-best data association hypotheses. The second uses a novel application of

variational message-passing algorithms for marginalization. We conduct an empirical com-

parison of these estimators in terms of their accuracy on simulated sensor data, and show

that while the k-best approach can be very accurate in small scenarios, its accuracy degrades

quickly as the problem size increases. The message-passing algorithms, on the other hand,

may be less accurate on small problems but scale more robustly.

30

2.1 Introduction to multi-target tracking

We begin by introducing the standard probabilistic model used in multi-target tracking. We

also review some of the most common algorithms for multi-target tracking and discuss the

traditional development of the TOMHT.

2.1.1 Generative probabilistic model

Multitarget tracking aims to recover trajectories of targets of interest from sets of observa-

tions. For example, a radar sensing system returns a set of observations, each corresponding

to a possible airplane detection, every time it scans a portion of the sky. Given several sets

of observations (each set is sometimes called a scan), our goal would be to determine the

number, current locations, and past trajectories of any planes in the region. This task is

often approached from a probabilistic perspective, in which we condition on a set of scans

to produce a posterior distribution on our quantities of interest. This subsection introduces

the standard modeling assumptions made in this probabilistic approach [11].

Targets are modeled as points x in a bounded state space X ⊂ Rdx , where dx denotes

the dimensionality of the target state space. The semantics of X will vary depending on

the particular tracking application, but it typically includes components corresponding to

the target’s kinematic state such as position, velocity, and acceleration. Target states are

assumed to evolve in discrete time according to a first-order Markov dynamics model. That

is, we specify a conditional probability density fd(x
k+1 | xk) on a target’s state at time k+ 1

given its state at time k. The density fd is variously referred to as the dynamics model,

motion model, or state transition function.

In a typical multitarget tracking application, a sensor scans the entire surveillance region (e.g.

31

a portion of the sky or a frame of a video) at each time and then returns a collection of real-

valued detections. Each detection can be considered a potential target – in practice only some

unknown fraction of the detections actually correspond to targets and the remainder are false

alarms, also known as clutter. Thus, at a given time step k each target may be detected by

the sensor, yielding an observation z in the bounded observation space Z ⊂ Rdz , where dz is

the dimensionality of the observation z. Note that the observation domain Z need not be the

same as the target state domain. For example, when the state vectors represent both position

and velocity the sensor may only observe its position. Each observation corresponding to

an actual target is distributed according to the conditional density fo(z
k | xk), often called

the observation model. Observations not corresponding to an actual target (clutter) are

distributed uniformly throughout Z.

The choice of appropriate dynamics and observation models is application-dependent, but

due to its analytic tractability the linear Gaussian model is a common choice:

fd(x
k+1 | xk) = N (Axk, Q) (2.1)

fo(z
k | xk) = N (Hxk, R), (2.2)

where A is a dx× dx transition matrix, H is the dz × dx observation matrix, Q is the dx× dx

process noise covariance matrix, and R is the dz × dz observation noise covariance matrix.

Use of this model results in the well-known Kalman filtering and smoothing recursions for

single-target tracking, which is an important subroutine in the multi-target case [67].

We also make the standard assumptions regarding missed detections and false alarms (clut-

ter), as follows. At each time step k, each existing target is detected with probability pD.

The sensor generates nφ clutter observations not corresponding to any target, where nφ is

assumed to be Poisson distributed with positive rate parameter λφ.

The number of targets in the surveillance region can change over time. At each time step k,

32

1 2 3

Time

0

1

2

3

4
P

o
si

ti
o
n

z1,1

z1,2
z2,1

z3,1

z3,2

Scan 1 Scan 2 Scan 3 Figure 2.1: A small example scenario
with three scans of data. Observa-
tions z1,1 and z3,2 are false alarms,
but when they are processed by the
tracker there are no labels identifying
them as such.

new targets may enter the surveillance region and some or all of the preexisting targets may

leave; we call these events track births and track deaths, respectively. At a given time, we

model the number of track births as a Poisson random variable with rate parameter λν and

assume that each preexisting track has probability pγ of dying. For simplicity we assume

that track births and deaths are distributed uniformly over the target state space X .

2.1.2 Data association and the multiple hypothesis tracker

The difficulty of multi-target tracking stems from the lack of an observed correspondence

between observations and targets. A common strategy is to take a data augmentation

approach, introducing auxiliary variables that represent the (unobserved) sources of the

observations [53, 61, 45]. In this subsection we introduce these auxiliary variables and

formulate the MAP data association problem as an optimization over their posterior.

At each time step, the tracker receives as input all newly generated observations – both

actual detections and clutter – grouped together into a single set called a scan. Let mk

denote the number of observations in the kth scan. The scene in Figure 2.1, for example,

shows three scans: {z1,1, z1,2}, {z2,1}, and {z3,1, z3,2}, where m1 = 2,m2 = 1,m3 = 2, and

we use the notation zk,j to represent the jth observation in scan k. In this example the

observation space Z is 1-dimensional, which allows for clear 2-dimensional plotting as a

function of time. There are real applications with 1-dimensional observation spaces (e.g.

33

bearings-only tracking), but in general Z can be higher dimensional. Note that while the

first index (scan number) conveys a meaningful temporal ordering of the observations, the

second (within-scan) index is arbitrary – it does not contain any information regarding the

identity of the target that generated that observation. We use the notation zk to represent

the scan at time k, and z for the union of all scans up to the present time.

A data association hypothesis is a partitioning of z into a single set of false alarms and

zero or more tracks, where a track is the complete set of observations corresponding to

an individual target. A track is represented by a set of index pairs (k, j) from consecu-

tive scans, each corresponding to an observation zk,j. For example, {(1, 2), (2, 1), (3, 2)},

{(3, 1)}, and {(2, 1), (3, 1)} are three possible tracks in Figure 2.1. The second index of

each pair is restricted to the range 0 ≤ j ≤ mk, where the resulting (k, 0) pairs refer

to pseudo-observations we introduce to represent missed detections. In the same figure,

{{(1, 2), (2, 1)}, {(1, 1), (2, 0), (3, 1)}} is one possible data association hypothesis (or simply

hypothesis). For clarity we represent a hypothesis as a set of tracks, and it is understood that

any observation not included in one of these tracks must be clutter. Thus, this particular

hypothesis asserts that there were two targets, one of which was missed at time 2, and a

single clutter observation at time 3. Note that a hypothesis provides a complete explana-

tion for how the observations were generated, effectively decomposing the multi-target state

estimation task into a set of independent single-target problems.

Let T denote the set of all possible tracks, Tu the uth track, and Tu,v the vth index pair within

track u. Note that the set T will grow exponentially in time. For example, suppose we have

k scans with mk = m observations per scan. Requiring only that each track begin with an

actual observation (not a missed detection), the total number of possible tracks is:

k∑
`=1

(k + 1− `)m(m+ 1)`−1, (2.3)

34

where ` ranges over possible track lengths. Thus, the space complexity of any algorithm

that explicitly represents T must be at least O(kmk). For now we will ignore the obvious

intractability of this representation; later we will see how the TOMHT uses pruning to

represent only a tractable subset of T .

We model the space of possible data associations with a track indicator vector, T : a binary

random vector with one element for each possible track. In this representation, an instanti-

ation T = τ identifies the subset of tracks included in a particular hypothesis. Denote by τu

the element of τ corresponding to track u. Observations not included in one of the selected

tracks are assumed to be false alarms.

Recall our assumption that each observation is generated by at most one target. This

assumption corresponds to a constraint on the elements of T : a hypothesis must not contain

two tracks that both contain the same observation. More formally, let z∗,0 be the set of

pseudo-observations representing missed detections, i.e., z∗,0 = {z1,0, z2,0, . . . , zk,0}. Then

we can represent the constraint with the following function:

h(T = τ) =

 1 ∀u6=v (τu = 1 ∧ τv = 1) =⇒ (Tu \ z∗,0) ∩ (Tv \ z∗,0) = ∅

0 otherwise
(2.4)

Note that h(τ) evaluates to zero for hypotheses that violate our assumption; such hypotheses

are said to be invalid. We include h(τ) in the prior over hypotheses, Pr(T = τ), so that all

invalid hypotheses are assigned zero probability.

Under this model the observations induce a joint posterior distribution over the binary track

indicator vector and real-valued target state vectors: p(x, τ | z). The goal of multi-target

tracking is to estimate, at each scan, the number, identities, and states of all targets currently

in the surveillance region. MAP-based tracking algorithms like the TOMHT first attempt

to identify the most likely hypothesis and then compute the posterior over target states

35

conditioned on that hypothesis:

Pr(x | τ ∗, z), (2.5)

where

τ ∗ = arg max
τ

Pr(τ | z). (2.6)

Solving for τ ∗ in Equation 2.6 is the core computational challenge of this approach, and is

commonly known as the data association problem.

The modeling assumptions made thus far result in the following track posterior distribu-

tion [53, 45]:

Pr(τ | z) ∝ Pr(z | τ) Pr(τ)

∝
|T |∏
u=1

[
λν
λφ
fo(z

Tu,1)

|Tu|∏
v=2

(
pD Pr(zTu,v | zTi,1 , . . . , zTu,v−1 , τ)

λφ

)1[Tu,v 6=(∗,0)]

(1− pD)1[Tu,v=(∗,0)]

]τu
h(τ).

(2.7)

A full derivation of this posterior is provided in the Appendix. The terms inside the square

brackets combine the likelihood of a single track’s observations under the dynamics and ob-

servation models with weighting factors to account for the target birth, death, and detection

models. The logarithm of these terms is often called the track score. It can be thought of

as a myopic measure of how likely the track is to correspond to a target, i.e., it captures

the degree to which we would like to group these observations into a track without consid-

eration of the other observations. In practice, many possible tracks share observations; the

constraint function h(τ) encodes mutual exclusivity constraints between overlapping tracks,

ensuring that Equation 2.7 normalizes to the correct posterior distribution.

36

Let su denote the score of the uth track. Taking the log and rewriting (2.7) in terms of track

scores yields this simple form:

log Pr(τ | z) =

|T |∑
u=1

τusu + log h(τ) + C, (2.8)

where

su = log

[
λν
λφ
fo(z

Tu,1)

|Tu|∏
v=2

(
pD Pr(zTu,v | zTi,1 , . . . , zTu,v−1 , τ)

λφ

)1[Tu,v 6=(∗,0)]

(1− pD)1[Tu,v=(∗,0)]

]
.

(2.9)

As first shown in [53], the constraint function h(τ) can be encoded as a set of linear con-

straints. Thus, the optimization problem in Equation 2.6 can be formulated as an integer

linear program:

τ ∗ = argmax
τ

s · τ

subject to Ωτ ≤ 1,

(2.10)

where Ω is a sparse matrix in which rows and columns correspond to observations and tracks,

respectively, and Ωij = 1 if observation i is included in track j [53, 45].

We have now presented the well known track posterior distribution (Equation 2.8) and More-

field’s integer program formulation of the MAP data association problem (Equation 2.10).

As discussed earlier in this section, the large number of possible tracks – O(kmk) – makes

the exact solution of Equation 2.10 intractable. In the next subsection we introduce the

TOMHT, a popular algorithm for approximating Equation 2.10 by considering only a subset

of possible tracks, thereby reducing the length of τ .

37

2.1.3 Track-oriented multiple hypothesis tracker

The TOMHT [45] is an online multi-target tracking algorithm, i.e., it attempts to solve

Equation 2.10 after receiving each new scan of observations. Unfortunately, integer linear

programs are NP-complete and the cost of solving the IP grows exponentially with the

number of possible tracks. Equation 2.10 may be tractable for the first few scans, but

because the number of possible tracks grows exponentially in time the IP quickly becomes

intractable.

To address this difficulty the TOMHT constructs and maintains a small set of candidate

tracks. At each time step it (1) extends the tracks in its candidate set with the observations

of the new scan, and (2) discards some of the new tracks to keep the candidate set from

growing too large. Thus, in the TOMHT each instance of Equation 2.10 is an IP with a

number of variables equal to the number of candidate tracks.

We provide pseudocode for the TOMHT in Algorithm 1. The TOMHT algorithm is com-

prised of two main components: a data structure used to enumerate the candidate track set,

and a pruning strategy for keeping the candidate set sufficiently small. We now discuss each

of these components in turn.

Track trees

A track tree is a rooted, tree-structured graph in which nodes correspond to observations and

every path from the root to a leaf corresponds to a possible track. The TOMHT maintains

a collection of track trees, which together represent all candidate tracks. Each time a new

scan is received, the leaves of these trees are extended with children corresponding to the

new observations. Each observation of the new scan also serves as the root of a new track

tree.

38

Algorithm 1 Track-oriented MHT (TOMHT) [45]

1: procedure TOMHT(z1:T , n) // Sequentially process T scans of observations.
2: trackTrees← {}
3: for k = 1 � T do
4: ExtendTrees(trackTrees, zk)
5: Compute τ ∗ // Solve IP, Equation 2.10
6: nscanPrune(trackTrees, τ ∗, n)
7: OutputStates(trackTrees, τ ∗)

8: procedure ExtendTrees(trackTrees, zk) // Incorporate a new scan.
9: for each tree ∈ trackTrees do

10: for each leaf ∈ Leaves(tree) do
11: if leaf 6= Death then
12: for each zk,i ∈ zk do
13: if WithinGate(leaf , zk,i) then
14: AddChild(leaf , zk,i)

15: AddChild(leaf , Miss)
16: AddChild(leaf , Death)

17: for each zk,i ∈ zk do AddTree(trackTrees, CreateNode(zk,i))

18: procedure NscanPrune(trackTrees, τ ∗, n) // n-scan pruning on track trees.
19: for each tree ∈ trackTrees do
20: if Depth(tree) > n then
21: for each leaf ∈ Leaves(tree) do
22: node← nthParent(leaf , n− 1)
23: if node /∈ Ancestors(LeafNodes(τ ∗)) then
24: PruneTrack(leaf)

25: procedure AddChild(leaf , zk,i) // Add a new leaf node to a track tree.
26: node← CreateNode(zk,i)
27: leaf.child← node
28: node.parent← leaf
29: node.state← KalmanFilter(leaf.state, zk,i)
30: node.score← UpdateScore(leaf.score, zk,i)
31: node.observation← zk,i

39

1,1

3,23,1

2,1

3,23,1

1,2

3,23,1

2,1

3,23,1

2,1

3,23,1 3,1 3,2

Time

(a) The complete set of track trees resulting from the example scenario in Figure 2.1. Empty and
crossed circles represent missed detections and track deaths, respectively.

1,1

3,23,1

2,1

3,23,1

1,2

3,23,1

2,1

3,23,1

2,1

3,23,1 3,1 3,2

Time

(b) If the most likely hypothesis at time step 3, τ ∗, contains just the single track {(1, 2), (2, 1), (3, 2)},
2-scan pruning results in this reduced set of track trees. Since the leftmost tree had height greater
than 2 and does not contain any tracks in τ ∗, the entire tree was pruned. The rightmost three
trees all had height less than or equal to 2, so they were preserved entirely. The remaining tree
had depth 3, so it is vulnerable to pruning; the unpruned tracks are those that share a common
ancestor with the track in τ ∗ in scan 2.

Figure 2.2: Construction of track trees and illustration of n-scan pruning.

Figure 2.2a shows the collection of track trees resulting from the three scans of data in

Figure 2.1. Note that while track deaths do not correspond to observations, it is convenient

to represent them as nodes in the trees so that there is a one-to-one correspondence between

leaves and tracks. The track trees in Figure 2.2a represent 24 possible tracks: 12 of length

3, 7 of length 2, and 5 of length 1.

If one were to add an additional node connected to the root of every track tree and perform

no pruning, the result would be the search space of possible tracks. The IP in Equation 2.10

then corresponds to the multi-node search query for the set of non-conflicting leaf nodes with

maximum combined score. Of course, the complete search space of possible tracks cannot

be represented explicitly. Under this perspective, the pruning strategy presented next can

be viewed as constructing an explicit search tree as part of a heuristic search.

40

Pruning

As described, the number of leaves in a track tree grows exponentially with the number of

scans. Specifically, if there are m observations per scan, the number of leaves will grow at

a rate of O(mk) where k is the number of scans. The TOMHT limits this growth using

a strategy called n-scan pruning [11, 10]. After incorporating the kth scan, the TOMHT

solves Equation 2.10 (considering only those tracks in its current candidate set) to find the

most likely set of tracks, τ ∗. It then prunes all tracks that do not satisfy at least one of the

following two conditions:

1. Share a common ancestor with one of the tracks selected by τ ∗ within the n most

recent scans (where n is a parameter of n-scan pruning).

2. Belong to a tree with height at most n.

In Figure 2.2, for example, 2-scan pruning results in the track trees shown in Figure 2.2b,

reducing the number of candidate tracks from 24 to 10. Notice that n-scan pruning effectively

eliminates all branching of the track trees above the most recent n scans. Pseudocode for

n-scan pruning is provided in Algorithm 1.

The complexity of n-scan pruning is dominated by the computation of τ ∗, but in the context

of the TOMHT we can assume that τ ∗ has already been computed for the purpose of

reporting tracker output (Equations 2.5-2.6). Thus, the additional complexity due to n-

scan pruning arises only from finding and deleting nodes of pruned tracks. This can be

accomplished by first “marking” all nodes corresponding to tracks in τ ∗ and then traversing

the trees upward from each leaf, either for n− 1 scans or until a root node or marked node

is encountered. The complexity of this operation is O(n|T̃ |), where T̃ is the current set of

candidate tracks. Since pruning is performed after incorporating each new scan, the pre-

pruning size of T̃ is O(nmn+1) rather than O(kmk). From this point on we will simply use

41

T to refer to the set of candidate tracks; it should be understood that, in the context of the

TOMHT, we never work with the unpruned set of all possible tracks.

