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ABSTRACT OF THE DISSERTATION

Reasoning and Decisions in Probabilistic Graphical Models – A Unified Framework

By

Qiang Liu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Prof. Alexander Ihler, Chair

Probabilistic graphical models such as Markov random fields, Bayesian networks and deci-

sion networks (a.k.a. influence diagrams) provide powerful frameworks for representing and

exploiting dependence structures in complex systems. However, making predictions or de-

cisions using graphical models involve challenging computational problems of optimization

and/or estimation in high dimensional spaces. These include combinatorial optimization

tasks such as maximum a posteriori (MAP), which finds the most likely configuration, or

marginalization tasks that calculate the normalization constants or marginal probabilities.

Even more challenging tasks require a hybrid of both: marginal MAP tasks find the opti-

mal MAP prediction while marginalizing over missing information or latent variables, while

decision-making problems search for optimal policies over decisions in single- or multi-agent

systems, in order to maximize expected utility in uncertain environments.

All these problems are generally NP-hard, creating a need for efficient approximations.

The last two decades have witnessed significant progress on traditional optimization and

marginalization problems, especially via the development of variational message passing al-

gorithms. However, there has been less progress on the more challenging marginal MAP and

decision-making problems.

xv



This thesis presents a unified variational representation for all these problems. Based on

our framework, we derive a class of efficient algorithms that combines the advantages of

several existing algorithms, resulting in improved performance on traditional marginalization

and optimization tasks. More importantly, our framework allows us to easily extend most

or all existing variational algorithms to hybrid inference and decision-making tasks, and

significantly improves our ability to solve these difficult problems. In particular, we propose

a spectrum of efficient belief propagation style algorithms with “message passing” forms,

which are simple, fast and amenable to parallel or distributed computation. We also propose

a set of convergent algorithms based on proximal point methods, which have the nice form

of transforming the hybrid inference problem into a sequence of standard marginalization

problems. We show that our algorithms significantly outperform existing approaches in

terms of both empirical performance and theoretical properties.
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Chapter 1

Introduction

Probabilistic modeling plays a central role in many modern data-oriented applications. Prob-

ability theory and Bayesian inference provide the basic tools for modeling uncertainty and

quantifying our beliefs about the different possible states of the world, including reasoning

about the unknown variables given observed evidence, and even guiding our actions to select

decisions to optimize some reward or cost function. While the application of probability

theory has a long history, it is only more recently that it has been put to effective use on

large scale problems, e.g., those involving many inter-related variables, and these advances

are due largely to the development of the framework of probabilistic graphical models.

Probabilistic graphical models use graph-based representations to efficiently encode and ma-

nipulate relationships and probabilities in high dimensional spaces, often involving hundreds

or even many thousands of variables. Graphical models include factorized distributions

such as Bayesian networks and Markov random fields, which capture and exploit the con-

ditional independence structure among random variables, as well as more general decision

theoretic models such as influence diagrams (a.k.a. decision networks), which in additional

to random variables also include structured decision and utility components for modeling

high dimensional, sequential, and even multi-agent decision making processes. These models

have been widely used in an enormous range of application domains, including computer

vision, robotics, natural language processing, computational biology, and many more; see
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e.g., Pearl [1988], Darwiche [2009], Koller and Friedman [2009], and Wainwright and Jordan

[2008] for general overviews. In general, any area that involves uncertainty and large numbers

of interacting variables is likely to benefit from using the graphical model framework.

However, making predictions or decisions using graphical models raises challenging compu-

tational problems that involve optimization and/or estimation in high dimensional spaces.

For example, predictions with structured, high dimensional objectives are often framed as

combinatorial optimization, or max-inference tasks – sometimes called maximum a posteriori

(MAP) estimation – which maximize the joint probability to find a most-likely configuration

over the high dimensional space. Other problems, such as evaluating the probability of an

event, or computing the model likelihood for selecting better models, are often framed as

marginalization, or sum-inference tasks, which requires summing over the probabilities in the

high dimensional space to calculate marginal probabilities or the normalization constant.

Even more challenging problems involve making robust predictions or sequential decisions

with missing or incomplete information, and require hybrids of both the optimization and

marginalization operations in high dimensional spaces; these mixed-inference tasks form a

major focus of this thesis. This hybrid setting includes the marginal MAP, or max-sum

inference task1 for making predictions with missing information or latent variables; these

tasks require marginalizing over the latent variables, while maximizing over the target vari-

ables. More generally, the maximum expected utility task for decision networks searches

for optimal policies for making decisions in single- or multi-agent systems, in order to maxi-

mize the expected utility value under the uncertain environment, sometimes with incomplete

information sharing.

All these problems are generally NP-hard, creating a tremendous demand for efficient ap-

1Due to an unfortunate inconsistency in terminology, in Bayesian network literature the joint max-
inference is called most probable explanation (MPE), and the marginal MAP (max-sum inference) is simply
called MAP.
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proximate algorithms. In this thesis, we consider two different perspectives, corresponding to

two major styles of algorithms, for approximate inference: variable elimination based meth-

ods, such as mini-bucket elimination [Dechter and Rish, 2003], which act by approximately

eliminating (maximizing or summing over) the variables one by one, while variational opti-

mization methods, including loopy belief propagation Pearl [1988] and mean field Saul and

Jordan [1995], are based on approximating an equivalent functional optimization problem

over the space of distributions, by minimizing a divergence from the target distribution.

These two styles of approximation algorithms have their own advantages and disadvantages.

For example, the mini-bucket method easily interpolates between costly, exact inference

and efficient approximations using a single parameter, called the ibound; larger ibounds are

more costly but typically more accurate. Moreover, since the algorithm is non-iterative,

it is easy to estimate the computational requirements (memory and time) for any given

ibound; but conversely, the results cannot be improved without increasing the ibound. On

the other hand, variational approximation methods rely on iterative numerical optimization

to obtain accurate results. These often offer better approximations than mini-bucket with

low ibound, but the iterative updates can be slow or sometimes even fail to converge, and

do not offer the same easy mechansims for identifying better but more computationally

expensive approximations. New methods that combine the advantages of both approaches

could have significant advantages in practice.