Most implementations of the TOMHT apply additional pruning techniques such as gating,

track score thresholding, and track merging [11]. For simplicity we do not focus on these

techniques, but they are trivially compatible with the marginalization and parameter esti-

mation techniques we develop in this and the next chapter. In our implementation we use

only n-scan pruning and gating. Gating refers to a class of simple, local pruning heuristics:

rather than extending each node of a track tree with a child for every observation in the

current scan, we create a child node only for track continuations that look locally plausible.

If each existing track has only p < m plausible continuations at each time step, the size of

the pre-pruning candidate track set is reduced from O(nmn+1) to O(nmpn). By reducing the

base of the exponential term, gating can enable one to choose a larger n for n-scan pruning

while still maintaining tractability. Thinking back to the search perspective discussed at the

end of the track tree subsection, gating can be viewed as a modification of the heuristic using

partial expansion to reduce search tree size.

Gating strategies differ in how they formalize this notion of plausibility. We implement

elliptical gating, which takes advantage of the fact that the normalized residuals in a Kalman

filter – the squared Mahalanobis distance between the predicted state and observation at a

particular time – are distributed according to a X 2
dx

distribution [5]. By limiting track

extensions to observations with normalized residuals below a prespecified threshold, we can

prune unlikely observations with a bounded error rate corresponding to the tail probability

of the X 2
dx

distribution. In our implementation we set this threshold such that the correct

track extension is pruned only 0.1% of the time (assuming our observation and dynamics

models are correct).

Proposition 2.1. The TOMHT algorithm has complexity O((n+d2
x+d2

z)nmp
n+2nmp

n
+mk)

to process the kth scan of data, assuming n-scan pruning and gating that results in a branching

42

factor of p.

Proof. In a single time step, the TOMHT grows the track trees, solves for τ ∗, performs

pruning, and returns state trajectories; we will analyze each of these operations in turn.

Adding a single node to a track tree requires a Kalman filtering step, which has complexity

O(d2
x + d3

z). With n-scan pruning and gating that results in a branching factor of p, this

stage results in a total of O(nmpn) tracks for a total complexity of O(nmpn(d2
x + d2

z)).

Solving an integer linear program is exponential in the number of variables. There is one

binary variable per track and O(nmpn) total tracks, so the complexity is O(2nmp
n
).

As discussed above, the added complexity of n-scan pruning is linear in n for each track,

i.e., O(n2mpn).

Finally, to output the filtered state trajectories one must simply traverse the tracks trees

from each leaf node corresponding to a track in τ ∗ up to its root node, gathering state

estimates along the way. Since no two tracks in τ ∗ can contain the same observation, there

is a maximum of O(mk) nodes to traverse.

Putting all of these together, the overall asymptotic complexity of the TOMHT algorithm

is O((n+ d2
x + d2

z)nmp
n + 2nmp

n
+mk).

2.1.4 Other popular algorithms for multi-target tracking

In this section we briefly mention some popular alternative methods for multi-target tracking.

Most closely related is the original multiple hypothesis tracker [61], sometimes called the

hypothesis-oriented MHT (HOMHT) to distinguish it from the TOMHT. Like the TOMHT,

the HOMHT is a pruning-based algorithm. It differs from the TOMHT in that it enumerates

full data association hypotheses rather than tracks; i.e., it constructs a tree of hypotheses,

43

where each node corresponds to an entire vector τ . As a result, there is no need to solve

an integer program to find the most likely candidate hypothesis. The downside of this

approach is a much greater space complexity – the TOMHT can implicitly represent many

more hypotheses than a HOMHT would ever be able to represent explicitly.

The joint probabilistic data association filter (JPDAF) [23, 4] attempts to solve a slightly

different problem: rather than estimating Pr(x | τ ∗, z) as in the TOMHT, the JPDAF

aims to compute Pr(x | z), i.e., it attempts to marginalize over possible data association

hypotheses rather than conditioning on the most likely one. To achieve tractability the

JPDAF assumes that the marginal target states are Gaussian distributed and that target

states are independent given past observations. This results in a fairly efficient algorithm,

but the relatively strong assumptions make it less robust than the TOMHT [4].

2.2 Estimating track marginals

Having introduced the popular TOMHT algorithm for multi-target tracking, we are now

ready to present our novel contributions. We consider the task of computing the marginal

probability of a single track, restricted to the candidate track set produced by the TOMHT:

bu = Pr(Tu = 1 | z)

=
∑

τ∈{0,1}|T |
Pr(τ | z)1[τu=1]

(2.11)

The sum in Equation 2.11 ranges over all subsets of the candidate track set. Since explicit

summation is generally intractable, we consider two approaches to approximate marginaliza-

tion: one based on the k-best hypotheses, and one based on variational inference algorithms

operating on a factor graph representation of the track posterior.

44

2.2.1 Marginalization via the k-best hypotheses

As mentioned previously, even with n-scan pruning it is infeasible to sum over the entire

space of hypotheses in (2.11). However, it is often the case in practice that the posterior

probability mass is concentrated on a relatively small fraction of the hypotheses. The k-best

estimator takes advantage of this tendency by restricting the sum to a tractable subset of

hypotheses with high mass. Intuitively, if the combined mass of discarded hypotheses is

small enough, the estimated track marginals will be close to the exact values. Formally, the

k-best estimator is defined as follows:

bkbestu =

∑
τ∈{τ (1),...,τ (k)} Pr(τ | z)1[τu=1]∑

τ∈{τ (1),...,τ (k)} Pr(τ | z)
(2.12)

where τ (i) is the hypotheses with the ith highest posterior probability mass. Note that

the hypothesis probabilities, Pr(τ | z), are themselves intractable since they must be nor-

malized over the entire hypothesis space. Fortunately, in Equation 2.12 the normalizing

constants cancel and bkbestu is easily computable for moderate k. Pseudocode for computing

Equation 2.12 is presented in Algorithm 2.

Algorithm 2 k-best estimator for track marginals (KBEST-MARG)

1: procedure kbest-marg(trackTrees, k)
2: ip← BuildIP(trackTrees) // Equation 2.10
3: τ (1) ← SolveIP(ip)
4: for i = 2 � k do
5: AddConstraint(ip) // Exclude τ (i−1), Equation 2.13
6: τ (i) ← SolveIP(ip)

return bkbestu // Equation 2.12

The most expensive piece of this algorithm is the computation of the k-best hypotheses.

Recall the integer program used to compute the most likely hypothesis (Equation 2.10). The

same approach can be used to compute the next best hypothesis by adding a single linear

45

constraint excluding τ (1) from the solution space:

∑
u:τ

(1)
u =0

τu +
∑

u:τ
(1)
u =1

(1− τu) > 0 (2.13)

Proposition 2.2. The constraint in Equation 2.13 excludes τ (1), and only τ (1), from the

solution space.

Proof. First we show that τ (1) violates the constraint. The first sum ranges over tracks not

included in τ (1), so each term in the sum is zero and thus

∑
u:τ

(1)
u =0

τ (1)
u = 0

The second sum ranges over tracks that are included in τ (1), so again each term is zero and

we have

∑
u:τ

(1)
u =1

(1− τ (1)
u) = 0

We are left with 0 > 0, so our constraint is violated and τ (1) is excluded from the solution

space.

Now consider a different hypothesis, τ 6= τ (1). The two vectors τ and τ (1) differ in at least

one track; let u index one such track.

Case 1. τ
(1)
u = 0

Since τ
(1)
u = 0, this track contributes a term to the first sum in (2.13). We have assumed

that τu 6= τ
(1)
u , so τu = 1. Thus, τu contributes 1 to the first sum. Since all terms are

non-negative, the overall sum must be positive and the constraint is satisfied.

Case 2. τ
(1)
u = 1

46

Since τ
(1)
u = 1, this track contributes a term to the second sum in (2.13). We have assumed

that τu 6= τ
(1)
u , so τu = 0. Thus, τu contributes (1 − 0) = 1 to the second sum. Since all

terms are non-negative, the overall sum must be positive and the constraint is satisfied.

Thus, Equation 2.13 does not exclude any hypotheses other than τ (1).

Repeating this process, alternately solving the integer program and adding a constraint to

exclude the previous solution, yields the top k hypotheses.

Each successive integer program is more complex than the previous – note that Equation 2.13

is a global constraint, defined over all variables – so in practice this approach scales worse than

linearly with k. Faster algorithms exist to approximate the k-best hypotheses [59] [24] [6],

but are not explored here.

Proposition 2.3. KBEST-MARG has complexity O(k2n
2mpn−1

), where k is the number of

hypotheses to compute, n is the parameter of n-scan pruning, p is the number of observations

per gate, and m is the total number of observations per scan.

Proof. Constructing the initial IP in Equation 2.10 requires population of the constraint

matrix Ω. Assuming n-scan pruning, this matrix has at most O(n2mpn−1) nonzero elements

(n per track).

Solving the IP is exponential in the number of variables, requiring O(2n
2mpn−1

) time to solve

once and thus dominating the overall complexity. KBEST-MARG must solve the IP k times

(adding one new constraint before each solution) for a total cost of O(k2n
2mpn−1

).

The number of hypotheses, k, serves as a tuning parameter to trade off speed and accuracy.

Setting k to the total number of valid hypotheses results in an exact – but intractable –

algorithm. Setting k to 1, on the other hand, corresponds to the MAP estimator, assigning

47

probability 1 to every track in τ ∗ and 0 to the rest. The accuracy of the estimator at small

values of k depends the fraction of probability mass concentrated in the top k hypotheses.

The k-best estimator can be viewed as a partial translation from the track-oriented repre-

sentation of the TOMHT to the hypothesis-oriented representation of its predecessor, the

HOMHT [61]. The TOMHT’s advantage over the HOMHT stems from its ability to repre-

sent a number of hypotheses that is exponential in the number of candidate tracks. Since the

k-best approach discards this advantage by explicitly converting to the hypothesis-oriented

representation, it makes sense to consider marginalization methods that operate directly in

the track-oriented data association space.

2.2.2 Marginalization via variational message-passing

Variational message passing algorithms for graphical models, described in Section 1.4, offer

an alternate approach to approximating the marginalization in Equation 2.11. By taking

advantage of conditional independencies present in the model, these algorithms can often

obtain quick marginal estimates even when exact marginalization is very costly.

To use these algorithms for track marginal estimation, we first formulate the track posterior

distribution (Equation 2.8) as a factor graph over a set of random variables, y. Figure 2.3

illustrates the factor graph corresponding to the example data of Figure 2.1. The factor graph

contains one variable corresponding to each track tree node. Each variable is binary, i.e.

yi ∈ {0, 1}, and serves as an indicator for the partial track terminating in its corresponding

node in the track tree. For example, the variable in the middle-left of Figure 2.3 labeled 2,1 is

an indicator variable for the partial track {z1,1, z2,1}. If a variable corresponds to a track tree

leaf node, we call it a track indicator variable. Since there is a one-to-one correspondence

between track indicator variables and candidate tracks, we will refer to the set of these

variables as T . These track indicator variables correspond exactly to the variables of the

48

Tree constraint Global constraint Track score

3,23,1

2,1

3,23,1

1,2

3,23,1

2,1

3,23,1

1,1

3,23,1

2,1

3,23,1

Figure 2.3: The factor graph corresponding to the track trees in Figure 2.2 (a). Round and
square nodes represent variables and factors, respectively. Variable nodes are annotated as
in Figure 2.2 to emphasize the correspondence between track tree nodes and factor graph
variables. The corresponding joint distribution is the track posterior in Equation 2.8: the
constraint factors correspond to h(τ) and the score factors contribute the remainder. For
clarity, global constraint factors with only one neighbor are omitted; they have no effect on
the distribution. Also note that this model corresponds to the unpruned set of track trees. If
2-scan pruning were in use, the model would mirror the structure of Figure 2.2 (b) instead.

integer program (Equation 2.10). The additional, non-leaf variables exist only to enable a

structured encoding of the constraint h(τ), which we discuss next. In total, since there is one

variable for each track tree node, the graphical model has O(nmpn−1) variables, assuming

n-scan pruning, m variables per scan, and a branching factor limited to p by gating.

The factors are grouped into three classes: tree constraints, global constraints, and track

score factors. Together, the two classes of constraint factors encode h(τ), our constraint

that each observation belongs to at most one track. Before defining these factors we must

introduce some notation. We will use a single subscript, e.g. yi or yk, to refer to an arbitrary

variable in our factor graph. Further, let ch(yi) denote the variables that are children of yi

(borrowing parent-child relationships from the corresponding track tree), and yi,j the set of

variables corresponding to the observation zi,j. Then we define tree constraints f ti and global

49

constraints f gi as follows:

f ti (yi, ch(yi)) =



1 : (yi = 0 ∧
∑

yk∈ych(i)

yk = 0)

∨(yi = 1 ∧
∑

yk∈ych(i)

yk = 1)

0 : otherwise

(2.14)

f gi,j(y
i,j) =

 1 :
∑

yk∈yi,j yk ≤ 1

0 : otherwise.
(2.15)

Every instantiation of the leaf variables corresponds to a hypothesis, and the constraint

factors assign zero probability to all invalid hypotheses. Score factors, f si , weight hypotheses

according to the scores of their constituent tracks:

f si (yi) =

 exp(si) : yi = 1

1 : yi = 0.

There is one score factor for each track indicator variable.

The probability mass function represented by the factor graph may be written as:

Pr(y) ∝
∏
yi /∈T

f ti (yi, ch(yi))
∏
zi,j∈z

f gi,j(y
i,j)
∏
yi∈T

f si (yi).

An instantiation of the variables will evaluate to the exponentiated sum of the selected

track scores if it corresponds to a valid hypothesis, and zero otherwise. Thus, the marginal

distribution of the track indicator variables is identical to the track posterior in Equation 2.8.

Having formulated the track posterior as a factor graph, we can now run message-passing

algorithms like BP and GBP (see Section 1.4) to compute approximate track marginals.

Pseudocode for this approach to marginalization is provided in Algorithm 3.

Proposition 2.4. The BP-MARG algorithm has complexity O(T (nmpn + n2m2pn−2)),

50

Algorithm 3 BP estimator for track marginals (BP-MARG)

1: procedure BP-MARG(trackTrees)
2: fg ← BuildFactorGraph(trackTrees)
3: runBP(fg) // (or GBP)
4: trackMarginals← []
5: for each var ∈ Variables(fg) do
6: if IsLeaf(var) then
7: Append(trackMarginals,belief(var))

return trackMarginals

where T is the number of BP iterations, n is the parameter of n-scan pruning, p is the

number of observations per gate, and m is the total number of observations per scan.

Proof. The factor graph has one variable for each track tree node, for a total of O(nmpn)

variable nodes. Each variable has one child factor, zero or one parent factor, and one global

constraint factor; thus, the number of edges over which to pass messages is also O(nmpn). As

all variables are binary and each variable has at most three neighbors, computing a variable

message requires O(1) time. The total complexity to compute variable messages along every

edge is O(nmpn).

As discussed further in Section 2.2.2, the sparsity structure of both tree constraints and

global constraints are such that computing all messages out of a single factor requires time

linear in the number of adjacent variables. Again assuming gating that limits the branching

factor of the track trees, a tree constraint factor has a scope of at most p+1 variables. There

are O(nmpn−1) tree constraint factors – one for each non-leaf variable. In total, computing

all outgoing messages from tree constraint factors requires O(nmpn).

Finally, there are nm global constraint factors – one per observation. The largest factors

correspond to observations at the most recent time step that fell inside the gate of every

leaf node at the previous time step. This results in an global constraint over O(nmpn−2)

variables, so the cost to compute all outgoing messages from the global constraint factors is

O(n2m2pn−2).

51

If BP is run for a total of T iterations, the overall complexity is O(T (nmpn+n2m2pn−2)).

This approach is potentially attractive due to the computational efficiency of BP and GBP.

However, their accuracy depends heavily on model-specific characteristics [33, 82]. To assess

their accuracy on models generated by the TOMHT, we conduct an empirical evaluation

relative to known ground truth marginals in Section 2.2.3.

Graphical models and approximate inference methods have also been applied to other formu-

lations of the data association problem. The most closely related work is Williams et al. [80],

which considers a graphical model formulation of the data association problem and uses BP

to estimate marginal associations. Their treatment of multi-scan association probabilities is

similar in spirit to ours, but instead of the popular track-oriented MHT representation it uses

a hybrid “target-oriented” representation. The target-oriented representation assumes that

the number of targets is known (though this can be relaxed by using a track initialization

framework, e.g. [32]), and it is unclear how to perform pruning in this representation. Chen

et al. [15] uses BP to approximate association probabilities in a sensor network, but only

considers associations within a single scan. To our knowledge, this is the first work to com-

pute marginal multi-scan association probabilities using the representation of the TOMHT.

Working within the TOMHT representation is particularly attractive because it naturally

handles track birth and death, supports pruning to trade off speed and accuracy, and has

been successfully deployed in real-world systems.