Another significant difference between these two styles of algorithms lies in their application

to more difficult, hybrid tasks such as marginal MAP and MEU in decision networks. Al-

though it is fairly straightforward to extend elimination-based methods such as mini-bucket

elimination to hybrid tasks, by simply using the correct (sum or max) operators at each

elimination step, extending variational approaches to these settings is less obvious and has

not been previously studied.
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This thesis develops a unified view of hybrid inference problems that allow variational tech-

niques to be applied, and derives a number of new and powerful algorithms for solving hybrid

or mixed inference tasks. In addition, we explore the connections between approximate elim-

ination and variational inference methods, developing techniques that can exploit many of

the advantages of both approaches, and are applicable to both the traditional max- and

sum-inference, as well as hybrid inference tasks such as marginal MAP and MEU.

In particular, we propose a weighted mini-bucket elimination, which generalizes standard

mini-bucket, and also connects closely to convex variational methods such as tree-reweighted

belief propagation. Our algorithm combines the advantages of both the elimination and

variational views: it starts with an elimination-like algorithm, but can iteratively improve

the results; it often gives significant improvement within the first few iterations, avoiding

the waste of further iterative updates in variational methods.

In addition, based on a novel, general variational representation, we derive a set of effi-

cient “mixed-product” belief propagation algorithms for hybrid inference tasks, including

marginal MAP and MEU in decision networks. These algorithms are simple, efficient and

significantly advance our ability to solve these challenging problems. We show that our algo-

rithms significantly outperform existing approaches in terms of both empirical performance

and theoretical properties.

Outline and Contributions

The general outline of this thesis is depicted in Figure 1.1. Chapters 2-3 present some

necessary background on graphical models and inference methods. Then, Chapters 4-7

consist of the novel contributions of the thesis, and Chapter 8 concludes and outlines some

open directions. The appendices provide additional proofs and derivations. In more detail:
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Graphical Models, Inference Tasks, 
Decision Network

(Chapter 2)

Inference Algorithms: Bucket/Mini-bucket 
Elimination, Variational Message Passing 

(Chapter 3)

Unified Variational Representations
(Chapter 4)

Weighted Mini-bucket 
Elimination
(Chapter 5)

Variational Methods 
for Marginal MAP

(Chapter 6)

Variational Methods 
for Decision Making

(Chapter 7)

Background

Figure 1.1: Outline and dependence of the thesis.

Chapter 2 provides background on graphical models and inference and decision tasks.

We first introduce factorized distributions, including Markov random fields and Bayesian

networks, on which we define the standard max- and sum-inference tasks, and the hybrid

marginal MAP task. We then introduce influence diagrams, and the related maximum

expected utility (MEU) task, which reduces to a hybrid sum-max-sum inference under a

particular assumption called perfect recall.

Chapter 3 introduces the two major styles of inference methods: Section 3.1 introduces

elimination based methods, including the exact bucket elimination and the approximate mini-

bucket elimination algorithms; we also describe the “message passing” viewpoint of variable

elimination, presenting exact forward-backward belief propagation (BP) on trees, as well as

loopy BP as an approximation heuristic. Section 3.2 introduces various variational inference

5



methods, all obtained by approximating a basic variational (or dual) form of the log-partition

function. We start with the Bethe entropy approximation, which gives a principled derivation

for loopy BP; we then introduce several other approximations, including tree reweighted BP,

mean field and their variants.

Chapters 4-7 describe the contributions of this thesis.

Chapter 4 develops the dual forms for general “hybrid” exact inference tasks, which extend

those known for standard sum-inference and max-inference problems, and provide the main

theoretical foundation of subsequent chapters. In particular, we derive dual representations

of two unifying viewpoints for hybrid inference: the first, a powered sum inference task that

generalizes arbitrary sequences of max, sum, and min operators, and the second, an MEU

task in general, cooperative multi-agent systems. Both viewpoints result in exact forms for

marginal MAP and MEU with perfect recall. Specific contributions include:

• We define the sequential powered sum, and show that it generalizes many hybrid tasks,

including marginal MAP and sum-max-sum inference (MEU with perfect recall).

• We give a variational representation of the sequential powered sum and study its prop-

erties, under assumptions of positive and negative weights (or temperatures); these

results form the foundation for chapter 5.

• We derive a variational representation for marginal MAP that forms the foundation

for Chapter 6.

• We derive a variational representation for general MEU tasks in influence diagrams,

including both perfect recall and imperfect recall cases, forming the foundation for

Chapter 7.

Chapter 5 introduces a novel weighted mini-bucket elimination algorithm, which general-

izes and extends standard mini-bucket, as well as connecting it to the framework of vari-

ational inference approximations such as tree-reweighted belief propagation (TRBP). Our
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algorithm inherits many of the advantages of, and significantly outperforms, both MBE and

TRBP. In detail:

• We propose a novel weighted mini-bucket elimination (MBE) algorithm for approxi-

mate inference that generalizes mini-bucket elimination algorithm.

• Our method provides a unified framework for calculating both upper and lower bounds,

by using positive and negative weights, respectively. We show that tightening the upper

bounds corresponds a convex optimization, while optimizing the lower bounds leads to

a challenging non-convex optimization problem.

• We derive iterative tightening methods to find the optimal weight values, as well as

the optimal factor reallocation for our weighted MBE bound, with both positive and

negative weights. Our algorithm for optimal factor reallocation can also be used to

improve standard mini-bucket elimination.

• We draw and discuss the connection between our weighted MBE and convex variational

methods, including tree-reweighted belief propagation (TRBP) and conditional entropy

decomposition (CED). We show that our weighted MBE bounds represent a large

subclass of the TRBP and CED bounds, but with far fewer parameters, enabling

efficient, anytime tightening algorithms that provide flexible cost-accuracy trade-offs.

• We experimentally demonstrate the efficiency and flexibility of our weighted MBE

method. Compared to standard MBE, our method is much more general and flexible,

and provides much better solutions with roughly the same computational complexity.

Compared to variational methods such as TRBP and mean field, our method can easily

and efficiently use larger clique sizes (controlled by the ibound) to provide much better

results. In addition, our algorithm often observes significant improvement within just

the first one or few iterations, suggesting that running variational message-passing to

convergence may be wasteful.
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Chapter 6 leverages the variational representation of marginal MAP introduced in Chap-

ter 4, and develops a spectrum of efficient message passing algorithms that both admit

appealing theoretical properties and perform well in practice:

• We formalize the concept of A-B trees, which characterize graphs on which marginal

MAP problems can be solved efficiently, in the same way that max- and sum-inference

are efficient on trees

• We extend both the Bethe and tree reweighted (TRW) entropy approximations to

marginal MAP, and derive a novel “mixed-product” belief propagation (BP) that is a

hybrid of max-product, sum-product, and special “argmax-product” message updates.

• We derive a class of convergent algorithms for marginal MAP, by maximizing the

Bethe or TRW approximation based on the proximal point method; interestingly, this

approach takes the form of transforming the marginal MAP problem into a sequence

of pure (or annealed) marginalization tasks.

• We provide theoretical conditions under which our mixed-product BP obtains the

global optimum; however, these conditions may not be satisfied in practice.

• We provide theoretical conditions under which our mixed-product BP takes on strong

local optimality guarantees (optimal up to perturbations on certain embedded sub-

graphs).

• We extend mixed-product BP to models with higher order cliques, and derive mixed-

product factor graph BP and mixed-product junction graph BP.

• We show that expectation-maximization (EM) and variational EM can be treated as

applying a mean field-like approximation on our variational form for marginal MAP.

• We present numerical experiments on both simulated and real-world datasets. We show

that our methods can provide significantly better solutions than existing baselines,

including EM and a state-of-the-art algorithm based on local search methods.
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Chapter 7 applies variational approximation techniques to the dual form of maximum

expected utility tasks derived in Chapter 4, giving new belief propagation algorithms for

optimizing policies in influence diagrams and studying their theoretical and empirical prop-

erties. In more detail:

• Applying our novel variational representation to MEU in influence diagrams, we derive

a novel MEU-BP algorithm, which works not only in influence diagrams with perfect

recall, but also those with imperfect recall.

• We study the theoretical properties of MEU-BP, proving a reparameterizatipon prop-

erty and a strong local optimality property, which is guaranteed to be stronger than the

policy-by-policy optimality given by greedy methods such as the classic single policy

update algorithm.

• We derive a convergent version of MEU-BP based on the proximal point method.

• Our methods work by exploiting the factorization structure of the influence diagram;

however, the presence of additive utilities may lead to computational difficulties. We

propose a method to address this issue, which significantly improves performance with

additive utilities.

• We test our methods experimentally on both simulated and real world models, includ-

ing a distributed detection problem in sensor networks. We show that our algorithms

are highly efficient; for example, in influence diagrams with imperfect recall our meth-

ods are both far more efficient, and find far better decision policies, than the standard,

greedy single-policy update algorithm.

Chapter 8 gives some conclusions and open directions for future research, and the appen-

dices contain several proofs and additional details omitted from the main chapters.
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Chapter 2

Graphical Models for Inference and

Decision Making

In this chapter, we provide background about inference and decision making in graphical

models. Section 2.1 defines various types of graphical models, including Markov random

fields, Bayesian networks and factor graphs. Section 2.2 then introduces three major in-

ference tasks on graphical models: maximum a posteriori or MAP (maximization) tasks,

marginalization (summation) tasks, and the more general marginal MAP (max-sum) tasks;

the importance and the increased difficulty of marginal MAP tasks are emphasized. In Sec-

tion 2.3, we introduce decision networks (also called influence diagrams), which are general-

izations of Bayesian networks used to represent decision-making problems, and the associated

maximum expected utility (MEU) task for optimizing decision policies. MEU inference tasks

are even more general than marginal MAP; they reduce to an interleaved, sum-max-sum form

similar to marginal MAP for decision making in centralized settings under an assumption

called perfect recall, but can also be applied to much more general settings, including de-

centralized “team” decision making with limited information sharing. However, these more

general settings also incur additional and fundamental increases in the complexity of the

associated inference tasks.

10



2.1 Probabilistic Graphical Models

Denote by x a random vector {x1, x2, . . . , xn} taking values in space X = X1 × · · · × Xn.

We assume the xi are discrete variables throughout the thesis. We will use [n] to denote

the set of first n positive integers, i.e., [n] = {1, . . . , n}. For any subset α ⊆ [n], we write

xα = {xi|i ∈ α}.

It is in general computationally intractable to directly specify or process an arbitrary joint

distribution p(x1, x2, . . . , xn), since it may require |X1| × · · · × |Xn| − 1 = O(exp(n)) param-

eters, which quickly grows too large in practice. Fortunately, real-world distributions often

have special patterns that we can exploit to decrease the computational burden. Probabilis-

tic graphical models are a particular class of distributions that have been well studied in

machine learning and statistics. The key idea is to restrict the form of the joint probability

to be a product of a set of lower dimensional functions, each of which involves only a small

number of variables, that is,

p(x) =
1

Z

∏
α∈I

ψα(xα), Z =
∑
x

∏
α∈I

ψα(xα), (2.1)

where I is a set of subsets of variables, and ψα : Xα → R+ are positive (lower dimensional)

functions called factors ; here we conveniently use the variable scope α := scope(ψ) to index

ψ. The constant Z serves to normalize the distribution, and is known as the partition

function. In this case, the number of parameters required is only O(exp(max{|α| : α ∈ I})),

which can be much smaller than the O(exp(n)) required for an unstructured distribution.

Distributions of form (2.1) are also called Gibbs distributions.