Sparse message updates for BP inference

The constraint factors (Equations 2.14-2.15) may be defined over a large number of variables,

making direct computation of the factor message in Equation 1.27 intractable. Fortunately,

the sparsity structure of these factors admits an exact reformulation that reduces the com-

plexity from exponential to linear in the number of variables. The key idea is to modify the

52

sum over the factor domain to explicitly iterate only over its non-zero elements. See [73] for

a general treatment of optimizations of this sort. The exact forms of the efficient message

updates for this model are provided below:

Tree constraint factor f ti to parent variable Yi:

mf ti�Yi(0) ∝
∏

Yj∈ch(Yi)

mYj�f ti (0) (2.16)

mf ti�Yi(1) ∝
∑

Yj∈ch(Yi)

mYj�f ti (1)
∏

Yk∈ch(Yi)\Yj

mYk�f ti (0)

 (2.17)

Tree constraint factor f ti to child variable Yj:

mf ti�Yj(0) ∝ mYi�f ti (0)
∏

Yk∈ch(Yi)\Yj

mYk�f ti (0)

+
∑

Yk∈ch(Yi)\Yj

[
mYi�f ti (1)mYk�f ti (1)

∏
Yl∈ch(Yi)\{Yj ,Yk}

mYl�f ti (0)

] (2.18)

mf ti�Yj(1) ∝ mYi�f ti (1)
∏

Yk∈ch(Yi)\Yj

mYk�f ti (0) (2.19)

Global constraint factor f gi,j to neighbor variable Yk:

mfgi,j�Yk
(0) ∝

∏
Yl∈yi,j\Yk

mYl�f
g
i,j

(0) +
∑

Yl∈yi,j\Yk

mYl�f
g
i,j

(1)
∏

ym∈yi,j\{Yk,Yl}
mym�fgi,j

(0)


(2.20)

mfgi,j�Yk
(1) ∝

∏
Yl∈yi,j\Yk

mYl�f
g
i,j

(0) (2.21)

The above updates enable efficient loopy BP despite the high-cardinality factors. Similar

techniques can be used for algorithms that operate on region graphs, such as GBP, but the

53

f

Y4Y3Y2Y1

(a)

f

V2

g

Y4Y3

V1

g

Y2Y1

(b)

Figure 2.4: Decomposition of large constraint factors. (a) A global constraint factor f ,
defined over four variables for the sake of illustration. (b) By introducing two auxiliary
variables, V1 and V2, we can decompose the constraint into three factors defined over two or
three variables each.

equations would be more complex since each region may have a different sparsity structure.

Constraint decomposition for GBP inference

Our experiments use a generic implementation of GBP that does not take advantage of

factor sparsity. Rather than writing custom GBP code that exploits the sparsity, we opt to

perform a preprocessing step on the model. Specifically, by introducing auxiliary variables

we can replace a single constraint defined over m variables with at most m − 1 constraints

defined over three variables each.

Recall that a global constraint is satisfied when at most one adjacent variable is “active.”

Equivalently, we can split a constraint’s variables into two sets, enforce an at-most-one

constraint on each set separately, and add a final at-most-one constraint over auxiliary

variables defined to be the logical-or of the variables in each set. Figure 2.4 illustrates this

transformation for a global constraint factor f defined over four variables. Factors labeled

f are simple at-most-one constraints. The factors labeled g simultaneously enforce an at-

most-one constraint on their children and constrain the parent variable to be equal to the

logical-or of their children. Applying this transformation recursively to a global constraint

over m variables replaces a single factor of cardinality 2m with O(m) factors of cardinality

O(1). The resulting model has no intractably large factors and we can apply off-the-shelf

54

inference algorithms (though they will be less efficient than if they were to directly take

advantage of the constraint structure as in the previous section).

2.2.3 Experimental results

Both the k-best estimator and the variational approximations (BP and GBP) sacrifice cor-

rectness to attain tractability, and it is not immediately clear how the respective approxi-

mations impact the resulting marginal estimates. We conducted an empirical study using

simulated data, enabling direct comparison of the estimated marginals to their exact values.

The input to each algorithm is a collection of track trees representing the state of a TOMHT

(its internal track forest) after processing a sequence of scans. In the context of these

experiments, we will refer to such track forests as models. Model generation is a three step

process:

1. Simulate a set of target state trajectories.

2. Sample observations at each time step according to a specified sensor model.

3. Process the simulated scans with a TOMHT.

At the end of this process, the track trees stored by the TOMHT are saved to a model file. We

generated three groups of models, each corresponding to a different set of underlying target

state trajectories as shown in Figure 2.5. The three groups are designed to explore a range

of problem characteristics, subject to the constraint that exact inference must be feasible so

that the approximate marginals can be evaluated against exact values. The median number

of variables in the models is 63 for Group A, 197 for Group B, and 264 for Group C.

In step 2, the data was generated using a linear Gaussian observation model with the fol-

55

1 2 3 4 5 6 7 8 9

Time

−6

−4

−2

0

2

4

6

P
o
si

ti
o
n

Group A

(a)

Figure 2.5: One example scene from each of
the three groups used to evaluate marginal-
ization accuracy. The groups are designed to
explore a range of local structures that arise
in real-world scenarios.

1 2 3 4 5 6 7 8 9

Time

−6

−4

−2

0

2

4

6

P
o
si

ti
o
n

Group B

(b)

1 2 3 4 5 6 7 8 9

Time

−6

−4

−2

0

2

4

6

P
o
si

ti
o
n

Group C

(c)

56

lowing parameters:

H =

[
1 0

]
R =

[
.52

]
λφ = 0 λν = 0 pD = .95 pγ = 0.

In step 3, tracking was performed using a TOMHT with H, R, and pD set as above and the

remaining parameters set as follows:

A =

 1 1

0 1

 Q =

 .52 0

0 .22

 λφ = 1 λν = 1 pγ = .1

The tracker used 4-scan pruning; models generated with 3-scan pruning were too small to

be interesting, and those generated with 5-scan pruning were too large to solve exactly. We

generated 50 models in each group, and for each model computed approximate marginals

using k-best, BP, and GBP, as well as the exact marginals via variable elimination. With BP

and GBP, all messages were initialized with ones. BP was run until all messages converged

with a tolerance of 1e-5 or for a maximum of 100 iterations. GBP was run until its estimate

of logZ converged with a tolerance of 1e-6 or for a maximum of 200 iterations. Experiments

were parallelized across a cluster using GNU Parallel [72].

Figure 2.6 plots the running time and marginalization error for several k-best and messaging-

passing estimators. As expected, increasing k for the k-best estimator and cluster size for

GBP both decrease marginalization error. The 1-best estimator universally has the highest

error and GBP-20 the lowest. BP typically produces marginals with error between 1-best

and 10-best.

BP is, by far, the fastest algorithm. While the computational complexity of GBP is tunable,

the implementation used in our experiments is from a general-purpose inference package. It is

written in C++ and reasonably efficient, but does not take advantage of the sparsity structure

of the factors as our BP implementation does, resulting in an overhead that dominates the

57

10−4 10−2 100 102

Running time (s)

0
10−16

10−11

10−6

10−1

M
ea

n
sq

u
a
re

d
er

ro
r 5

10

1

10

100

1000

Group A

10−3 10−1 101 103

Running time (s)

0

10−6

10−4

10−2

M
ea

n
sq

u
a
re

d
er

ro
r 5

10
15

20

1

10

100

1000

Group B

10−3 10−1 101 103

Running time (s)

0

10−6

10−4

10−2

M
ea

n
sq

u
a
re

d
er

ro
r 5

10

15

20

1

10

100

1000

Group C Figure 2.6: Marginal error vs. running
time. The blue diamond represents BP, green
squares GBP, and red circles the k-best es-
timator. The numbers next to GBP and k-
best data points correspond to the maximum
cluster size and value of k, respectively. The
y-axis plots the mean squared error between
estimated and true track marginals. Each
data point represents the median value over 50
models. In Group A, GBP-15 and GBP-20 are
not shown because GBP-10 already achieves
perfect accuracy.

58

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

B
P

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

G
B

P
-1

0

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

1
0
-b

es
t

Figure 2.7: Detailed marginalization perfor-
mance on a single model from Group B. Each
marker plots the estimated vs. exact marginal
probability for a single track. BP under-
estimates the marginal probabilities of most
tracks, with the exception of a few high-
probability tracks that it overestimates. GBP-
10 exhibits similar performance but is more
tightly clustered around the zero-error line.
The 10-best estimator has a very different pro-
file: it very accurately estimates marginals of
the most likely tracks, but assigns zero proba-
bility to all of the less likely tracks.

computation time for small cluster sizes. On the other hand, the k-best estimator scales

poorly with k; with k = 100 it already takes 10 seconds to run in groups B and C. Values

up to k = 10 may be usable in practice, but even the 1-best estimator is slower than BP.

The appropriate algorithm for a particular application will depend both on its running time

requirements and its sensitivity to error in the marginals. If the application can tolerate

moderate error, BP is attractive due to its high efficiency. If higher accuracy is required,

then a more expensive GBP or k-best estimator may be preferable.

To better illustrate the accuracy profiles of the various estimators, Figure 2.7 plots estimated

vs. exact marginals for the individual tracks of a single model from Group B. Note that

59

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

B
P

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

1
0
-b

es
t

0 10−8 10−6 10−4 10−2 100

Exact

0

10−8

10−6

10−4

10−2

100

1
0
0
-b

es
t

Figure 2.8: Effect of increasing model size on
the k-best estimator. These plots show esti-
mated vs. exact track marginals for the BP,
10-best, and 100-best estimators on a scene
with ten times as many observations as that
used in Figure 2.7. The performance profile
of BP remains qualitatively the same, but the
concentration of the k-best estimator on the
most likely tracks increases sharply. The 10-
best estimator assigns zero probability mass
to several tracks with true marginal probabil-
ity exceeding 0.1. Even the more expensive
100-best estimator does little to improve the
estimates.

60

the 10-best estimator is very accurate for the highest probability tracks but assigns zero

probability to all tracks with probability less than 0.06. BP and GBP, on the other hand,

are less accurate on the high probability tracks but do much better on the majority of less

likely tracks.

As model size increases, the k-best estimator’s concentration of mass in the few most likely

tracks becomes even more exaggerated. In the extreme case, the top k hypotheses may

actually be very minor perturbations of τ (1), in which case the k-best estimator will be little

better than the 1-best estimator. To illustrate this effect while still retaining the ability to

compute exact marginals, we constructed a larger scene by “stacking” 10 different scenes

from Group B, overlapping them in time but shifting them to be well separated in space.

The spatial separation, combined with elliptical gating, results in a model that is 10 times

larger than any individual model from Group B but still computationally tractable.

Figure 2.8 plots estimated vs. exact track marginals for this larger model. The BP results

are qualitatively unaffected, but the 10-best estimator is notably worse: it does not support

any tracks with marginal probability less than 0.3. The 100-best estimator performs only

slightly better. This phenomenon is likely to arise in any large tracking scenario – not just

those with completely separated subproblems – and highlights a significant weakness of the

k-best approach to marginalization.

2.3 Additional probabilistic queries

In addition to marginalization, graphical models support efficient approximate inference algo-

rithms for the tasks of MAP,m-best, diversem-best, and mixed maximization/marginalization.

This section briefly explores how these algorithms could be useful in the multi-target tracking

context.

61

2.3.1 MAP estimation

In our experiments we computed the MAP data association, τ ∗, using Morefield’s integer

program formulation [53] as described in Section 2.1. To solve the integer program we

used CPLEX [36], a mathematical programming software suite by IBM ILOG. CPLEX is

very fast and robust, implementing a wide array of optimization methods and heuristics.

Correspondingly, the price for a non-academic license is quite high – a deployment license

can cost upwards of $70,000. Formulating the track posterior as a factor graph opens up the

alternative of solving the integer program using generic algorithms for MAP estimation in

graphical models, many of which are quite simple to implement.

In a preliminary study, we implemented an algorithm based on the dual-decomposition

framework [42], using a combined subgradient and coordinate ascent strategy [81] to optimize

the resulting objective. On a set of test models generated by a TOMHT, the resulting

algorithm was frequently able to identify the true MAP estimate (and provide a certificate

of optimality) in time comparable to or less than CPLEX. The custom solver is around 500

lines of C++ and has not been heavily optimized.

2.3.2 m-best and diverse m-best

Beyond MAP estimation, efficient algorithms exist for approximating the m-best configura-

tions of a graphical model [24, 6]. Recently, this approach was extended to allow computation

of a diverse set of highly probable configurations [7]. A diverse set of likely hypotheses could

be very useful for summarizing the uncertainty present in the track posterior distribution.

In Section 2.2, we saw that the exact m-best hypotheses did a poor job of characterizing

uncertainty; even for m = 1000, there is a high degree of similarity between top hypotheses,

often differing only by one or two observations. By encouraging an appropriate measure

62

of diversity, we could instead recover a set of qualitatively different hypotheses that well

represent the full space of possible data associations.

2.3.3 Marginal-MAP inference

Recently, the variational message-passing framework described in Section 1.4.1 was extended

to support efficient approximate inference for marginal-MAP queries [49]. Marginal-MAP

inference combines marginalization and maximization in a single probabilistic query. Given

a random vector X, split the variables into two sets XA and XB. The marginal-MAP task

is defined as follows:

x∗B = arg max
XB

∑
XA

Pr(XA,XB), (2.22)

first marginalizing over the variables in XA and then maximizing over the resulting distri-

bution on XB.

Marginal-MAP inference could be useful for more effective pruning in the TOMHT. Recall

the n-scan pruning procedure, described in Section 2.1.3. At each time step k, n-scan pruning

picks a subset of nodes from time k − n + 1 and prunes all tracks that are not ancestors of

this protected set. Standard n-scan pruning chooses this protected set by finding the most

likely hypotheses given all the data up to time k and then selecting its ancestor nodes at time

k − n+ 1. A better method would be to directly optimize over the nodes at time k − n+ 1

while marginalizing out all subsequent nodes – a classic marginal-MAP query.

63

2.4 Summary of contributions

In this chapter we provide a new perspective on one of the most popular multi-target tracking

algorithms. Our main contributions are:

• A factor graph representation of the TOMHT’s probabilistic model, which enables the

application of many approximate inference algorithms to the track posterior distribu-

tion.

• An empirical comparison of two approaches to estimating track marginal probabilities

– one based on the k-best hypotheses, and one based on variational message-passing.

64

Chapter 3

Online Approximate EM for

Parameter Estimation in the TOMHT

In the previous chapter we presented two approaches to estimating track marginals in the

TOMHT. In this chapter, we make use of these marginals in an approximate EM algorithm

to estimate parameters of the dynamics and observation models.

The probabilistic model for multi-target tracking, as described in Section 2.1, contains a

number of tuning parameters. The observation model can often be tuned separately via

offline analysis, but target dynamics and environmental parameters may require hand-labeled

data and may change over time, making offline analysis impractical. As a result, it is desirable

to estimate these parameters from unlabeled data and in an online fashion.

With labeled data – observations that have been grouped into ground truth tracks – param-

eter estimation is often carried out using the EM algorithm, treating the target states X as

“missing data” [67]. We show that the same strategy can be used to estimate parameters

from the unlabeled data typical of multi-target tracking. The E-step decomposes naturally

65

into two stages: computing marginal probabilities of the track indicator variables and com-

puting smoothed state estimates for the candidate tracks. The M-step then proceeds as in

the labeled case, with tracks weighted by their marginal probabilities.

3.1 Background: parameter estimation with known

data associations

This section provides a brief introduction to parameter estimation in the case of known data

associations. We first introduce the EM algorithm and then describe its popular application

to learning in linear Gaussian state space models.

3.1.1 The Expectation-maximization algorithm

Expectation-maximization (EM) is a general algorithm for maximum likelihood estimation

in the presence of missing data [20]. It can be viewed as a coordinate ascent algorithm, alter-

nately updating a concave lower bound on the log-likelihood and choosing model parameters

to maximize that bound. Here we provide the basic outline of the method – a more complete

derivation can be found in [9, 50] (for example).

Suppose we have a joint probabilistic model over some observed variables Z and hidden

variablesX, parameterized by a vector θ (conventionally, Z is often used to represent hidden

data and X observed data – we deviate from this convention to maintain consistency with

the tracking application, where Z represents observations and X the latent target states).

The goal is to compute the maximum likelihood estimate of θ:

θ∗ = arg max
θ

log Pr(z | θ) = arg max
θ

log
∑
x

Pr(z,x | θ) (3.1)

66

The term Pr(z,x | θ) is called the complete-data log-likelihood (CDLL). Since it does not

involve a high-dimensional sum, it is generally a much more tractable function than the

log-likelihood itself.

To construct a lower bound, we recast Equation 3.1 as an expectation with respect to a

variational distribution q(x) on the latent variables. Applying Jensen’s inequality to the

result yields a lower bound, as follows:

log
∑
x

Pr(z,x | θ) = logEq
[

Pr(z,x | θ)

q(x)

]
≥ Eq

[
log

(
Pr(z,x | θ)

q(x)

)]
(3.2)

Note that the variational distribution, q(x), is a free parameter. Thus, each choice of q(x)

defines a different lower bound on the log likelihood. EM performs a joint optimization over

both q(x) and θ via coordinate ascent. The “E-step” corresponds to optimization of the

variational distribution. It is straightforward to show that, for a fixed θ, the optimal choice

of q is given by

q(x) = Pr(x | z,θ) (3.3)

Holding q fixed, the “M-step” computes the maximum of the lower bound, which occurs at

arg max
θ

Eq [log Pr(z,x | θ] . (3.4)

Note that the M-step depends on q only through the expectation of the CDLL. In fact, when

the CDLL is itself a linear or quadratic function of x, the M-step depends on q only through

its low-order moments (by the linearity of expectation). Because of this, the E-step is often

defined to be the computation of the low-order moments of Pr(x | z,θ), rather than the full

conditional distribution. The M-step then proceeds by plugging in the moments computed

in the E-step and optimizing with respect to θ.

67

EM is guaranteed to converge to a local maximum of the likelihood function (global maximum

if the likelihood is concave). In the non-concave setting, performance can depend heavily on

the initial value of θ.

3.1.2 EM for linear Gaussian state-space models

With known data associations, the observations in a multi-target tracking scenario can be

grouped into individual tracks and a set of false alarms. Given this grouping, it is trivial to

compute maximum likelihood estimates of the parameters governing target detection, false

alarms, and track birth and death. A more interesting task is optimizing the parameters

of the observation and dynamics models. Since the likelihood of these parameters involves

marginalization over the targets’ latent states, the standard optimization approach uses

EM, treating the target states as missing data. We now present this standard approach as

described in [21]; in Section 3.2 we will show how to generalize the approach to the case of

unknown data associations.