Conditional Independence. In additional to the computational benefits, the importance of

the factorization structure (2.1) lies in its connection to conditional dependency. Consider,

for example, two variables xi and xj that do not co-appear in any α ∈ I. Denote by Ii the
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set of factors involving i, that is, Ii = {α ∈ I : i ∈ α}, and similarly for Ij. Then obviously,

we have Ii ∩ Ij = ∅, and therefore

p(xi, xj|x¬ij) ∝
∏
α∈Ii

ψα(xα) ·
∏
α∈Ij

ψα(xα),

where x¬ij denotes the variables other than xi and xj; the factors that involve neither i nor

j are treated as constants and dropped. Similarly, we have

p(xi|x¬ij) ∝
∏
α∈Ii

ψα(xα), p(xj|x¬ij) ∝
∏
α∈Ij

ψα(xα).

Comparing the forms of p(xi, xj|x¬ij) and p(xi|x¬ij), p(xj|x¬ij), we have

p(xi, xj|x¬ij) = p(xi|x¬ij)p(xj|x¬ij).

In other words, xi and xj are conditionally independent for fixed x¬ij, that is, xi ⊥ xj || x¬ij.

Therefore, the factorization assumptions effectively correspond to conditional independence

assumptions, which often arise in real world systems.

Graph theory provides a convenient notation for visualizing the factorization structure, and

also makes it easy to read off all the conditional independence relationships. This leads

to different types of probabilistic graphical models, depending on the choice of graphical

representation.

Markov Random Fields. A Markov random field is a distribution of the form (2.1), whose

factorization structure is represented using an undirected graphG = (V,E), called its Markov

network, where each node i ∈ V is associated with a variable xi, and there exists an edge

(ij) ∈ E if i and j appear in some common subsets in I, that is, {i, j} ⊆ α for some α ∈ I.

In this case, the index set I forms a subset of the cliques (fully connected subgraphs) of

12



x1

x2 x4

x3

x1

x2 x4

x3

(a) Markov random field: (b) Bayesian network:
p(x) ∝ ψ12ψ23ψ24ψ34ψ14 p(x) = p(x1)p(x2|x1)p(x3|x2, x4)p(x4|x1, x2)

Figure 2.1: Simple examples of Markov random fields and Bayesian networks.

G. With this notation, the conditional independence is associated with the connectivity in

the graph: Given any three subsets of variables xA and xB and xS, we have xA ⊥ xB||xS

if every path from a node in A to a node in B passes through S (the so called global

Markov properties). In addition, the well-known Hammersley–Clifford theorem shows that

any distribution with positive probabilities that satisfies the Markov properties with respect

to a graph G must have a factorization form of (2.1), whose I is the set of cliques of G. See

Lauritzen [1996] for a comprehensive treatment.

A special class of models that have received considerable attention are pairwise models,

which are models that include only singleton and pairwise factors; that is,

p(x) ∝
∏
i∈V

ψi(xi)
∏

(ij)∈E

ψij(xi, xj),

where each singleton factor ψi is associated with the node i, and the pairwise factors corre-

spond to the edges in the graph. See Figure 2.1(a) for a simple example. It is often relatively

convenient to specify inference algorithms for pairwise models, and they are well studied to

due their relative simplicity. In addition, any graphical model can be reformed into a pairwise

model, with some loss of computational efficiency [e.g., Wainwright and Jordan, 2008].

13



x1 x2 x3 x4

 123  34 24

p(x) ∝ ψ123(x1, x2, x3)ψ24(x2, x4)ψ34(x3, x4)

Figure 2.2: An example factor graph.

Bayesian Networks. Bayesian networks are another common formalism for defining graph-

ical models. Bayesian networks use directed acyclic graphs (DAGs) to represent probabilities

that can be written as a product of conditional probabilities; that is,

p(x) =
∏
i

p(xi|xpa(i)),

where the parent set {pa(i) : i ∈ [n]} defines a directed acyclic graph G = (V,E): each node

i ∈ V is again associated with a variable xi, and E is the set of directed edges that points

from each parent in pa(i) to node i, for ∀i ∈ V . Figure 2.1(b) illustrates a simple example

of a Bayesian network.

Note that, for Bayesian networks, the distribution is composed of conditional probabilities

and hence is normalized (sums to one) by definition. However, in practice it is typical to

observe values for some set of “evidence” variables, inducing an un-normalized model over

the remaining variables.

Factor Graphs. Another common and useful graphical representation is the factor graph

formalism. Given a distribution with factorized form p(x) ∝
∏

α∈I ψα(xα), its factor graph

representation is a bipartite graph G = (V, I, E) which consists of variable nodes V = {i},

factor nodes I = {α}, and edges between factors and the variables within their scopes,

E = {(i, α) ∈ V × I : i ∈ α}. See Figure 2.2 for an example factor graph.

14



2.2 Probabilistic Inference Tasks

Given a graphical model p(x), the term inference refers generically to answering probabilistic

queries about the model, such as computing marginal probabilities or maximum a posteriori

estimates. Although these inference tasks are NP-hard in the worst case, recent algorithmic

advances, including the development of variational methods and the family of algorithms

collectively called belief propagation, provide approximate or exact solutions for these prob-

lems in many practical circumstances. We introduce three common classes of inference tasks,

which involve optimization, marginalization and their combination, respectively.

Optimization. Maximization or max-inference tasks, sometimes called maximum a pos-

teriori (MAP) or most probable explanation (MPE) tasks, look for a mode of the joint

probability, that is,

x∗ = arg max
x

p(x) = arg max
x

∏
α∈I

ψα(xα),

where, since the optimization does not involve the partition function Z, it can be dropped in

the second equation. The MAP task is widely used for making predictions in high dimensions.

One well known example is image denoising via Markov random fields in computer vision

[e.g., Li and Singh, 2009]. In Bayesian network literature, the MAP task corresponds to

optimizing the configuration of the unobserved variables given some observed evidence, and

is thus often referred to as the most probable explanation (MPE) task. MAP inference also

includes classical weighted constraint satisfaction problems (CSPs) as a special case, in which

the log of each factor corresponds to a weighted logical constraint.

Marginalization. Marginalization or sum-inference tasks sum over the configurations to

calculate the marginal probabilities of one or a few variables, or to evaluate the model’s
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normalization constant Z, that is,

p(xi) =
∑
x[n]\{i}

p(x) =
1

Z

∑
x[n]\{i}

∏
α∈I

ψα(xα), Z =
∑
x

∏
α∈I

ψα(xα).

Marginal probability distributions are useful in many estimation settings; for example, they

can be used to make Bayes-optimal (minimum error rate) predictions on xi, provide confi-

dence intervals, or detect unusual or anomalous events. In addition, marginalization tasks

are required when calculating the data likelihood and its derivative, and thus forms a critical

subroutine for learning models from data.

The term partition function for Z comes originally from statistical physics. In the Bayesian

network setting, un-normalized models (Z 6= 1) arise when some of the variables (the “ev-

idence” variables) are assigned observed values. In this case, the normalization constant

Z corresponds precisely to the marginal probability of the observed value of the evidence

variables. Hence, computing Z is sometimes referred to as the probability of evidence task

in Bayesian network literature. Additionally, computation of Z includes classical counting

constraint satisfaction problems (#CSP) as a special case.

Marginal MAP. Finally, marginal MAP tasks1 comprise a type of mixed-inference, a hybrid

of both the marginalization and optimization tasks. Marginal MAP seeks a partial configu-

ration of variables that maximizes their marginal probability, with the remaining variables

summed out; that is,

x∗B = arg max
xB

p(xB) = arg max
xB

∑
xA

p(xA,xB) = arg max
xB

∑
xA

∏
α∈I

ψα(xα),

where A,B are disjoint subsets of variables with A ∪ B = [n]. Obviously, marginal MAP

reduces to MAP if A = ∅ and to marginalization if B = ∅.
1In some Bayesian network literature [e.g., Park and Darwiche, 2004], marginal MAP is simply referred

to as MAP, while the joint MAP problem is called MPE.
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Marginal MAP plays an essential role in many practical scenarios where there exist hidden

variables or uncertain parameters. For example, a marginal MAP problem can arise as a

MAP problem on models with unobserved variables whose predictions are not of interest, or

as a robust optimization variant of MAP with some unknown or noisily observed parameters

marginalized w.r.t. a prior distribution. See Ping et al. [2014], Naradowsky et al. [2012],

Pletscher and Ong [2012] for examples of applications that use marginal MAP inference.

Complexity Comparison. These three types of inference tasks are listed in order of in-

creasing difficulty: max-inference is NP-hard (its “decision” version is NP-complete), while

sum-inference is #P-complete, and the decision version of mixed inference is NPPP-complete

[Park and Darwiche, 2004, de Campos, 2011]. Practically speaking, max-inference tasks

have a host of efficient algorithms such as loopy max-product BP, linear programming relax-

ations, and dual decomposition [see e.g., Koller and Friedman, 2009, Sontag et al., 2011].

Sum-inference is more difficult than max-inference: for example there are models, such as

those with binary attractive pairwise potentials, on which sum-inference is #P-complete but

max-inference is tractable [Greig et al., 1989, Jerrum and Sinclair, 1993]. In general, the

complexity of these tasks can grow exponentially with a quantity called the induced width,

whose value depends on the structure of the graph. When the graph is highly structured,

such as a linear chain or a tree, both max- and sum-inference can be solved efficiently using

dynamic programming, in time linear in the graph size; see Chapter 3.

Mixed-inference is significantly harder than either standard max- or sum- inference tasks:

for example, marginal MAP can be NP-hard even on tree structured graphs, in which the

max- and sum-inference tasks are only linear complexity. An illustrative example is shown

in Figure 2.3, where marginal MAP is NP-hard on a simple tree structured graph. The main

difficulty arises because the max and sum operators do not commute, which restricts our

ability to reorder the calculations in a more computationally efficient manner. Instead, all

the summation operations must be completed before any max operations; in the worst case,
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max:xB

sum:xA

Marginal MAP:

x∗B = arg max
xB

p(xB)

= arg max
xB

∑
xA

p(x).

Figure 2.3: Illustrating the difficulty of marginal MAP: an example adapted from Koller and
Friedman [2009, page 561] in which a marginal MAP query on a tree requires exponential
time complexity. The marginalization over xA destroys the conditional dependency structure
in the marginal distribution p(xB), causing an intractable maximization problem over xB.
The exact variable elimination method, which sequentially marginalizes the sum nodes and
then maximizes the max nodes, has time complexity O(exp(n)), where n is the chain length.

marginalizing the sum nodes xA may destroy any conditional independence among the max

nodes xB. The lack of conditional independence structure, then, makes it difficult to directly

optimize the objective function
∑
xA
p(xA,xB), even when the sum part alone is tractable

(such as when the nodes in A form a tree). For more details, see Section 3.1.

Marginal MAP vs. MAP. Despite of its computational difficulty, marginal MAP plays an

essential role in many practical scenarios. The marginal MAP configuration x∗B is Bayes

optimal in the sense that it minimizes the expected error on B, E[1(x∗B 6= xB)], where E[·]

denotes the expectation under distribution p(x). Here, the variables xA are not included in

the error criterion, perhaps because they are “nuisance” hidden variables that are not of di-

rect interest, or are unobserved or inaccurately measured model parameters. In contrast, the

joint MAP configuration x∗ minimizes the joint error E[1(x∗ 6= x)], but gives no guarantees

on the partial error E[1(x∗B 6= xB)]. In practice, perhaps because of the wide availability

of efficient algorithms for joint MAP, researchers tend to over-use joint MAP even in cases

where marginal MAP would be more appropriate. The following toy example shows that

this seemingly reasonable approach can sometimes cause serious problems.

Example 2.1 (Weather Dilemma). Define xb ∈ {rainy, sunny} to be the weather condition

in Irvine, and xa ∈ {walk, drive} whether Alice drives or walks to the school (which depends

on the weather). Let the probabilities of xb and xa be
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p(xb) : rainy 0.4

sunny 0.6

p(xa|xb) : walk drive

rainy 1/8 7/8

sunny 1/2 1/2

The task is to calculate the most likely weather condition of Irvine, which is obviously sunny

according to p(xb). The marginal MAP solution, x∗b = arg maxxb p(xb) = sunny, gives the cor-

rect answer. However, the full MAP solution, [x∗a, x
∗
b ] = arg max p(xa, xb) = [drive, rainy],

yields the answer x∗b = rainy (by dropping the x∗a component), which is obviously wrong.