With linear Gaussian observation and dynamics models, closed-form expressions exist for

both the E-step and M-step. The probabilistic model for an individual track is a linear

Gaussian state-space model, resulting in the following CDLL:

log Pr(z,x) =− 1

2
log |R| − 1

2
(z1 −Hx1)>R−1(z1 −Hx1)

+
n∑
v=2

[
− 1

2
log |R| − 1

2
(zv −Hxv)>R−1(zv −Hxv)

− 1

2
log |Q| − 1

2
(xv − Axv−1)>Q−1(xv −Hxv−1)

] (3.5)

Due to the Markov dependence structure of the hidden variables, the E-step only requires

68

computation of the following moments:

E [Xv], v = 1 . . . n, (3.6)

E
[
XvX

>
v

]
, v = 1 . . . n, (3.7)

E
[
XvX

>
v−1

]
, v = 2 . . . n, (3.8)

where all expectations are taken with respect to Pr(x | z). All of these can be computed

efficiently via the Kalman smoothing algorithm, which is essentially belief propagation on

a chain-structured Gaussian graphical model [67]. The M-step is then carried out with the

following closed-form updates:

Anew =
1

n− 1

n∑
v=2

E
[
XvX

>
v−1

](1

n− 1

n∑
v=2

E
[
Xv−1X

>
v−1

])−1

(3.9)

Hnew =
1

n

n∑
v=1

zvE
[
X>v
](1

n

n∑
v=1

E
[
XvX

>
v

])−1

(3.10)

Qnew =
1

n− 1

n∑
v=2

E
[
XvX

>
v

]
− Anew

(
1

n− 1

n∑
v=2

E
[
XvX

>
v−1

])>
(3.11)

Rnew =
1

n

n∑
v=1

zvz
>
v −Hnew

(
1

n

n∑
v=1

zvE
[
X>v
])>

(3.12)

The above updates assume no missed detections. Missed detections can be accommodated

with only slight modifications, taking expectations with respect to the missing observations

as well as the latent states. The algorithm also extends trivially to the case of multiple

tracks, where each track shares the same observation and dynamics models.

69

3.2 Parameter estimation in the TOMHT

Section 3.1 described how to estimate dynamics and observation model parameters from

known tracks. We now turn our attention to the case where tracks are not known. The main

difference between this case and the previous is that now the likelihood involves marginal-

ization over both hidden states and track indicator variables. This suggests using EM again,

treating the track indicator variables as additional missing data. Pseudocode for this ap-

proach is provided in Algorithm 4. We now discuss the main steps of the algorithm in

detail.

Recall the probabilistic model of Section 2.1. The corresponding CDLL is as follows:

log Pr(z,x, τ) =

|T |∑
u=1

τu

[
log

λν
λφ

−1

2
log |R| − 1

2
(zTu,1 −Hxu,1)>R−1(zTu,1 −Hxu,1)

+

|Tu|∑
v=2

(
−1

2
log |Q| − 1

2
(xu,v − Axu,v−1)>Q−1(xu,v −Hxu,v−1)

+1[Tu,v 6=(∗,0)]

(
−1

2
log |R| − 1

2
(zTu,v −Hxu,v)>R−1(zTu,v −Hxu,v)

− log λφ + log pD

)
+ 1[Tu,v=(∗,0)] log(1− pD)

)]
(3.13)

where xu,v is the state of track u’s target during its vth scan of existence, conditioned on

Tu = 1.

3.2.1 E-Step

Note the similarity between Equation 3.13 and Equation 3.5: aside from the fact that we are

now dealing with a collection of tracks, the main substantive difference is the introduction

70

of the Tu variables. Generalizing from the single-track case, it is easy to see that the multi-

target E-step requires the following expectations:

E [Tu], u = 1 . . . |T |, (3.14)

E [TuXu,v], u = 1 . . . |T |, v = 1 . . . |Tu|, (3.15)

E
[
TuXu,vX

>
u,v

]
, u = 1 . . . |T |, v = 1 . . . |Tu|, (3.16)

E
[
TuXu,vX

>
u,v−1

]
, u = 1 . . . |T |, v = 2 . . . |Tu|, (3.17)

where now expectations are taken with respect to Pr(x, τ | z). Note that since Tu is an

indicator variable, its expectation is simply its marginal probability, i.e., E [Tu] = Pr(Tu =

1 | z). We will show that the latter three expectations can be decomposed into the product

of the track marginal probability and a track-conditioned state moment.

Consider the more general expectation E [Tug(Xu)], where g is an arbitrary function of the

states corresponding to track u. Note that this encompasses Equations 3.15-3.17 as special

cases. We can decompose this expectation as follows:

E [Tug(Xu)] =

∫
X

∑
τu∈{0,1}

τug(xu) Pr(x, τu | z) (3.18)

=

∫
Xu

g(xu) Pr(xu, Tu = 1 | z) (3.19)

= Pr(Tu = 1 | z)︸ ︷︷ ︸
(a)

∫
Xu

g(xu) Pr(xu | Tu = 1, z)︸ ︷︷ ︸
(b)

. (3.20)

The term marked (a) is the marginal probability of a track indicator, a quantity for which

we have several tractable estimators (Section 2.2). The second term, (b), is an expectation

of a target’s state variables conditioned on its particular track. Computation of such mo-

ments amounts to single-target smoothing – a tractable, well understood problem. Since

computation of the track-conditioned state moments is isolated from the data association

71

uncertainty, track marginals can be viewed as the key ingredient in a reduction from multi-

target to single-target parameter estimation.

3.2.2 M-Step

After computing the expectations in Equations 3.14-3.17, the M-step proceeds analogously

to the labeled data case, with the expectations weighted by the probabilities of their corre-

sponding track:

Anew =
1

n′′

|T |∑
u=1

bu

|Tu|∑
v=2

E
[
Xu,vX

>
u,v−1

] 1

n′′

|T |∑
u=1

bu

|Tu|∑
v=2

E
[
Xu,v−1X

>
u,v−1

]−1

(3.21)

Hnew =
1

n′

|T |∑
u=1

bu

|Tu|∑
v=1

zvE
[
X>u,v

] 1

n′

|T |∑
u=1

bu

|Tu|∑
v=1

E
[
Xu,vX

>
u,v

]−1

(3.22)

Qnew =
1

n′′

|T |∑
u=1

bu

|Tu|∑
v=2

E
[
Xu,vX

>
u,v

]
− Anew

 1

n′′

|T |∑
u=1

bu

|Tu|∑
v=2

E
[
Xu,vX

>
u,v−1

]> (3.23)

Rnew =
1

n′

|T |∑
u=1

bu

|Tu|∑
v=1

zvz
>
v −Hnew

 1

n′

|T |∑
u=1

bu

|Tu|∑
v=1

zvE
[
X>u,v

]> , (3.24)

where bu is the marginal probability of track u, and

n′ =

|T |∑
u=1

bu|Tu| (3.25)

n′′ =

|T |∑
u=1

bu (|Tu| − 1) . (3.26)

As before, the updates above assume no missed detections for simplicity but can easily be

adapted to allow them.

72

Algorithm 4 EM for the Track-oriented MHT (TOMHT-EM)

1: procedure TOMHT-EM(z1:T , params)
2: trackTrees← {}
3: for k = 1 � T do
4: ExtendTrees(trackTrees, zk)
5: Compute τ ∗

6: nscanPrune(trackTrees, τ ∗, n)
7: params← UpdateParameters(trackTrees, params)
8: OutputStates(trackTrees, τ ∗)

9: procedure UpdateParameters(trackTrees, params) // Perform online EM.
10: for i = 1 � maxIter do
11: trackMarg ← EstimateMarginals(trackTrees) // Section 2.2.
12: T EM ← SelectEMTracks(trackMarg) // Section 3.2.4.
13: moments← []
14: for u = 1 � |T EM | do
15: moments[u]← KalmanSmoother(track)

16: params← mStep(trackMarg,moments)
17: UpdateTrackTrees(trackTrees, params)

18: return params

19: procedure UpdateTrackTrees(trackTrees, params)
20: for each tree ∈ trackTrees do
21: for each node ∈ DFSTraverse(tree) do
22: node.state← KalmanFilter(node.parent.state, node.observation)
23: node.score← UpdateScore(node.parent.score, node.observation)

73

3.2.3 Online updates

The TOMHT makes hard data association decisions while processing scans in sequence, so

it is critical to update the system parameters online instead of waiting until all of the data

has been processed. Since online EM is not the focus of this work, we implement a simple

incremental batch approach in our experiments; in principle, one could also use a more

sophisticated EM algorithm designed for online processing of dependent observations [14].

In our approach we perform 10 iterations of batch EM at each time step. When estimating a

static parameter we use all scans processed up to the current time; when estimating a time-

varying parameter (Section 3.3.4) we use only the most recent w scans, for some window

size w. Due to the approximate track marginals used in the E-step, some iterations may

decrease the likelihood. The hope is that the marginals are sufficiently accurate to produce

good parameter estimates in spite of this approximation.

3.2.4 Truncated E-step

In our implementation, Kalman filtering and smoothing consume the bulk of the time spent

running EM. Note that all of the track scores must be recomputed after each update of the

parameters. Additionally, the E-step requires the computation of smoothed state estimates

of every track. Many of these tracks have very low marginal probability, and as a result their

contributions to Equations 3.21-3.24 are minimal.

We use a simple truncation strategy to reduce the computational requirements. Specifically,

during the EM procedure we consider only those tracks whose marginal probability exceeds

some threshold, ε. This selection criterion results in a new set of tracks, T EM :

T EM = {Tu ∈ T : bu > ε} (3.27)

74

where, usually, |T EM | � |T |.

The threshold ε can be set to a fixed value, e.g. ε = .01, or allowed to vary as a function of

the current set of tracks. One realization of a time-varying threshold strategy is to include

in T EM a fixed proportion p of the expected target detections:

T EM = {Tu ∈ T : bu > b(k)}, (3.28)

where

k = min

j :

|T |∑
i=j

|Ti|b(i) > p

|T |∑
i=1

|Ti|b(i)

 (3.29)

and {b(i)} are the order statistics of the track marginal probabilities {bu}. In our experiments

we use a fixed threshold of ε = 0.01.

Proposition 3.1. The TOMHT-EM algorithm, using BP for track marginal estimation,

has complexity O((n+d2
x +d2

z)nmp
n + 2nmp

n
+ r(T (nmpn +n2m2pn−2) +knmpn−1(d3

x +d3
z)))

to process each scan, where k is current time step, r is the number of EM iterations at each

time step, T is the maximum number of BP iterations, n is the parameter of n-scan pruning,

p is the number of observations per gate, and m is the total number of observations per scan.

Proof. It is shown in Proposition 2.1 that the TOMHT algorithm has complexity O((n+d2
x+

d2
z)nmp

n+2nmp
n

+mk). TOMHT-EM differs only in the addition of the UpdateParameters

call, which we now analyze.

The E-step of EM requires estimating track marginals and running a Kalman smoother on

a subset of tracks. The complexity of estimating track marginals depends on the partic-

ular algorithm used; with BP-MARG the complexity is O(T (nmpn + n2m2pn−2)) (Propo-

sition 2.4). Running a Kalman smoother on a single track of length k has complexity

O(k(d3
x + d3

z)). Assuming BP-MARG uses a fixed fraction of all tracks, this leads to a com-

75

plexity of O(nmpn−1k(d3
x+d3

z)) for the smoothing. Thus, the total complexity for the E-step

is O(T (nmpn + n2m2pn−2) + nmpn−1k(d3
x + d3

z)).

The M-step (Equations 3.21-3.24) aggregates the moments computed in the E-step across

all selected tracks. Again assuming we use a constant fraction of all candidate tracks, this

step has a complexity of O(knmpn−1(d2
x + d2

z) + d3
x).

EM is run for r iterations, and between each iteration the filtered state estimates and scores

for all nodes in the track trees must be recomputed. There are O(nmpn−1) nodes, and each

node update takes O(d2
x+d3

z) time, so the total cost of this operation is O(nmpn−1(d2
x+d3

z)).

Putting it all together, the complexity of TOMHT-EM is O((n + d2
x + d2

z)nmp
n + 2nmp

n
+

r(T (nmpn + n2m2pn−2) + knmpn−1(d3
x + d3

z))).

3.3 Experimental results

In this section we evaluate the effect of online EM on tracker output. Unlike Chapter 2, we

are not directly interested in the accuracy of our learning and inference algorithms. Instead,

we aim to study their effectiveness at improving the quality of tracker output relative to

the case where parameters are tuned offline and then fixed and treated as constant. To

conduct this evaluation, we generate a dataset of simulated tracking scenarios and compare

the output of our tracker under various configurations with the (simulated) ground truth

tracks.

76

60 80 100 120 140

Time

−10

−5

0

5

10

Z

Figure 3.1: Part of a simulated scenario used to evaluate the impact of parameter estimation.
The ‘x’s represent observations, and true target state trajectories are shown as solid lines.

3.3.1 Description of simulated data

For each simulated scenario we generate data using linear Gaussian dynamics and observation

models, parameterized as follows:

A =

 1 1

0 1

 Q =

 .12 0

0 .22

 H =

[
1 0

]
R =

[
.252

]

λν = .1 λφ = 3 pD = .95 pγ = .05

(3.30)

This is an instance of the common “nearly-constant velocity” dynamics model, where the

2-dimensional state space represents the target’s position and velocity and the observation

space corresponds to target position. To encourage frequent track crossings, we slightly bias

targets’ velocity state components toward the origin. To achieve this we add additional

state-dependent Gaussian random noise, with positive mean when velocity is negative and

negative mean when the velocity is positive. We also cap the speed at 1 unit per time step.

We generated 50 such scenarios, each 200 scans in duration. A portion of one simulated

scenario is shown in Figure 3.1.

77

3.3.2 Evaluation of multi-target tracking output

Evaluating the output of a multi-target tracking system is a complex task in itself. There

are many classes of potential error, including missed tracks, spurious tracks, merged or split

tracks, and state estimation error. We use a metric called optimal subpattern assignment for

tracks (TOSPA) to weight and combine all such errors into a single number summarizing

the deviation of the tracker’s filtered state trajectories from ground truth [63].

The TOSPA metric represents a track as a labeled sequence of states: ((s, x1), (s, x2), . . . , (s, xk)).

Here, s is an integer label for the track and does not change over time; xi is the state of the

track at time k. Given a set of tracks (either output from the tracker or the ground truth

tracks), the set of all label/state pairs in existence at time t is called a snapshot. Let Xt be

the snapshot of the ground truth tracks at time t, and Nt be the corresponding snapshot of

the tracker output. Let the cardinality of these sets be m and n, respectively.

TOSPA defines a distance between these snapshots:

Dp,c(Xt,Nt) =

[
1

n

(
min
π∈Πn

m∑
i=1

(
dc
(
Xt,i,Nt,π(i)

))p
+ (n−m)cp

)] 1
p

, (3.31)

where p and c are parameters of the metric, and Πn is the set of all permutations of the

integers from 1 to n. Here, dc is called the truncated base distance between label/state pairs,

and is defined as follows:

dc ((s, x), (t, y)) = min

(
c,
(
||x− y||p

′

p′ +
(
α(1− 1[s=t])

)p′) 1
p′
)

(3.32)

Note that dc is itself parameterized by p′ and α.

TOSPA error depends, in part, on the agreement of the labels between tracker output and

ground truth tracks. These labels are assigned in a pre-processing step in a way that min-

78

imizes the average error across time steps. In the subsequent experiments, all reported

TOSPA error values correspond to this time-averaged quantity rather than the error for a

particular snapshot.

Essentially, TOSPA error can come from one of three sources: cardinality error, influenced

by the parameter c; localization error, influenced by p′ and α; and label-switching error, in-

fluenced by α. Equation 3.31 combines these sources of error into a single number, weighting

the different types of error according its parameterization. In the following experiments, we

use c = 0.5, α = 0.25, and p = p′ = 2. This results in a metric that is lower bounded by 0,

upper bounded by 0.5, and penalizes label-switching errors half as severely as a cardinality

error.

3.3.3 Recovery from poor initial model specification

It will often be the case that the parameters with which a tracker is run are not actually

optimal with respect to the data it is processing. Although real data is not truly generated

from a linear dynamical system, we can still consider some parameter setting optimal in the

sense that it results in the highest quality tracker output with respect to an error metric of

interest (in our case, TOSPA). The difference between a tracker’s initial parameter setting

and the parameter’s optimal value is termed parameter misspecification.

Minor misspecification will not affect the data association decisions made by the TOMHT,

so the only impact will be slightly degraded target state estimates. More significant misspec-

ification has the potential to affect the optimal solution to Equation 2.10, leading to false

tracks, split tracks, and missed tracks in addition to state estimation error. By reducing the

level of misspecification as the tracker progresses, EM has the potential to mitigate errors of

both types.

79

To test this hypothesis, we processed each of the 50 scenarios with seven different initial

settings of Q. All initial settings of Q were diagonal, corresponding to independent noise on

the position and velocity state components. We began with the covariance matrix used in

the simulation process – call this matrix Q∗. Since states were perturbed to encourage track

crossings these should not be thought of as “true” parameter values, but they are likely close

to optimal since the perturbations were not large. From there we generated three covariance

matrices with overestimates of the noise variance, doubling the standard deviations (SDs)

each time. Finally, we generated three corresponding matrices underestimating the noise

variance, halving the SDs rather than doubling them. The result is a set of covariance

matrices indexed by the scaling factors shown along the x-axis of Figure 3.2.