Paradoxically, if p(xa|xb) is changed (say, to correspond to a different person), the solution

returned by the full MAP query could be different.

In the above example, since no evidence on xa is observed, the conditional probability p(xa|xb)

does not provide useful information for xb, but instead provides misleading information when

it is incorporated in the full MAP estimator. The marginal MAP query, on the other hand,

eliminates the influence of the irrelevant p(xa|xb) by marginalizing (or averaging over) xa.

In general, the marginal MAP and full MAP can differ significantly when the uncertainty in

the hidden variables changes as a function of xB.

2.3 Structured Decision Making Under Uncertainty

Intuitively speaking, optimization tasks correspond to finding configurations that maximize

a function (for MAP, the joint probability of the model), while marginalization tasks corre-

spond to averaging over random effects. Real world intelligent systems will almost inevitably

involve both of these two elementary operations as building blocks of more complicated rea-

soning. For example, the marginal MAP query is a simple hybrid of optimization and

marginalization, in which the function being maximized is a marginal probability (or equiv-
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Figure 2.4: A simple influence diagram for deciding vacation activity.

alently, an expectation). More generally, sequential decision making problems may involve

several such steps of optimization and expectations, as early actions should optimize the ex-

pected reward that will ensue from later actions. Many decision-making tasks can be framed

conveniently using decision networks, also known as influence diagrams, which extend the

Bayesian network formalism by adding additional decision nodes and reward functions for

modeling the decision process.

2.3.1 Inuence Diagrams and Maximum Expected Utility

Influence diagrams (IDs) or decision networks [Howard and Matheson, 1985] are extensions

of Bayesian networks to represent structured decision making problems within uncertain

environments. Formally, an influence diagram is defined on a directed acyclic graph G =

(V,E), whose nodes V = R∪D are a union of chance nodes R and decision nodes D, and a

utility function u(x):

1. Each chance node i ∈ R represents a random variable xi, associated with a conditional

probability table pi(xi|xpa(i)), in a way similar to that in Bayesian networks.
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2. Each decision node i ∈ D represents a controllable decision variable xi, whose value

is determined by a decision maker via a decision rule (or policy) which determines the

value of xi based on the observation on the values of xpa(i). In words, the parents pa(i)

denotes the set of information available at the time the decision is made. Therefore,

the edges from pa(i) to i for any decision nodes are called information arcs. A decision

rule can be represented as a deterministic conditional “probability” δi(xi|xpa(i)), where

δi(xi|xpa(i)) = 1 if xi is the selected value based on xpa(i), and zero if otherwise. We call

the collection of policies δ = {δi : i ∈ D} a strategy.

It is helpful to allow soft decision rules where δi(xi|xpa(i)) takes fractional values; these

define a randomized strategy in which xi is determined by randomly drawing from con-

ditional probability δi(xi|xpa(i)). Denote by ∆o the set of deterministic strategies and ∆

the set of randomized strategies. Note that ∆o is a discrete set, while ∆ is its convex hull.

3. Finally, a utility function u : X → R+ measures the reward given an instantiation of

x = [xR,xD], which the decision maker wants to maximize. It is reasonable to assume

some decomposition structure on the utility u(x), either additively or multiplicatively:

Additive : u(x) =
∑
j∈U

uj(xβj), or Multiplicative : u(x) =
∏
j∈U

uj(xβj).

A decomposable utility function can be visualized by augmenting the DAG with a set of

leaf nodes U , called utility nodes, each with parent set βj. See Figure 2.4 for a simple

example. We should point out that the utility nodes are not uniquely mapped to random

or decision variables as are the chance and decision nodes. Instead, they are introduced

mainly for the purpose of visualization of the utility dependence, and in this sense are

more similar to factor nodes in a factor graph.

Remark. Historically, the definition of IDs requires an additional perfect recall assumption

that we discuss in Section 2.3.2 below (see e.g., Howard and Matheson [1985], Shachter [1988,

1986]); IDs without perfect recall are typically called limited memory IDs, or LIMIDs [Zhang
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et al., 1994]. However, throughout this thesis, we will not assume perfect recall for general

IDs unless stated explicitly.

Given an influence diagram, we aim to find an optimal strategy that maximizes the expected

utility function (MEU), that is,

MEU = max
δ∈∆

EU(δ) = max
δ∈∆

E(u(x) | δ)

= max
δ∈∆

∑
x

u(x)
∏
i∈R

pi(xi|xpa(i))
∏
i∈D

δi(xi|xpa(i)). (2.2)

where we maximize the expected utility over the set of randomized strategies ∆; this is

equivalent to maximizing over the deterministic strategies ∆o; see Appendix C.1.

Let us write p(xR|xD) =
∏

i∈R p(xi|xpa(i)) be the (overall) conditional distribution of the

random variables conditional on the decision variables. Then the MEU is written as

MEU = max
δ∈∆

∑
x

p(xR|xD)u(x)
∏
i∈D

δi(xi|xpa(i)). (2.3)

Thus, mathematically, a MEU task is uniquely decided by only two components:

1. The parent sets {pa(i) : i ∈ D} of the decision nodes (that is, the informational arcs).

2. The product p(xR|xD)u(x), which we call the “utility-augmented” distribution.

Therefore, we can treat MEU as a special sort of “inference” on the utility-augmented dis-

tribution q(x) := p(xR|xD)u(x), which, as we will show in the sequel, includes the more

common inference tasks in Section 2.2 as special cases. This general view also allows us

to specify a MEU problem without necessarily referring to the semantics of the influence

diagram — one can specify p(xR|xD) and u(x) arbitrarily, e.g., defining p(xR|xD) via an

undirected MRF, extending the definition of IDs.
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2.3.2 Perfect Recall and Sum-Max-Sum Inference

The MEU problem in (2.3) can be solved in closed form if the influence diagram satisfies a

perfect recall assumption (PRA): that there exists a “temporal” ordering over all the decision

nodes, say {d1, d2, · · · , dm}, consistent with the partial order defined by the DAG G, such

that every decision node observes all the earlier decision nodes and their parents, that is,

{dj}∪pa(dj) ⊆ pa(di) for any j < i. Intuitively, PRA implies a centralized decision scenario,

where a global decision maker sets all the decision nodes in a predefined order, with perfect

memory of all the past observations and decisions.