For each scenario and initial value of Q we ran a TOMHT with four different EM configura-

tions: (1) no EM; (2) EM using BP for marginalization; (3) EM using the 1-best estimator

for marginalization; and (4) EM with 10-best. The runs were distributed across a cluster

using GNU Parallel [72]. Comparing tracker performance under these four configurations

allows us to determine whether online EM is useful and which marginalization algorithms

work best in that context.

Figure 3.2 plots tracker error as a function of the initial parameter values for the four

different EM configurations. Looking at the “No EM” line, we see that Q∗ performs best, as

expected. Without EM, initializing the noise SDs to either larger or smaller values leads to

worse tracker performance. With online EM, however, the initial setting of Q has very little

impact on tracker error, indicating that the parameters quickly converge to near-optimal

values. All marginalization methods seem to perform about equally well, with the exception

of the 1-best estimator which causes catastrophic failure with the largest initial noise SDs.

Figure 3.3 shows an example of how parameter misspecification and EM affect tracker out-

put. The left-most and center ellipses highlight successes of EM. On the left, we see that

inflated variance parameters cause the tracker to miss a track entirely, but with EM it is

80

1/8× 1/4× 1/2× 1× 2× 4× 8×
Noise standard deviations, relative to Q∗

0.25

0.30

0.35

0.40

0.45

0.50

T
O

S
P

A

No EM

BP

1-best

10-best

Figure 3.2: Online EM makes the tracker robust to misspecification of Q, preventing the
increase in error observed in the static (No EM) case. Error bars represent ±1 SD of the
TOSPA error values across the 50 scenarios.

81

100 110 120 130 140 150

Time

−10

−5

0

5

10

Z

Good initialization, no EM

100 110 120 130 140 150

Time

−10

−5

0

5

10

Z

Bad initialization, no EM

100 110 120 130 140 150

Time

−10

−5

0

5

10

Z

Bad initialization, with EM

Figure 3.3: A detailed view of how tracker output is affected by parameter misspecification
with and without online EM. (top) Tracker output on a portion of one scene when run with
near optimal parameter settings and no online EM. Observations are plotted as ‘x’s, actual
state trajectories with solid black lines, and the tracker’s filtered state estimates with red
lines marked by circles. (middle) Tracker output on the same scene resulting from a poor
initializing (corresponding to the scaling of the noise SD) and no online EM. (bottom)
Tracker output given the same initialization as in the middle figure, but with online EM.

82

1/4× 1/3× 1/2× 2/3× 1× 3/2× 2× 3× 4×
Noise standard deviations, relative to R∗

0.25

0.30

0.35

0.40

0.45

0.50

T
O

S
P

A

No EM

BP

Figure 3.4: Online EM makes the tracker robust to initial misspecification of R, preventing
the increase in error observed in the static (No EM) case.

able to recover and identify the track. The middle shows an instance where inflated variance

parameters cause the tracker to join two separate tracks, whereas EM is able to reduce the

variances and avoid this mistake. EM is not a panacea, however. The rightmost ellipse

highlights a case where the static tracker with a good initialization makes the correct data

association, parameter misspecification introduces an error, and EM fails to recover.

The EM algorithm developed in Section 3.1.1 allows us to estimate other parameters, as well.

In Figure 3.4 we explore a range of misspecification values for the observation noise variance

just as in the process noise case. The value used in the simulation was R∗ = [0.252], and

we again consider several larger and smaller values by scaling the standard deviation. The

results are qualitatively very similar to the case of misspecified Q. Varying the initial noise

standard deviation from 1/4× to 4× the near-optimal value R∗ causes severe performance

degradation in the absence of online parameter estimation, but incorporating the online EM

83

0 20 40 60 80 100

Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
a
ra

m
et

er
v
a
lu

e

Position noise SD

Velocity noise SD

Figure 3.5: Position and velocity noise standard deviations over time. The parameters range
from 1/4× to 4× the values used in the static parameter simulation of Section 3.3.3.

updates makes the tracker robust against this misspecification.

3.3.4 Tracking targets with time-varying dynamics

The previous section assumes that parameters remain constant over the course of a tracking

scenario. As a result, a tracker with online EM can only ever do as well as a static-parameter

tracker with optimal parameter settings. In practice, however, parameters may vary over

time. In such a setting it is intuitive that a tracker with fixed parameters would perform

worse than a tracker that dynamically adjusts its parameters to follow their optimal values.

To test this assumption we generated another set of simulated tracking scenarios. The

generative procedure is identical to that described in Section 3.3.1, except now the process

noise covariance matrix changes over time. The noise standard deviations were initialized

with 0.1 and 0.2, as before, and then evolved in time according to an exponentiated sinusoid

ranging from the 1/4× to 4× values from Section 3.3.3 with a period of 200 time steps.

Figure 3.5 illustrates the evolution of the two standard deviations over time. When running

the tracker on these scenarios with online parameter estimation, we restrict EM to consider

only the most recent 10 scans as described in Section 3.2.3. Note that our simple online EM

algorithm treats parameters as being constant within this window, which contradicts our

84

1/8× 1/4× 1/2× 1× 2× 4× 8×
Noise standard deviations, relative to Q∗

0.25

0.30

0.35

0.40

0.45

0.50

T
O

S
P

A

No EM

BP

Figure 3.6: Tracking targets with time-varying dynamics. The tracker with online EM
performs slightly better than best static-parameter tracker.

assumption that parameters can vary from scan to scan. However, if the window is small

and parameters change slowly over time, a parameter’s value within the window will be well

approximated by a constant.

Figure 3.6 plots TOSPA error as a function of initial parameter settings, both with and

without online EM. Relative to Figure 3.2, both curves have been shifted “up” – the tracker

performs worse than in the static parameter setting. As expected, tracker performance with

online EM is slightly better than the best static parameter setting. However, the difference

is quite small. This is due to the simplicity of our windowed batch EM algorithm, which

introduces a lag in the estimated parameter values relative to their current optima. Explicit

modeling the parameter values as time-varying quantities would almost certainly improve

the online EM results. Even as it stands, though, Figure 3.6 demonstrates the potential for

real-time parameter estimation based on approximate marginalization to improve tracker

85

performance beyond what is possible with a standard, fixed-parameter tracker.

3.4 Summary of contributions

We have introduced a framework for online parameter estimation in the TOMHT based

on the approximate track marginal estimators developed in the previous chapter. The re-

sulting EM-enabled tracker is robust against parameter misspecification, and can actually

perform better than the corresponding perfectly initialized static-parameter tracker if the

true parameters are changing over time.

Our main contributions in this chapter are:

• We develop an EM algorithm for estimating parameters of the TOMHT model.

• We conduct experiments on simulated data, demonstrating the potential of this method

to make the TOMHT robust to parameter misspecification.

• We compare performance of the EM-enabled TOMHT based on three of the track

marginal estimators introduced in Chapter 2. We show that BP results in better

performance than the 1-best estimator and comparable performance to the 10-best

estimator.

• We conduct an evaluation of tracker performance on data simulated with time-varying

parameters, and reveal that online EM in such cases can result in better performance

than that of the corresponding best possible static-parameter tracker.

86

Chapter 4

Variational message-passing for

continuous graphical models

Graphical models have proven to be an effective tool for representing the underlying structure

of probability distributions and organizing the computations required for exact and approx-

imate inference. Early examples of the use of graph structure for inference include join or

junction trees [56] for exact inference, Markov chain Monte Carlo (MCMC) methods [26],

and variational methods such as mean field and structured mean field approaches [37]. Belief

propagation (BP), originally proposed by Pearl [56], has gained in popularity as a method

of approximate inference, and in the last decade has led to a number of more sophisticated

algorithms based on conjugate dual formulations and free energy approximations [82, 75, 68].

However, the progress on approximate inference in systems with continuous random variables

has not kept pace with that for discrete random variables. Some methods, such as MCMC

techniques, are directly applicable to continuous domains, while others such as belief prop-

agation have approximate continuous formulations [69, 51]. Sample-based representations,

87

such as are used in particle filtering [3], are particularly appealing as they are relatively easy

to implement, have few numerical issues, and have no inherent distributional assumptions.

This chapter extends particle methods to take advantage of recent advances in approximate

inference algorithms for discrete-valued systems.

Several recent algorithms provide significant advantages over loopy belief propagation. Double-

loop algorithms such as CCCP [84] and UPS [74] use the same approximations as BP but

guarantee convergence. More general approximations can be used to provide theoretical

bounds on the partition function [75, 37] or are guaranteed to improve the quality of approx-

imation [68], allowing an informed trade-off between computation and accuracy. Like belief

propagation, they can be formulated as local message-passing algorithms on the graph, mak-

ing them amenable to parallel computation [29] or inference in distributed systems [34, 65].

In short, the algorithmic characteristics of these recently-developed algorithms are often

better, or at least more flexible, than those of BP. However, these methods have not been

applied to continuous random variables, and in fact this subject was one of the open questions

posed at a recent NIPS workshop [27].

In order to develop particle-based approximations for these algorithms, we focus on one

particular technique for concreteness: tree-reweighted belief propagation (TRW) [75]. TRW

represents one of the earliest of a recent class of inference algorithms for discrete systems,

but as we discuss in Section 4.2 the extensions of TRW can be incorporated into the same

framework if desired.

The basic idea of our approach is simple and extends previous particle formulations of exact

inference [41] and loopy belief propagation [35]. We use collections of samples drawn from

the continuous state space of each variable to define a discrete problem, “lifting” the infer-

ence task from the original space to a restricted, discrete domain in which TRW and other

variational inference algorithms can be performed. At any point, the current results of the

88

discrete inference can be used to re-select the sample points from a variable’s continuous

domain. This iterative interaction between the sample locations and the discrete messages

produces a dynamic discretization that adapts itself to the inference results.

We demonstrate that TRW and similar methods can be naturally incorporated into the

lifted, discrete phase of particle belief propagation and that they confer similar benefits

on the continuous problem as hold in truly discrete systems. To this end we measure the

performance of the algorithm on an Ising grid, an analogous continuous model, and the

sensor localization problem. In each case, we show that tree-reweighted particle BP exhibits

behavior similar to TRW and produces significantly more robust marginal estimates than

ordinary particle BP.

4.1 A review of inference methods for continuous

graphical models

We begin with a brief overview of some of the most popular methods for inference in con-

tinuous graphical models. The methods are grouped according to the strategy they use for

dealing with the intractability of exact operations on arbitrary continuous functions.

4.1.1 Special case: jointly Gaussian models

Gaussian MRFs [77] are an important special case of continuous graphical models. The

analytical form of the Gaussian PDF enables efficient, exact computation of the standard

sum-product messages updates. Furthermore, when BP converges on a Gaussian graphical

model it is guaranteed to identify the exact mean of each variable [77]. Unfortunately, many

models of interest involve continuous random variables that are not normally distributed.

89

These models require additional techniques to deal with the continuous space of values.

4.1.2 Discretization

The simplest approach to dealing with a continuous-valued graphical model is to convert

it to a discrete graphical model via binning. Specifically, suppose we have a factor graph

defined over bounded-domain real-valued variables X = [X1 · · ·Xn]. Assume for simplicity

that all variables have the same domain, Xi ∈ [a, b]. Then we can define a new set of discrete

variables, X̂ = [X̂1 · · · X̂n], such that the event X̂i = j approximates the event

a+
b− a
d

(j − 1) < Xi < a+
b− a
d

(j) (4.1)

for all j from 1 to d. Thus, X̂i represents a uniform discretization of Xi into d equally

sized bins. The corresponding discrete factor graph also replaces the factors with discretized

versions: f̂u(x̂u) = fu(x̃u), where x̃u is a real-valued vector with elements equal to the

centers of the bins identified by x̂u.

Using the simple approach described above, a continuous factor defined over variablesXu will

contain d|Xu| values once discretized. This causes the storage and computation complexity

of most exact and approximate inference algorithms to have complexity polynomial in d.

To mitigate the effect of quantization error, d must generally be fairly large. As a result,

uniform discretization is generally practical only for pairwise graphical models.

More intelligent discretization schemes are also possible [43, 1]. For example, continuously-

adaptive discretization for message passing (CAD-MP), performs a greedy, non-uniform dis-

cretization of each variable to minimize the K-L divergence between its piecewise-constant

beliefs and the unquantized continuous beliefs [1]. This can greatly reduce the number of bins

needed to accurately approximate continuous beliefs in higher dimensions, but it does not

90

offer any accuracy guarantees and it requires that all continuous factors be exactly integrable

over arbitrary hyperrectangles.

4.1.3 Parametric approximation

Expectation propagation (EP) [51] deals with continuity by restricting the messages in a

BP-like algorithm to have a tractable, exponential family form. By including an explicit

projection step to ensure that no messages or beliefs grow too complex to compute, EP can

perform fast, approximate inference in models where even standard sum-product would be

intractable (high-dimensional mixed continuous/discrete models, for example). One down-

side of this approach is that it can be difficult to understand the impact of the various

approximations that must be made to attain tractability. Also, while EP is a very general

approach (encompassing algorithms like discrete tree-reweighted BP as special cases), its

flexibility on any particular model is limited by the analytical forms of the factors present.

In general, EP cannot tractably emulate an algorithm like tree-reweighted BP on a model

with arbitrary continuous factors.

4.1.4 Kernel density estimation

Nonparametric belief propagation (NBP) [69] uses kernel density estimation to approximate

continuous messages and beliefs. BP messages are represented as Gaussian mixtures and

message products are approximated by drawing samples, which are then smoothed to form

new Gaussian mixture distributions. A key aspect of this approach is the fact that the

product of several mixtures of Gaussians is also a mixture of Gaussians, and thus can be

sampled from with relative ease. However, it is difficult to see how to extend this algorithm

to more general message-passing algorithms. For example, the TRW fixed point updates

(Equation (1.38)) involve ratios and powers of messages, which do not have a simple form

91

for Gaussian mixtures and may not even form finitely integrable functions.

4.1.5 Importance sampling

Particle belief propagation (PBP) [35], the algorithm on which this chapter is founded, is

a recent approach based on importance sampling. Whereas NBP represents each message

with a mixture of Gaussians, PBP represents a message as a weighted mixture of delta

functions. This parsimonious representation turns out to be quite flexible. The weights of

the delta functions are chosen to enable unbiased importance sampling estimates of arbitrary

expectations, including the integral in the BP factor message computation. The remainder

of this section introduces the PBP algorithm.

First, we briefly review the concept of importance sampling. Suppose we have a random

vector X ∼ p(x) and some function of interest f(x) for which we would like to compute the

following expectation:

µ = Epf(x) =

∫
X

f(x)p(x). (4.2)

For arbitrary densities p and functions f , this expectation may be intractable. A standard

approach in such cases is Monte Carlo integration [64], which approximates the integral with

the average of N function evaluations corresponding to samples from p:

µ̂ =
1

N

N∑
i=1

f
(
x(i)
)
, (4.3)

where x(i) ∼ p(x) is the ith sample drawn from p. It is easy to see that µ̂ is an unbiased

estimator of µ. Further, the law of large numbers states that µ̂ � µ as N � ∞, and the

central limit theorem reveals that, asymptotically, the standard deviation of µ̂ decreases at

a rate of 1/
√
N [64].

92

(1) Sample{
x

(i)
s

}
∼ qs(xs)

(1)

(2) Inference on discrete system

(3) Adjust

qt(xt)
(3)

µ
(
x

(i)
s

)
µ
(
x

(j)
t

)
f
(
x

(i)
s , x

(j)
t

)

Figure 4.1: Schematic view of particle-based inference. (1) Samples for each variable provide
a dynamic discretization of the continuous space; (2) inference proceeds by optimization or
message-passing in the discrete space; (3) the resulting local functions can be used to change
the proposals qs(xs) and choose new sample locations for each variable.

Unfortunately, in many cases of practical interest it is infeasible to draw samples from p(x),

rendering direct Monte Carlo integration inapplicable. In still more cases, it is possible to

draw samples from p but the variance of the resulting estimator may be very large, requiring

an unacceptably large number of samples to produce good estimate. Importance sampling

is a technique that can circumvent, or at least mitigate, these difficulties. Importance sam-

pling reformulates the quantity µ as an expectation with respect to a convenient proposal

distribution, q [64]. Specifically, let

µ̂IS =
1

N

N∑
i=1

f
(
x(i)
)
p
(
x(i)
)

q (x(i))
, (4.4)

where now the x(i) are drawn from a proposal distribution q(x). Note that µ̂IS is the Monte

Carlo approximation of the reweighted expectation Eq[f(x)p(x)/q(x)], which is equal to our

original target quantity Ep[f(x)].

Particle BP uses importance sampling to approximate BP updates on continuous graphi-

cal models. At a high level, the procedure iterates between sampling particles from each

variable’s domain, performing inference over the resulting discrete problem, and adaptively

updating the sampling distributions. This process is illustrated in Figure 4.1. Formally,

we define an independent proposal distribution qs(xs) for each variable Xs such that qs(xs)

93

is non-zero over the domain of Xs. Let us index the variables that neighbor factor fu as

Xu = {Xu1 , . . . , Xub}. Then we can rewrite the standard BP factor message computation

(Equation 1.27) as an importance reweighted expectation:

mfu�Xs(xs) ∝ E
Xu\Xs

fu(xu) ∏
Xt∈Xu\Xs

mXt�fu(xt)

qt(xt)

 . (4.5)

After sampling N particles {x(1)
s , · · · , x(N)

s } from qs(xs), we can index a particular assignment

of particle values to the variables in Xu with x
(j)
u = [x

(j1)
u1 , . . . , x

(jb)
ub]. We then obtain a finite-

sample approximation of the factor message in the form

mfu�Xuk

(
x(j)
uk

)
∝ 1

N b−1

∑
i:ik=j

fu (x(i)
u

)∏
l 6=k

mXul�fu

(
x

(il)
ul

)
qul

(
x

(il)
ul

)
 . (4.6)

In other words, PBP computes a Monte Carlo approximation to the integral using importance

weighted samples from the proposal. Each of the values in the message then represents an

estimate of the continuous function (4.5) evaluated at a single particle. Observe that the sum

is over N b−1 elements, and hence the complexity of computing an entire factor message is

O(N b); this could be made more efficient at the price of increased stochasticity by summing

over a random subsample of the vectors i.

Variable messages and beliefs are computed as simple point-wise products, as in standard

BP:

mXs�fu
(
x(j)
s

)
∝

∏
fv∈fs\fu

mfv�Xs(x
(j)
s) (4.7)

bu
(
x(j)
u

)
∝ fu(x

(j)
u)

|Xu|∏
k=1

mXuk�fu(x(jk)
s). (4.8)

Algorithm 5 provides pseudocode for PBP.

94

Algorithm 5 Particle BP [35]

1: procedure PBP({fu}mu=1, qs(xs), N)

2: Draw particle sets: {x(i)
s }Ni=1 ∼ qs(xs), s=1. . . n

3: Initialize messages: mfu�Xs(x
(j)
s) = 1, mXs�fu(x

(j)
s) = 1 ∀fu, Xs ∈Xu

4: iter ← 1
5: while not converged and iter < maxIter do
6: s← NextVariable() // Message schedule
7: for each fu ∈ Fs do
8: k ← IndexOf(Xs,Xu) // Xuk is Xs

9: mfu�Xuk (x
(j)
uk) ∝ 1/N b−1

∑
i:ik=j fu(x

(i)
u)
∏

l 6=kmXul�fu(x
(il)
ul)/qul(x

(il)
ul) ∀j

10: qs, {x(i)
s }Ni=1 ← ResampleParticles(s) // Optional

11: for each fu ∈ Fs do
12: mXs�fu(x

(j)
s) ∝

∏
fv∈fs\fumfv�Xs(x

(j)
s) ∀j

13: iter ← iter + 1
14: end while
15: for each fu ∈ F do
16: bu(x

(j)
u) ∝ fu(x

(j)
u)
∏|Xu|

k=1 mXuk�fu(x
(jk)
s) ∀j

Proposition 4.1. The PBP algorithm has time complexity O(TmbN b), where T is the

number of iterations, m is the number of factors, b is the maximal scope of any factor, and

N is the number of particles per variable.

Proof. The complexity of BP on a factor graph is dominated by the computation of factor

messages. Computing a single factor message takes time O(db), where d is the maximum

variable domain size and b is the maximum factor scope size. In PBP, the variable domain

size d is replaced by a particle domain size, N , so the complexity becomes O(N b). Each

factor must send at least one message to each of its neighbors, which amounts to O(mb)

messages. Usually a message must be re-computed multiple times prior to convergence, so

the running time scales linearly with the number of iterations, T . Thus, the total time for

the discrete message-passing phase of PBP is O(TmbN b).

Aside from the discrete message-passing, PBP also includes sampling and resampling steps.

The initial sampling takes time O(nN). Subsequent resampling complexity varies depending

on how often it is performed and by which method. Here we consider the Metropolis-Hastings

95

strategy. To resample a single variable, we perform a constant number of M-H steps, each

of which requires recomputing the incoming factor messages. One round of resampling over

all variables thus takes time O(mbN b). If resampling is performed after each full round of

message updates, the total cost of resampling is O(TmbN b).

Combining the complexities of the discrete message-passing and sampling phases gives an

overall complexity of O(TmbN b).

Rao-Blackwellization

Quantities about Xs such as expected values under the pseudomarginal can be computed

using the samples {x(i)
s }. Note that for any given variable node Xs, the incoming messages

to Xs given in (4.6) are defined in terms of the importance weights and sampled values of

the neighboring variables. Thus, we can compute an estimate of the messages and beliefs

defined in (4.6)–(4.8) at arbitrary values of Xs, simply by evaluating (4.6) at that point.

This can be viewed as an instance of Rao-Blackwellization [12], conditioning on the samples

at the neighbors of Xs and integrating over possible particle sets {x(i)
s }.

Using this trick we can often get much higher quality estimates from the inference for small

N . In particular, if the variable state spaces are sufficiently small that they can be discretized

but the resulting factor domain size, db, is intractably large, we can evaluate (4.6) on the

discretized grid for only O(dN b−1). More generally, we can substitute a larger number of

samples N ′ � N with cost that grows only linearly in N ′.

For a more general application of Rao-Blackwellization in the context of sampling-based

inference in graphical models, see [8].

96

Resampling and Proposal Distributions

Another critical point is that the efficiency of this procedure hinges on the quality of the

proposal distributions qs. Unfortunately, this forms a circular problem – q must be chosen to

perform inference, but the quality of q depends on the distribution and its pseudomarginals.

This interdependence motivates an attempt to learn the sampling distributions in an online

fashion, adaptively updating them based on the results of the partially completed inference

procedure. Note that this procedure depends on the same properties as Rao-Blackwellized

estimates: that we be able to compute our messages and beliefs at a new set of points given

the message weights at the other nodes.

Both [41] and [35] suggest using the current belief at each iteration to form a new proposal

distribution. In [41], parametric density estimates are formed using the message-weighted

samples at the current iteration, which form the sampling distributions for the next phase.

In [35], a short Metropolis-Hastings MCMC sequence is run at a single node, using the Rao-

Blackwellized belief estimate to compute an acceptance probability. A third possibility is to

use a sampling/importance resampling (SIR) procedure, drawing a large number of samples,

computing weights, and probabilistically retaining only N . Finally, one could draw samples

from the current beliefs, as approximated by Rao-Blackwellized estimation over a fine grid

of particles.

Finite sample behavior

Another attractive aspect of PBP is that it admits finite sample analysis of the error it

introduces, at least on simple graphs. For example, it is shown in [35] that, on a tree-

structured pairwise factor graph with k nodes and N particles per node, the following holds

97

simultaneously for all variables Xs and particles x
(i)
s with probability 1− δ:

b̂s(x
(i)
s) ∈ bs(x(i)

s)

(
1±O

(
k
√
N−1Rq log(kN/δ)

))
, (4.9)

where b̂s is the belief at variable Xs computed by PBP, bs is the belief that exact message-

passing would produce, and Rq is a constant defined as follows:

Rq = max
{u,s}:Xs∈Xu

max
Xu

fu(xu)
∏

Xt∈Xu\XsmXt�fu(xt)

qt(xt)mfu�Xs(xs)
. (4.10)

4.2 Extending particle belief propagation

Particle belief propagation provides a simple, flexible framework for dealing with continuity

in the context of approximate marginalization. At a high level, it can be viewed as an

interactive procedure with three stages:

1. Draw a particle set for each variable from its proposal distribution.

2. Run importance-reweighted message-passing over the particle domains.

3. Adjust the proposals to incorporate the results of step (2).

A key feature of PBP, for the purposes of this chapter, is the loose coupling between its

approach to handling continuity and the underlying discrete inference algorithm. The only

constraint that PBP places on the this algorithm is that it incorporate the particle impor-

tance weights when performing marginalization. Since this involves only a simple reweighting

operation, there is significant flexibility in the choice of discrete inference algorithm. In this

section we show how PBP enables the application of two variational message-passing algo-

rithms – tree-reweighted BP and naive mean field – to continuous graphical models.

98

4.2.1 Tree-reweighted PBP

To apply TRW to continuous graphical models, we simply embed its message-passing updates

in the discrete inference phase of PBP. Taking the particle importance weights into account,

the message updates become:

mfu�Xuk

(
x(j)
uk

)
∝ 1

N b−1

∑
i:ik=j

fu (x(i)
u

)1/ρu
∏
l 6=k

mXul�fu

(
x

(il)
ul

)
qxul

(
x

(il)
ul

)
 (4.11)

mXs�fu
(
x(j)
s

)
∝

∏
fv∈Fsmfv�Xs

(
x

(j)
s

)ρv
mfu�Xs

(
x

(j)
s

) (4.12)

bs
(
x(j)
s

)
∝
∏
fu∈Fs

mfu�Xs
(
x(j)
s

)ρu
. (4.13)

This parallels the development in Section 4.1.5, except here we use factor weights ρ to

compute messages according to TRW rather than standard loopy BP.

Just as in discrete problems, it is often desirable to obtain estimates of the log partition

function for use in goodness-of-fit testing or model comparison. Our implementation of

TRW-PBP gives us a stochastic estimate of an upper bound on the true partition function.

Using other message passing approaches that fit into this framework, such as mean field,

can provide a similar a lower bound. These bounds provide a possible alternative to Monte

Carlo estimates of marginal likelihood [16].

To exactly evaluate the TRW upper bound on a continuous model, we use the same expression

as in Equation 1.39 but with summations over variable domains replaced by integrals:

ATRW (θ) =
m∑
u=1

∫
Xu

log fu(xu)bu(xu)−
m∑
u=1

ρu

∫
Xu

bu(xu) log bu(xu)

+
n∑
s=1

(
1−

∑
fu∈Fs

ρu

)∫
Xs

bs(xs) log bs(xs).

(4.14)

99

Note that all of the integrals correspond to expectations with respect to a variable or factor

belief. Since we can evaluate these beliefs at any point by requesting a new set of incoming

messages (Section 4.1.5), one can directly approximate these integrals using importance

sampling. Alternatively, one can construct a fine-grained piecewise-constant approximation

to the beliefs, again using Rao-Blackwellized message computations, and compute exact

expectations with respect to these approximate beliefs.

In either case, the resulting quantity is no longer a strict bound on the log-partition function

due to approximations introduced both in the message-passing and in the bound compu-

tation, itself. Instead, this method computes a stochastic approximation ÂTRW (θ) that

converges to the true bound as N �∞.

4.2.2 Mean field PBP

Similarly, we can embed mean field updates within the PBP algorithm. The particle-based

update equations are as follows:

mXs�fu
(
x(j)
s

)
∝
∏
fv∈Fs

exp
(
mfv�Xs(x

(j)
s)
)

(4.15)

mfu�Xuk

(
x(j)
s

)
∝ 1

N b−1

∑
i:ik=j

log fu(x
(i)
u)
∏
l 6=k

mXul�fu
(
x(il)
ul

)
(4.16)

bs
(
(x(j)

s

)
∝
∏
fu∈Fs

exp
(
mfu�Xs

(
x(j)
s

))
(4.17)

As with TRW-PBP, we can use the results of this procedure to compute a sample-based

approximation to the mean field lower bound. Again, the resulting quantity ÂMF will not

itself be a bound, but will converge to the lower bound AMF as N �∞.

100

4.2.3 Primal bounds on the log-partition function

One of the advantages of methods like mean field and tree-reweighted BP is that they yield

bounds on the log-partition function. As seen in Sections 4.2.1-4.2.2, the PBP framework

extends this functionality to continuous graphical models, but it introduces a significant

caveat: the “bounds” produced by TRW-PBP and MF-PBP are stochastic approximations

of the true TRW and MF bounds. That is, due to error introduced by the approximate

integration, the MF-PBP and TRW-PBP bounds are not actually guaranteed to bound

the log-partition function except in the limit of infinite particles. Furthermore, since the

bounds depend on beliefs (dual parameters) that must be estimated via iterative optimization

procedures, it is difficult to quantify the error introduced by the Monte Carlo integration in

the PBP variants of the “bounds.”

Weighted mini-bucket [48] offers an alternate means of bounding the log-partition function.

The WMB bound (Equation 1.51) is computed from the primal form of the log-partition

function, and computation of the bound can be viewed as variable elimination on a covering

graph. This view is particularly convenient when we consider approximating the bound using

PBP: the finite-sample analysis of PBP on tree-structured graphs [35] extends naturally to

quantify the concentration of the approximate WMB-PBP bound around the true WMB

bound.

Bernstein’s Inequality

The primary inequality used in the analysis of PBP [35] is a variant of Bernstein’s inequality:

given n IID random variables {Xi}ni=1, if 0 ≤ Xi ≤ RE[Xi] with probability 1, then with

101

probability at least 1− δ over the choice of values x1, . . . , xn,

1

n

n∑
i=1

xi ∈ E[Xi](1± ε(R, n, δ)) (4.18)

where

ε(R, n, δ) =

√
R

n

(
η +

√
η2 + 2 ln(2/δ)

)
(4.19)

and

η =
ln(2/δ)

3

√
R

n
.

When n� R, this simplifies to ε ≈
√

2 ln(2/δ)R/n.

Weighted mini-bucket PBP

We now apply this inequality to the message updates in WMB-PBP, resulting in a prob-

abilistic bound on the difference between the actual WMB upper bound (denoted here as

Zu) and the stochastic WMB-PBP approximation to Zu (denoted Ẑu). With continuous

variables, the WMB message update becomes:

mk�l(x̄skl) =

∫
x̄k

f̄ck(x̄ck) ∏
j:k∈p̄a(j)

mj�k(x̄sjk)

1/w̄k

w̄k

. (4.20)

Approximating the integral using importance sampling, as in PBP, yields the following

WMB-PBP message update:

m̂k�l(x̄
(h)
skl

) =

(
1

m

∑
i:i↓skl=h

1

q̄k(x̄
(i1)
k)

(
f̄ck(x̄

(i)
ck

)
∏

j:k∈p̄a(j)

m̂j�k(x̄
(i↓sjk)
sjk)

)1/w̄k
)w̄k

, (4.21)

102

where i ↓ skl is the subvector of i corresponding to the variables in skl.

To apply Bernstein’s inequality to the empirical expectation in the above formula, we must

first show that the random variables being averaged have a finite upper bound, Rq. Let

Rq = max
(k,l):l∈p̄a(k)

max
x̄cl ,x̄ck

1

q̄k(x̄k)mk�l(x̄cl)
1/w̄k

f̄ck(x̄ck) ∏
j:k∈p̄a(j)

mj�k(x̄ck)

1/w̄k

. (4.22)

Then we have

1

q̄k(x̄k)

f̄ck(x̄ck) ∏
j∈p̄a(k)

mj�k(x̄ck)

1/w̄k

≤ Rqmk�l(x̄cl)
1/w̄k

= RqEx̄∼q̄k

 1

q̄k(x̄k)

f̄ck(x̄ck) ∏
j:k∈p̄a(j)

mj�k(x̄ck)

1/w̄k
 ,

(4.23)

and we can use Bernstein’s inequality to bound the error introduced by Equation 4.21. Using

notation similar to [35], define Mk(x̄ck) =
∏

j:k∈p̄a(j) mj�k(x̄sjk) for convenience.

Theorem 1. For a mini-bucket tree with n̄ nodes, if we sample m particles for each variable

and compute the messages as defined by (4.21), then with probability at least 1− δ over the

choice of particles we have that:

Zu

(
1− n̄ε

(
Rq,m,

δ

(n̄− 1)mibound−1 + 1

))
≤ Ẑu ≤

Zu exp

(
n̄ε

(
Rq,m,

δ

(n̄− 1)mibound−1 + 1

)) (4.24)

where Zu is the exact WMB upper bound, and Ẑu is the estimate resulting from the PBP

approximation.

Proof. The proof follows the same structure as in [35]. First, apply a union bound to the

103

probability that the Bernstein inequality (4.18) holds for all (n̄ − 1) messages and mibound

values of each message. With probability 1 − δ, the following holds simultaneously for all

messages mk�l and particle sets x̄
(h)
skl :

1

m

∑
i:i↓s=h

1

qk(x̄
i1
k)

(
f̄ck(x̄

(i)
ck

)M̂k(x̄
(i)
ck

)
)1/w̄k

∈ mk�l(x̄
(h)
skl

)1/w̄k

(
1± ε

(
Rq,m,

δ

(n̄− 1)mibound

)) (4.25)

Exponentiating, we have:

(
1

m

∑
i:i↓s=h

1

qk(x̄
i1
k)

(
f̄ck(x̄

(i)
ck

)M̂k(x̄
(i)
ck

)
)1/w̄k

)w̄k

∈ mk�l(x̄
(h)
skl

)

(
1± ε

(
Rq,m,

δ

(n̄− 1)mibound

))w̄k (4.26)

To make the size of this bound the same for every message, replace each of the weights with

their upper bound, 1:

(
1

m

∑
i:i↓s=h

1

qk(x̄
i1
k)

(
f̄ck(x̄

(i)
ck

)M̂k(x̄
(i)
ck

)
)1/w̄k

)w̄k

∈ mk�l(x̄
(h)
skl

)

(
1± ε

(
Rq,m,

δ

(n̄− 1)mibound

)) (4.27)

Let dk be the number of descendants of node k, including k itself, in the mini-bucket tree.

Given (4.27) we can prove the following lower and upper bounds:

m̂k�l(x̄
(h)
skl

) ≥ mk�l(x̄
(h)
skl

)

(
1− dkε

(
Rq,m,

δ

(n̄− 1)mibound

))
(4.28)

m̂k�l(x̄
(h)
skl

) ≤ mk�l(x̄
(h)
skl

) exp

(
dkε

(
Rq,m,

δ

(n̄− 1)mibound

))
(4.29)

The proof of (4.28)-(4.29) proceeds by induction exactly as in [35]. Using the same argument,

104

the product of all messages into the root node r is bounded by:

M̂r(x̄
(i)
cr) ≥Mr(x̄

(i)
cr)

(
1− (n̄− 1)ε

(
Rq,m,

δ

(n̄− 1)mibound

))
(4.30)

M̂r(x̄
(i)
cr) ≤Mr(x̄

(i)
cr) exp

(
(n̄− 1)ε

(
Rq,m,

δ

(n̄− 1)mibound

))
(4.31)

Finally, incorporating the probability that (4.18) also holds simultaneously for the final

elimination in the root node, the following holds with probability 1− δ:

Ẑu ≥ Zu

(
1− n̄ε

(
Rq,m,

δ

(n̄− 1)mibound + 1

))
(4.32)

Ẑu ≤ Zu exp

(
n̄ε

(
Rq,m,

δ

(n̄− 1)mibound + 1

))
(4.33)

Note that this bound characterizes the gap between the Ẑu and Zu, the exact WMB bound.