With PRA, the chance nodes can be grouped by when they are observed. Let ri−1 (i =

1, . . . ,m) be the set of chance nodes that are parents of di but not of any dj for j < i; then

both the decision and chance nodes are temporally ordered by [r0, d1, r1, · · · , dm, rm]. For

IDs with PRA, the MEU task can be solved by dynamic programming, which in this case

takes on a sum-max-sum form,

MEU =
∑
xr0

max
xd1

∑
xr1

· · ·max
xdm

∑
xrm

p(xR|xD)u(x), (2.4)

and the optimal strategies are decoded by

δ∗di(xdi |xpa(di)) ∝ 1
[
xdi ∈ arg max

xdi

{∑
xri

· · ·max
xdm

∑
xrm

p(xR|xD)u(x)
}]
,

where 1[·] is the indicator function. Here the calculation is performed in the reverse temporal

ordering, alternating between marginalizing the random variables and maximizing the deci-

sion variables. Obviously, (2.4) generalizes the marginalization, optimization, and marginal

MAP tasks introduced in Section 2.2, in that it interleaves the sum and max operators in

arbitrary orders. The marginal MAP, in particular, can be treated as a blind decision prob-

lem, where no chance nodes are observed by any decision nodes. Similar to marginal MAP,
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Figure 2.5: Illustrating perfect recall vs. imperfect recall. In (a) d2 observes d1; its optimal
decision rule is to follow d1’s state (whatever it is); knowing d2 will follow, d1 can choose
d1 = 1 to achieve the global optimum. In (b) d1 and d2 do not know the other’s states;
both d1 = d2 = 1 and d1 = d2 = 0 (suboptimal) become locally optimal strategies and the
optimization problem is multi-modal.

the non-exchangeability of the sum and max operators restricts our ability to reorganize the

calculation of (2.4) in a computationally efficient manner (specifically, restricting to elimi-

nation orders that are consistent with the “temporal ordering” of the influence diagram; see

Section 3.1). This causes the MEU task to have potentially much higher complexity than,

for example, sum-inference on a similarly structured model.

However, perfect recall is often not a realistic assumption to make in practice. First, most

systems lack enough memory to express arbitrary policies over an entire history of obser-

vations: representing an arbitrary policy δi(xi|xpa(i)) requires complexity exponential in

|pa(i)|, which under PRA is the entire past history of observed random variables and quickly

becomes intractable in practice. Second, many real-world scenarios such as team decision

making [Detwarasiti and Shachter, 2005] and decentralized sensor networks [Kreidl and Will-

sky, 2006] are distributed by nature: a team of agents makes decisions separately based on

sharing limited information with their neighbors. In these cases, relaxing the perfect recall

assumption is very important.
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2.3.3 Imperfect Recall and Single Policy Update

General IDs in which the perfect recall assumption has been relaxed have been discussed

in, for example, Zhang et al. [1994], Lauritzen and Nilsson [2001], and Koller and Milch

[2003], and are commonly referred to as limited memory influence diagrams (LIMIDs). Un-

fortunately, while relaxing PRA may be necessary from one standpoint, it also causes many

additional computational difficulties. First, it is no longer possible to eliminate the decision

nodes in a sequential “sum-max-sum” fashion as that in (2.4). Instead, the different decision

nodes and their policies can influence each other in a cyclic fashion, formally discussed in

Koller and Milch [2003] by defining a relevance graph over the decision nodes; the relevance

graph is a tree for IDs with perfect recall, but is usually loopy with imperfect recall. As

a consequence, iterative algorithms are usually required to solve LIMIDs. Even more un-

fortunately, when these iterative updates are performed, the agents’ incomplete information

often causes them to behave myopically. Ignorance of the system’s global statistics leads

them to select only locally optimal strategies, and it can be very difficult to make improve-

ments that require coordinated changes in the policies of several agents. This results in

the strategy space effectively breaking into many local modes; in fact, this difficulty can be

directly viewed as arising from a form of non-convexity in the objective, compared to PRA

problems in which it is convex; see Chapter 4, Section 4.3 for more details. Figure 2.5 shows

an illustrative example of this phenomenon, in which a graph with imperfect recall has two

different local optima, while adding an additional information arc to ensure perfect recall

ensures a unique optimum.

The currently most popular algorithms for LIMIDs are based on iterative policy-by-policy

improvement, for example, the single policy update (SPU) algorithm [Lauritzen and Nilsson,

2001] shown in Algorithm 2.1 steps through all the decision nodes i in some order, and

sequentially optimizes δi with the other decisions δ¬i = {δj : j 6= i} fixed. If the perfect

recall assumption holds, and the updates are made along a reverse temporal order, then one
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Algorithm 2.1 Single Policy Update [Lauritzen and Nilsson, 2001] for IDs With Imperfect
Recall (LIMIDs)

Input: An influence diagram, as specified by conditional probability p(xR|xD) and the
utility function u(x).
Output: An optimal decision policy δ = {δi : i ∈ D}.
Initialize decision policy δ = {δi : i ∈ D} (e.g., randomly).
while not converged do

for all decision nodes i ∈ D do

δi(xi|xpa(i))← 1
[
xi ∈ arg max

xi

E(u(x)|x{i}∪pa(i) ; δ¬i)
]
,

where E(u(x)|x{i}∪pa(i); δ¬i) =
∑

xV \{i}∪pa(i)

p(xR|xD)u(x)
∏

j∈D\{i}

δj(xj|xpa(j)),
(2.5)

end for
end while
Return: Decision policy δ = {δi : i ∈ D}.

can show that the SPU reduces to the sum-max-sum rule and returns a globally optimal

strategy. However, in the case of imperfect recall, SPU is only guaranteed to return locally

optimal strategies, and is often heavily influenced by initialization. In the example shown

in Fig. 2.5(b), one can readily see that SPU will converge to either of the two local optima,

depending on the initialization.