Since Zu > Z, we can also treat Equation 4.33 as a probabilistic upper bound on the true

partition function, Z.

4.3 Experimental results

To illustrate that the improvements expected for discrete systems carry over into the con-

tinuous domain, we demonstrate the performance of our algorithm on two systems. In the

first, we run the particle representation versions of the algorithm on a simple Ising model,

first on a discrete system to show convergence toward the exact discrete algorithm, then on a

105

similar but continuous-valued system. We then use the algorithm on the sensor localization

task described in [34], showing that the reweighted version can provide better estimates of

uncertainty when the true marginals are multi-modal.

We explore the characteristics of TRW-PBP on three different models: the 2-D attractive

Ising model, an analogous continuous system, and a sensor localization problem. Since we

use TRW solely as a convenient stand-in for any of a wide array of discrete algorithms

for approximate inference, we do not aim to achieve state-of-the-art performance on any

real world problems. Rather, we study these three simple models to gain a qualitative

understanding of the benefits this framework has to offer.

4.3.1 Case study: Ising-like models

The Ising model corresponds to a graphical model, typically a grid, over binary-valued

variables with pairwise factors. Originating in statistical physics, similar models are common

in many applications including image denoising and stereo depth estimation. Ising models

are well understood, and provide a simple example of how BP can fail and the benefits of

more general forms such as TRW. We initially demonstrate the behavior of our particle-based

algorithms on a small (3 × 3) lattice of binary-valued variables to compare with the exact

discrete implementations, then show that the same observed behavior arises in an analogous

continuous-valued problem.

106

Ising model

Our factors consist of single-variable and pairwise functions, given by

f(Xs) =

[
0.5 0.5

]
f(Xs, Xt) =

 η 1− η

1− η η

 (4.34)

for η > .5. By symmetry, it is easy to see that the true marginal of each variable is uniform,

[.5 .5]. However, around η ≈ .78 there is a phase transition; the uniform-marginal fixed

point becomes unstable and several others appear, becoming more skewed toward one state

or another as η increases. As the strength of coupling in an Ising model increases, the

performance of BP often degrades sharply, while TRW is comparatively robust and remains

near the true marginals [75].

Figure 4.2 shows the performance of PBP and TRW-PBP on this model. Each data point

represents the median L1 error between the beliefs and the true marginals, across all nodes

and 40 randomly initialized trials, after 50 iterations. The first plot (BP) clearly shows the

phase shift; in contrast, the error of TRW remains low even for very strong interactions. In

both cases, as N increases the particle versions of the algorithms converge to their discrete

equivalents.

Continuous grid model

The results for discrete systems, and their corresponding intuition, carry over naturally into

continuous systems as well. To illustrate on an interpretable analog of the Ising model, we

use the same graph structure but with real-valued variables, and factors given by:

f(xs) = exp

(
− x2

s

2σ2
l

)
+ exp

(
−(xs − 1)2

2σ2
l

)
f(xs, xt) = exp

(
−|xs − xt|

2

2σ2
p

)
. (4.35)

107

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

η

L
1

er
ro

r

20

100

500

BP

(a)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

η

L
1

er
ro

r

20

100

500

TRW

(b)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

η

L1
 e

rr
or

PBP 500

TRW−PBP 500

(c)

Figure 4.2: 2-D Ising model performance. L1
error for PBP (a) and TRW-PBP (b) for vary-
ing numbers of particles; (c) PBP and TRW-
PBP juxtaposed to reveal the gap for high η.

108

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

log(σ
p
−2)

L1
 e

rr
or

20

100

500

(a)

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

log(σ
p
−2)

L1
 e

rr
or

20

100

500

(b)

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

log(σ
p
−2)

L1
 e

rr
or

PBP 500

TRW−PBP 500

(c)

Figure 4.3: Continuous grid model perfor-
mance. L1 error for PBP (a) and TRW-PBP
(b) for varying numbers of particles; (c) PBP
and TRW-PBP juxtaposed to reveal the gap
for low σp.

Local factors consist of bimodal Gaussian mixtures centered at 0 and 1, while pairwise

factors encourage similarity using a zero-mean Gaussian on the distance between neighboring

variables. We set σl = 0.2 and vary σp analogously to η in the discrete model. Since all

potentials are Gaussian mixtures, the joint distribution is also a Gaussian mixture and can

be computed exactly.

Figure 4.3 shows the results of running PBP and TRW-PBP on the continuous grid model,

demonstrating similar characteristics to the discrete model. The first panel reveals that our

109

continuous grid model also induces a phase shift in PBP, much like that of the Ising model.

For sufficiently small values of σp (large values on our transformed axis), the beliefs in PBP

collapse to unimodal distributions with an L1 error of 1. In contrast, TRW-PBP avoids this

collapse and maintains multi-modal distributions throughout; its primary source of error (0.2

at 500 particles) corresponds to overdispersed bimodal beliefs. This is expected in attractive

models, in which BP tends to “overcount” information leading to underestimates of variance;

TRW removes some of this overcounting and may overestimate uncertainty.

20 30 50 70 100 200
−9

−8.5

−8

−7.5

−7

−6.5

−6

of particles

lo
g(

Z
)

TRW−PBP upper bound

MF lower bound

Exact

Figure 4.4: Bounds on the log partition function. Solid
lines connect the median values and shaded regions indi-
cate the inter-quartile ranges (the MF-PBP bounds had
extremely low variance, so the shaded region is barely vis-
ible). TRW-PBP has high variance with fewer than 30
particles per variable, but quickly concentrates around
the TRW bound as the number of particles increases.

As mentioned in Section 4.1.5,

we can use the results of TRW-

PBP to estimate the TRW upper

bound on the log partition func-

tion and MF-PBP to estimate the

MF lower bound. The resulting

“bounds”, computed for a contin-

uous grid model in which mean

field marginals collapse to a sin-

gle mode, are shown in Figure 4.4.

With sufficiently many particles,

the values produced by TRW-

PBP and MF inference bound

the true value, as they should.

With only 20 particles per vari-

able, however, TRW-PBP occa-

sionally fails and yields “upper

bounds” below the true value. This is not surprising; the consistency guarantees associated

with the importance-reweighted expectation take effect only when the number of particles

is sufficiently large.

110

4.3.2 Application to sensor self-localization

We also demonstrate the presence of these effects in a simulation of a real-world application.

Sensor self-localization considers the task of estimating the position of a collection of sensors

in a network given noisy estimates of a subset of the distances between pairs of sensors, along

with known positions for a small number of anchor nodes. Typical localization algorithms

operate by optimizing to find the most likely joint configuration of sensor positions. A

classical model consists of (at a minimum) three anchor nodes, and a Gaussian model on the

noise in the distance observations.

In [34], this problem is formulated as a graphical model and an alternative solution is pro-

posed using nonparametric belief propagation to perform approximate marginalization. A

significant advantage of this approach is that by providing approximate marginals, we can

estimate the degree of uncertainty in the sensor positions. Gauging this uncertainty can

be particularly important when the distance information is sufficiently ambiguous that the

posterior belief is multi-modal, since in this case the estimated sensor position may be quite

far from its true value. Unfortunately, belief propagation is not ideal for identifying mul-

timodality, since the model is essentially attractive. BP may underestimate the degree of

uncertainty in the marginal distributions and (as in the case of the Ising-like models in

the previous section) collapse into a single mode, providing beliefs which are misleadingly

overconfident.

Figure 4.5 shows a set of sensor configurations where this is the case. The distance observa-

tions induce a fully connected graph; the edges are omitted for clarity. In this network the

anchor nodes are nearly collinear. This induces a bimodal uncertainty about the locations of

the remaining nodes – the configuration in which they are all reflected across the crooked line

formed by the anchors is nearly as likely as the true configuration. Although this example

is anecdotal, it reflects a situation which can arise regularly in practice [52].

111

Anchor
Mobile
Target

(a)

Anchor
Mobile
Target

(b)

Anchor
Mobile
Target

(c)

Figure 4.5: Sensor location belief at the tar-
get node using PBP and TRW-PBP. (a) Exact
belief computed using importance sampling.
(b) PBP collapses and represents only one
of the two modes. (c) TRW-PBP introduces
more uncertainty around each mode, but rep-
resents both.

Figure 4.5a shows the true marginal distribution for one node, estimated exhaustively using

importance sampling with 5 × 106 samples. It shows a clear bimodal structure – a slightly

larger mode near the sensor’s true location and a smaller mode at a point corresponding to

the reflection. In this system there is not enough information in the measurements to resolve

the sensor positions. We compare these marginals to the results found using PBP.

Figure 4.5b displays the Rao-Blackwellized belief estimate for one node after 20 iterations

of PBP with each variable represented by 100 particles. Only one mode is present, sug-

112

gesting that PBP’s beliefs have “collapsed,” just as in the highly attractive Ising model.

Examination of the other nodes’ beliefs (not shown for space) confirms that all are unimodal

distributions centered around their reflected locations. It is worth noting that PBP con-

verged to the alternative set of unimodal beliefs (supporting the true locations) in about

half of our trials. Such an outcome is only slightly better; an accurate estimate of confidence

is equally important.

The corresponding belief estimate generated by TRW-PBP is shown in Figure 4.5c. It

is clearly bimodal, with significant probability mass supporting both the true and reflected

locations. Also, each of the two modes is less concentrated than the belief in 4.5b. As with the

continuous grid model we see increased stability at the price of conservative overdispersion.

Again, similar effects occur for the other nodes in the network.

4.4 Summary of Contributions

We propose a framework for extending recent advances in discrete approximate inference for

application to continuous systems. The framework directly integrates reweighted message

passing algorithms such as TRW into the lifted, discrete phase of PBP. Furthermore, it allows

us to iteratively adjust the proposal distributions, providing a discretization that adapts to

the results of inference, and allows us to use Rao-Blackwellized estimates to improve our

final belief estimates.

The main contributions in this chapter are:

• We introduce a general framework for extending variational message-passing algorithms

to work on continuous graphical models via PBP.

• For the case of TRW, we demonstrate experimentally that its qualitative characteris-

113

tics (overdispersed marginals, bound on the partition function) carry over directly to

continuous problems.

• We provide a finite sample analysis of the WMB-PBP primal bound on the partition

function.

• In a simulated sensor self-localization problem, we demonstrate that TRW-PBP repre-

sents uncertainty more accurately than PBP when the true marginal distributions are

multimodal.

114

Chapter 5

Conclusion

To conclude, we provide a brief recap of the dissertation’s main contributions and explore

some directions for future research.

5.1 Summary of contributions

Chapter 2 explored a new application of graphical models and approximate inference to

the multi-target tracking domain. We developed a factor graph formulation of the track

posterior distribution of the TOMHT, which allows us to efficiently approximate the marginal

probabilities of the many possible tracks. In experiments on simulated data we compared

the accuracy of several track marginal estimators. The results revealed that BP led to more

accurate marginals than a k-best hypothesis estimator, particularly on larger models. GBP

was able to increase accuracy over BP at the cost of increased computation time.

Chapter 3 developed an EM algorithm for parameter estimation in the TOMHT model.

The algorithm depends on track marginals, which effectively reduce the multi-target E-

115

and M-steps to weighted versions of the familiar single-target EM algorithm. Plugging in

approximate marginals computed via one of the methods introduced in Chapter 2 results in

an efficient, approximate EM algorithm. We showed experimentally that this approximate

EM algorithm with BP-derived marginals was effective at increasing tracker robustness to

parameter misspecification and adapting to moderate nonstationarity in target dynamics.

Chapter 4 presents a framework for extending discrete variational inference algorithms to

work on continuous-valued graphical models. We showed that PBP provides a natural sepa-

ration between the continuous value space of a model and the underlying algorithm used to

perform inference. This separation allows us to “plug in” a wide variety of recent variational

inference algorithms that until now had no continuous analog. We demonstrated experi-

mentally, both on an Ising-like grid and in a simulated sensor localization problem, that

PBP-TRW confers similar benefits to inference in continuous-valued models as in discrete

systems. We showed that PBP variants of TRW and MF could be used to approximate the

corresponding upper and lower bounds, and also showed how WMB-PBP provides a stochas-

tic primal bound on the partition function, which particularly useful for continuous-valued

models where we cannot exactly optimize the dual.

5.2 Future directions

Here we briefly discuss some interesting directions for future research related to the work of

this dissertation.

116

5.2.1 More compact representations of data association

hypothesis space

In Chapter 2 we refer to the superiority of the TOMHT over its predecessor, the HOMHT,

which stems from its ability to compactly represent a much larger set of hypotheses. The price

of this representational power is the increased computational expense required to perform

inference, both optimization (via the integer program) or marginalization (as explored in

Chapter 2). The benefit is a larger space of candidate hypotheses. It is possible to take

this trade-off to the extreme, using a representation so compact that no pruning is required

(beyond, perpahs, gating) for the price of even more difficult inference. Some existing work

has begun exploring this direction. One body of work formulates the MAP data association

problem as a multidimensional assignment problem and solves it approximately using a

Lagrangian relaxation approach [57, 58]. Another, the Bayesian Network Tracking Database

(BNTD) [55], performs a kind of approximate inference in a model defined jointly over

a compact data association space and target state space. The success of these compact

representations is heavily dependent on the accuracy of a suitable approximate inference

algorithm. It would be interesting to explore the application of standard variational inference

algorithms to the model used in the BNTD. Also, joint modeling of target states and data

association variables will tend to introduce multimodality into target state densities; another

interesting extension would be to estimate target states nonparametrically, e.g. using PBP.

5.2.2 More complex probabilistic queries for the TOMHT

As mentioned in Section 2.3, the factor graph representation of the TOMHT admits addi-

tional queries beyond marginalization. Mixed inference queries [49] could be useful to im-

prove pruning or, perhaps, used interactively to marginalize over specific segments of space

117

and time and optimize within a specific region of interest. Similarly, the diverse m-best

modes [7] query could both help improve pruning (by preserving a diverse set of candidates

rather than collapsing into a set of hypotheses very similar to the MAP), or to provide eas-

ily interpretable output to a human operator. How to clearly convey the uncertainty in a

multi-target data association posterior is a difficult problem in itself, and a combination of

mixed inference and m-best mode queries could potentially provide a much richer summary

than the standard MAP estimate.

5.2.3 Particle belief propagation on region graphs

As seen in Section 2.2.3, moving from BP on a factor graph to GBP on a region graph can

result in significantly more accurate inference. Particle BP, unfortunately, is only defined for

factor graphs. An extension of particle BP that operates on region graphs would provide an-

other significant step forward for general-purpose inference algorithms on continuous-valued

models. The main technical difficulty associated with this extension is the resampling pro-

cedure – regions have overlapping scopes, and the particle sets for each pair of regions must

share the same values for the variables they have in common. One potential approach is to

use a single joint proposal distribution rather than sampling each region separately, similar

to a technique used for discrete models in the 2012 Pascal Approximate Inference Competi-

tion [28].

5.3 Parting thoughts

The rich probabilistic structure in multi-target tracking makes it well suited to the ap-

plication of graphical models and approximate inference methods. Early approaches to

multi-target tracking made severe modeling assumptions to obtain efficient, exact inference.

118

Since then computational resources have increased, enabling more complex and accurate

approaches like the TOMHT. Simultaneously approximate inference algorithms have grown

more capable, but the impact of these advances on multi-target tracking has not yet been

fully explored. This dissertation demonstrates the ability of BP and GBP to efficiently

approximate track marginals within the standard TOMHT model. Going forward, we ex-

pect that the flexibility granted by recent approximate inference algorithms will enable new

approaches based on still more complex models.

119

Bibliography

[1] K. Achan, M. Isard, and J. MacCormick. Continuously-adaptive discretization for
message-passing algorithms. Advances in Neural Information Processing Systems
(NIPS), pages 737–744, 2008.

[2] E. Allman, C. Matias, and J. Rhodes. Identifiability of parameters in latent structure
models with many observed variables. The Annals of Statistics, 37(6A):3099–3132, 2009.

[3] M. Arulampalam, S. Maskell, and N. Gordon. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, 2002.

[4] Y. Bar-Shalom, F. Daum, and J. Huang. The probabilistic data association filter. IEEE
Control Systems, 29(6):82–100, 2009.

[5] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking
and Navigation: Theory Algorithms and Software. Wiley-Interscience, New York, NY,
2004.

[6] D. Batra. An efficient message-passing algorithm for the m-best MAP problem. Uncer-
tainty in Artificial Intelligence (UAI), pages 121–130, 2012.

[7] D. Batra and P. Yadollahpour. Diverse m-best solutions in markov random fields.
Computer VisionECCV . . . , 2012.

[8] B. Bidyuk and R. Dechter. Cutset sampling for Bayesian networks. Journal of Artificial
Intelligence Research, 28(1):1–47, 2007.

[9] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[10] S. S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE
Aerospace and Electronic Systems Magazine, 19(1):5–18, Jan. 2004.

[11] S. S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech
House, Norwood, MA, 1999.

[12] D. Blackwell. Conditional expectation and unbiased sequential estimation. The Annals
of Mathematical Statistics, 18:105–110, 1947.

120

[13] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003.

[14] O. Cappé. Online EM algorithm for hidden Markov models. Journal of Computational
and Graphical Statistics, 20(3):728–749, Jan. 2011.

[15] L. Chen, M. J. Wainwright, M. Çetin, and A. S. Willsky. Data association based on
optimization in graphical models with application to sensor networks. Mathematical
and Computer Modelling, 43(9-10):1114–1135, May 2006.

[16] S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical
Association, 90(432):1313–1321, 1995.

[17] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In
Uncertainty in Artificial Intelligence, pages 211–219. Morgan Kaufmann Publishers Inc.,
1996.

[18] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-
gence, 113:41–85, 1999.

[19] R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference. Journal
of the ACM, 50(2):107–153, Mar. 2003.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[21] V. Digalakis, J. Rohlicek, and M. Ostendorf. ML estimation of a stochastic linear system
with the EM algorithm and its application to speech recognition. IEEE Transactions
on Speech and Audio Processing, 1(4):431–442, 1993.

[22] A. Ess, K. Schindler, B. Leibe, and L. Van Gool. Object detection and tracking for
autonomous navigation in dynamic environments. International Journal of Robotics
Research, 29(14):1707–1725, 2010.

[23] T. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of multiple targets using
joint probabilistic data association. IEEE Journal of Oceanic Engineering, 8(3):173–184,
July 1983.

[24] M. Fromer and A. Globerson. An LP view of the m-best MAP problem. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems (NIPS), volume 22, pages 567–575, 2009.

[25] A. Gelfand, K. Kask, and R. Dechter. Stopping rules for randomized greedy triangula-
tion schemes. In AAAI Conference on Artificial Intelligence, pages 54–60, 2011.

[26] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, Nov. 1984.

121

[27] A. Globerson, D. Sontag, and T. Jaakkola. Approximate inference – How far have we
come? (NIPS’08 Workshop), 2008.

[28] V. Gogate, P. Domingos, and R. Dechter. Structured propagation-based and sampling-
based algorithms for graphical models (Pascal approximate inference competition), 2012.

[29] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally parallelizing be-
lief propagation. In Artificial Intelligence and Statistics (AISTATS), pages 177–184,
Clearwater Beach, FL, 2009.

[30] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press,
2 edition, 1988.

[31] T. Heskes. Stable fixed points of loopy belief propagation are local minima of the Bethe
free energy. In Advances in Neural Information Processing Systems (NIPS), pages 343–
350, 2002.

[32] P. Horridge and S. Maskell. Searching for, initiating and tracking multiple targets using
existence probabilities. In Information Fusion (FUSION), pages 611–617, 2009.

[33] A. Ihler. Accuracy bounds for belief propagation. In Uncertainty in Artificial Intelligence
(UAI), pages 183–190, 2007.

[34] A. Ihler, J. Fisher, and A. Willsky. Loopy belief propagation: Convergence and effects
of message errors. Journal of Machine Learning Research, 6:905–936, 2006.

[35] A. Ihler and D. McAllester. Particle Belief Propagation. In D. van Dyk and M. Welling,
editors, Artificial Intelligence and Statistics (AISTATS), volume 5, pages 256–263,
Clearwater Beach, FL, Apr. 2009. JMLR: W&CP.

[36] ILOG. CPLEX: High-performance software for mathematical programming and opti-
mization, 2013.

[37] M. Jordan, Z. Ghahramani, and T. Jaakkola. An introduction to variational methods
for graphical models. Machine Learning, 37(2):183–233, 1999.

[38] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying tree decompositions for
reasoning in graphical models. Artificial Intelligence, 166(1-2):165–193, Aug. 2005.

[39] K. Kask, A. Gelfand, L. Otten, and R. Dechter. Pushing the power of stochastic greedy
ordering schemes for inference in graphical models. In AAAI Conference on Artificial
Intelligence, pages 1043–1048, 2011.

[40] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA, first edition, 2009.

[41] D. Koller, U. Lerner, and D. Angelov. A general algorithm for approximate inference
and its application to hybrid Bayes nets. In Uncertainty in Artificial Intelligence (UAI),
pages 324–333, 1999.

122

[42] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization & beyond via
dual decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(3):531–552, 2011.

[43] A. Kozlov and D. Koller. Nonuniform dynamic discretization in hybrid networks. In
Uncertainty in Artificial Intelligence (UAI), pages 314–325, 1997.

[44] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[45] T. Kurien. Issues in the design of practical multitarget tracking algorithms. In Y. Bar-
Shalom, editor, Multitarget-Multisensor Tracking: Advanced Applications, volume 1,
pages 43–83. Artech House, 1990.

[46] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference on
Machine Learning (ICML), pages 282–289, 2001.

[47] H. Leung, M. Blanchette, and J. Litva. An efficient decentralized multiradar multitarget
tracker for air surveillance. IEEE Transactions on Aerospace and Electronic Systems,
33(4):1357–1363, Oct. 1997.

[48] Q. Liu and A. Ihler. Bounding the partition function using Hölder’s inequality. In
International Conference on Machine Learning (ICML), pages 849–856, 2011.

[49] Q. Liu and A. Ihler. Variational algorithms for marginal MAP. In Uncertainty in
Artificial Intelligence (UAI), pages 453–462, 2011.

[50] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley-
Interscience, Hoboken, NJ, second edition, 2008.

[51] T. Minka. Divergence measures and message passing. Microsoft Research Cambridge,
Tech. Rep. MSR-TR-2005-173, 2005.

[52] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization
with noisy range measurements. In ACM Conference on Embedded Networked Sensor
Systems (SenSys), pages 50–61, 2004.

[53] C. L. Morefield. Application of 0-1 integer programming to multitarget tracking prob-
lems. IEEE Transactions on Automatic Control, 22(3):302–312, June 1977.

[54] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate infer-
ence: an empirical study. In Uncertainty in Artificial Intelligence (UAI), pages 467–475,
1999.

[55] F. H. Obermeyer and A. B. Poore. A Bayesian network tracking database. Signal and
Data Processing of Small Targets, 5428:400–418, 2004.

[56] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo,
1988.

123

[57] A. B. Poore. Multidimensional assignment formulation of data association problems
arising from multitarget and multisensor tracking. Computational Optimization and
Applications, 3(1):27–57, Mar. 1994.

[58] A. B. Poore and A. J. Robertson III. A new Lagrangian relaxation based algorithm
for a class of multidimensional assignment problems. Computational Optimization and
Applications, pages 129–150, 1997.

[59] R. L. Popp, K. R. Pattipati, and Y. Bar-Shalom. m-best SD assignment algorithm with
application to multitarget tracking. IEEE Transactions on Aerospace and Electronic
Systems, 37(1):22–39, 2001.

[60] G. Pulford. Taxonomy of multiple target tracking methods. IEE Proceedings - Radar,
Sonar and Navigation, 152(5):291–304, 2005.

[61] D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic
Control, 24(6):843–854, 1979.

[62] X. Ren, Z. Huang, D. Liu, and J. Wu. Multiple object video tracking using GRASP-
MHT. Information Fusion (FUSION), pages 330–337, 2012.

[63] B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo. A metric for performance evaluation of
multi-target tracking algorithms. IEEE Transactions on Signal Processing, 59(7):3452–
3457, July 2011.

[64] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer, New York,
second edition, 2004.

[65] J. Schiff, D. Antonelli, A. Dimakis, D. Chu, and M. Wainwright. Robust message-
passing for statistical inference in sensor networks. In Information Processing in Sensor
Networks (IPSN), pages 109–118, Apr. 2007.

[66] D. Schulz, W. Burgard, and D. Fox. People tracking with mobile robots using sample-
based joint probabilistic data association filters. International Journal of Robotics Re-
search, 22(2):99–116, 2003.

[67] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.

[68] D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope. In Advances
in Neural Information Processing Systems (NIPS), pages 1393–1400. MIT Press, Cam-
bridge, MA, 2007.

[69] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametric belief propagation.
In Computer Vision and Pattern Recognition (CVPR), pages 605–612, 2003.

[70] C. Sutton and A. McCallum. Improved dynamic schedules for belief propagation. In
Uncertainty in Artificial Intelligence (UAI)2, pages 376–383, 2007.

124

[71] D. Svensson, J. Wintenby, and L. Svensson. Performance evaluation of MHT and GM-
CPHD in a ground target tracking scenario. In Information Fusion (FUSION), pages
300–307, 2009.

[72] O. Tange. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX
Magazine, pages 42–47, Feb. 2011.

[73] D. Tarlow, K. Swersky, R. Zemel, R. Adams, and B. Frey. Fast exact inference for
recursive cardinality models. In Uncertainty in Artificial Intelligence, pages 825–834,
Oregon, 2012. AUAI Press Corvallis.

[74] Y. Teh and M. Welling. The unified propagation and scaling algorithm. In Advances in
Neural Information Processing Systems (NIPS), pages 953–960, 2002.

[75] M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log
partition function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005.

[76] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[77] Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical
models of arbitrary topology. Neural Computation, 2001.

[78] M. Welling, A. Gelfand, and A. Ihler. A cluster-cumulant expansion at the fixed points
of belief propagation. In Uncertainty in Artificial Intelligence (UAI), pages 883–892.
AUAI Press Corvallis, 2012.

[79] W. Wiegerinck and T. Heskes. Fractional belief propagation. In Advances in Neural
Information Processing Systems (NIPS), pages 438–445, 2002.

[80] J. L. Williams and R. A. Lau. Data association by loopy belief propagation. In Infor-
mation Fusion (FUSION), pages 1–8, 2010.

[81] J. Yarkony, C. Fowlkes, and A. Ihler. Covering trees and lower-bounds on quadratic
assignment. In Computer Vision and Pattern Recognition (CVPR), pages 887–894,
2010.

[82] J. S. Yedidia and W. T. Freeman. Constructing free-energy approximations and gen-
eralized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7):2282–2312, 2005.

[83] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its
generalizations. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial Intelligence
in the New Millennium, chapter 8, pages 239–236. Morgan Kaufmann, San Francisco,
CA, first edition, 2003.

[84] A. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free energies: convergent
alternatives to belief propagation. Neural Computation, 14(7):1691–1722, 2002.

125

[85] N. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, 5:301–328, 1996.

[86] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a
hidden Markov random field model and the expectation-maximization algorithm. IEEE
Transactions on Medical Imaging, 20(1):45–57, 2001.

126

Appendix A

Derivation of the TOMHT Track

Posterior Distribution

This derivation closely follows the development in [45] and is provided here for convenience.

To derive the track posterior distribution in 2.7, it is convenient to begin with an alternate

representation of data association space. Let ωk be a categorical variable that specifies

whether each observation in scan k is a false alarm, the beginning of a new track, or a

continuation of a preexisting track. If an observation continues an existing track, wk also

specifies which track it continues. Thus, Pr(w1:k | z1:k) is an alternate representation of the

data association posterior for scans 1 through k.

The first step is to decompose the posterior, pulling out the most recent scan:

Pr(ω1:k | z1:k) ∝ Pr(zk | ω1:k, z1:k−1) Pr(ω1:k | z1:k−1) (A.1)

= Pr(zk | ω1:k, z1:k−1) Pr(ωk | ω1:k−1, z1:k−1) Pr(ω1:k−1 | z1:k−1) (A.2)

= Pr(zk | ω1:k, z1:k−1) Pr(ωk | ω1:k−1) Pr(ω1:k−1 | z1:k−1) (A.3)

127

Note that equation (A.3) decomposes the posterior into the product of three terms: a likeli-

hood term for the current scan, a prior term on the number of births/missed detections/false

alarms at the current scan, and a recursive term for historical data. Next we examine the

first two terms in greater detail.

The current-scan likelihood factors as a product over all observations in the scan. The terms

of this product take different functional forms depending on whether ωk indicates that they

are continuing an existing track, initiating a new track, or a false alarm. Thus, we can write

Pr(zk | ω1:k, z1:k−1) =

mk∏
j=1

f(zk,j | ω1:k, z1:k−1), (A.4)

where f(zk,j | ω1:k, z1:k−1) =


Pr(zk,j | ω1:k−1, z1:k−1) if zk,j continues an existing track.

1/V if zk,j begins a new track.

1/V if zk,j is a false alarm.

(A.5)

where V is the volume of the surveillance region.

The second term in (A.3) represents the prior probability on the number of false alarms,

missed detections, and new tracks in the current scan. Since this term is not conditioned on

zk, all values of ωk with the same number of false alarms, missed detections, and new tracks

are equally likely. Given our assumptions of Poisson distributed numbers of new tracks and

128

clutter, as well as a Bernoulli model for track death, we may write:

Pr(ωk | ω1:k−1) =

λ
Nν (ωk)
ν e−λν
Nν(ωk)!

λ
Nφ(ωk)

φ e
−λφ

Nφ(ωk)!

(
NT (ωk−1)
ND(ωk)

)
(pD)ND(ωk)(1− pD)N¬D(ωk)(

mk
Nν(ωk)

)(
mk−Nν(ωk)
Nφ(ωk)

)(mk−Nν(ωk)−Nφ(ωk)

ND(ωk)

)(
NT (ωk−1)
ND(ωk)

)
ND(ωk)!

(A.6)

=

NT (ωk−1)!
ND(ωk)!(NT (ωk−1)−ND(ωk))!

λ
Nν (ωk)
ν e−λν
Nν(ωk)!

λ
Nφ(ωk)

φ e
−λφ

Nφ(ωk)!
(pD)ND(ωk)(1− pD)N¬D(ωk)

mk!
Nν(ωk)!(mk−Nν(ωk))!

(mk−Nν(ωk))!
Nφ(ωk)!ND(ωk)!

NT (ωk)!
(NT (ωk−1)−ND(ωk))!

(A.7)

=
1

mk!

(
λNν(ωk)
ν e−λν

)(
λ
Nφ(ωk)

φ e−λφ
)

(pD)ND(ωk)(1− pD)N¬D(ωk) (A.8)

where Nν(ω
k) and Nφ(ωk) are the numbers of new tracks and false alarms according to ωk,

ND(ωk) and N¬D(ωk) are the number of detected and missed targets, respectively, NT (ωk−1)

is the number of preexisting tracks according to ωk−1, mk is the number of observations in

scan k, and the denominator of (A.6) is the total number of assignment vectors with the

same number of new targets, false alarms, and detections as in ωk.

Substituting (A.4) and (A.8) into (A.3), we get:

Pr(ω1:k | z1:k) ∝

(
mk∏
j=1

f(zk,j | ω1:k, z1:k−1)

)(
λNν(ωk)
ν

)(
λ
Nφ(ωk)

φ

)
(A.9)

(pD)ND(ωk)(1− pD)N¬D(ωk) Pr(ω1:k−1 | z1:k−1) (A.10)

To convert from this representation to that of Equation 2.7, take the ratio of this posterior

129

to the probability of the “all clutter” hypothesis:

Pr(ω1:k | z1:k)

Pr(01:k | z1:k)

=

(∏mk
j=1 f(zk,j | ω1:k, z1:k−1)

)(
λ
Nν(ωk)
ν

)(
λ
Nφ(ωk)

φ

)
(pD)ND(ωk)(1− pD)N¬D(ωk)(∏mk

j=1 1/V
) (
λmkφ

) (A.11)

×Pr(ω1:k−1 | z1:k−1)

Pr(01:k−1 | z1:k−1)

=
N∏
i=1

(
λν
λφ

) `i∏
j=2

(
pD Pr(zi,j | ω1:k, z1:k−1)

λφ1/V

)1[zi,j 6=0]
(

1− pD
1

)
1[zi,j=0]

, (A.12)

where the outer product is over the tracks selected by ω1:k. To follow the above derivation,

note that all observations marked by ω1:k as false alarms contribute the same terms to

both the numerator and denominator (canceling each other), and the terms associated with

the remaining observations have been grouped by their associated tracks. The form of

Equation 2.7 in terms of track indicator variables follows directly.

130

	LIST OF FIGURES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction and Background
	Contributions
	Probabilistic graphical models
	Probabilistic modeling
	Exponential family distributions
	Conditional independence
	Factor graphs

	Exact inference via variable elimination
	Elimination as message-passing on a tree
	Junction tree: variable elimination on a hyper-tree

	Approximate inference via variational message-passing
	Variational inference: a birds-eye view
	Loopy belief propagation
	Tree-reweighted belief propagation
	Generalized belief propagation
	Mini-bucket and weighted mini-bucket

	Computing Track Marginals in the Track-Oriented MHT
	Introduction to multi-target tracking
	Generative probabilistic model
	Data association and the multiple hypothesis tracker
	Track-oriented multiple hypothesis tracker
	Other popular algorithms for multi-target tracking

	Estimating track marginals
	Marginalization via the k-best hypotheses
	Marginalization via variational message-passing
	Experimental results

	Additional probabilistic queries
	MAP estimation
	m-best and diverse m-best
	Marginal-MAP inference

	Summary of contributions

	Online Approximate EM for Parameter Estimation in the TOMHT
	Background: parameter estimation with known data associations
	The Expectation-maximization algorithm
	EM for linear Gaussian state-space models

	Parameter estimation in the TOMHT
	E-Step
	M-Step
	Online updates
	Truncated E-step

	Experimental results
	Description of simulated data
	Evaluation of multi-target tracking output
	Recovery from poor initial model specification
	Tracking targets with time-varying dynamics

	Summary of contributions

	Variational message-passing for continuous graphical models
	A review of inference methods for continuous graphical models
	Special case: jointly Gaussian models
	Discretization
	Parametric approximation
	Kernel density estimation
	Importance sampling

	Extending particle belief propagation
	Tree-reweighted PBP
	Mean field PBP
	Primal bounds on the log-partition function

	Experimental results
	Case study: Ising-like models
	Application to sensor self-localization

	Summary of Contributions

	Conclusion
	Summary of contributions
	Future directions
	More compact representations of data association hypothesis space
	More complex probabilistic queries for the TOMHT
	Particle belief propagation on region graphs

	Parting thoughts

	Bibliography
	Derivation of the TOMHT Track Posterior Distribution