The issue of local optima can be improved by generalizing SPU to the strategy improvement

(SI) algorithm [Detwarasiti and Shachter, 2005], which simultaneously updates subgroups of

decisions nodes. However, the time and space complexity of SI grows exponentially with the

sizes of the subgroups. We show in Chapter 7 that the novel message-passing algorithms we

develop for MEU are able to go beyond this näıve greedy paradigm, giving solutions that

are locally optimal in a stronger sense than SPU with comparable or better efficiency.
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Chapter 3

Background: Inference Methods

In this thesis we consider two different perspectives, corresponding to two major styles of

algorithms, for exact or approximate inference: variable elimination methods, which di-

rectly eliminate (max or sum over) the variables one by one, and variational optimization

methods, which are based on the idea of reframing the inference problem as a functional

optimization problem that minimizes a KL divergence to the target distribution. Under

either perspective, exact inference usually leads to algorithms with complexity that is expo-

nential on the induced-width of the graphical models. However, this is often prohibitively

slow for practical applications. Thus, many approximate algorithms have been developed by

approximating the exact inference process under one of these two perspectives. For example,

the mini-bucket elimination algorithm [Dechter and Rish, 2003] works by directly approxi-

mating the marginalization operators in variable elimination; other related methods include

Boyen and Koller [1998], Wexler and Meek [2009] and Mauá and de Campos [2012]. Alter-

natively, the family of variational approximation methods include loopy belief propagation,

tree-reweighted BP and mean field methods, each of which rely on approximating the KL

divergence minimization problem in various ways.

In this chapter, we introduce general background material about these two types of al-

gorithms: Section 3.1 introduces variable elimination based methods, including the exact

bucket elimination and the approximate mini-bucket elimination algorithms; in addition,
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these sections define notation for induced graphs and junction graphs. Section 3.2 intro-

duces the basic variational form for the log-partition function, which we then use as a basis

to discuss several variational approximation methods, including loopy BP, tree reweighted

BP, mean field and their variants.

3.1 Primal View { Elimination Methods

Elimination-based methods such as bucket or variable elimination [Dechter, 1996, 1999,

Zhang and Poole, 1996] act by directly eliminating (summing over or maximizing over)

the variables, one by one, along a predefined ordering. We first introduce the bucket elimi-

nation method [Dechter, 1999] for exact inference in Section 3.1.1, and then the mini-bucket

elimination method [Dechter and Rish, 2003] for approximate inference in Section 3.1.2.

Finally, in Section 3.1.3, we reform the bucket elimination as forward-backward belief prop-

agation algorithms that pass “messages” over a tree structure, and introduce loopy BP as

another type of approximation method, by passing messages over general graphs with loops.

We mainly focus the discussion on marginal inference, but the methods’ extension to joint

optimization and mixed inference can be derived in a straightforward manner, by simply

replacing the sum operators with max.

3.1.1 Bucket Elimination for Exact Inference

We use a simple running example to illustrate the general idea of bucket (or variable) elim-

ination. Consider a simple distribution on x = [x1, x2, x3, x4],

p([x1, x2, x3, x4]) =
1

Z
ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ34(x3, x4).
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Assume we are interested in sum-inference, specifically calculating the partition function,

Z =
∑
x4

∑
x3

∑
x2

∑
x1

ψ34(x3, x4)ψ24(x2, x4)ψ12(x1, x2)ψ13(x1, x3),

for which the brute-force algorithm would be required to sum over a 4 dimensional tensor,

with a complexity of O(d4), where d is the number of possible states of xi. However, by

using the distributive law, the partition function can be written as

Z =
∑
x4

∑
x3

ψ34(x3, x4)
∑
x2

ψ24(x2, x4)
∑
x1

ψ12(x1, x2)ψ13(x1, x3),

where the summations can be calculated node by node,

ψnew1 (x2, x3) =
∑
x1

ψ12(x1, x2)ψ13(x1, x3), (3.1)

ψnew2 (x3, x4) =
∑
x2

ψ24(x2, x4)ψnew1 (x2, x3),

ψnew3 (x4) =
∑
x3

ψ34(x3, x4)ψnew2 (x3, x4),

Z =
∑
x4

ψnew3 (x4),

which requires a total complexity of only O(d3), instead of O(d4).

In general, the calculation can be conveniently organized as a “bucket elimination procedure”

(shown in Algorithm 3.1) that eliminates the variables node by node along a pre-defined

elimination order. At the ith step of Algorithm 3.1, we multiply all the factors that include

xi (called the “bucket” Bi), and eliminate xi from the product (step (3.2)), that is,

ψnewi (xπi) =
∑
xi

∏
ψ∈Bi

ψ(xscope(ψ)).

This results a new factor ψnewi (xπi) which replaces the factors in Bi that have been eliminated
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away; the variable scope of ψnewi is πi := scope(ψnewi ) = ∪ψ∈Bi
scope(ψ) \ {i}, and can be

thought of as the “parent set”1 (meaning the neighboring, un-eliminated nodes) of i. This

elimination step is performed sequentially for all the nodes, so the newly created factor

ψnewi (xπi) should be placed into the “bucket” of the first variable to be eliminated in πi (i.e.,

the “first parent” of i). In this sense, ψnewi can also be treated as a “message” that is passed

from node i to its first parent, which can motivate additional “message passing” variants of

the algorithm such as we explain in Section 3.1.3.

Obviously, the general computational complexity of Algorithm 3.1 is dominated by the elim-

ination step (3.2), which requires O(ndωo+1) with ωo = max{|πi| : i ∈ [n]}. Here ωo is called

the induced width (or tree width) of p(x) along the elimination order o = [x1, . . . , xn]. We

discuss the induced width further in the sequel, but for now note that the induced width

can be computed relatively efficiently for a given ordering by “simulating” Algorithm 3.1 —

going through the procedure, but without actually running the elimination step (3.2). Dif-

ferent elimination orders o may lead to different induced widths ωo; the minimum induced

width ω = mino{ωo} among all possible orders is called the induced width of p(x), and

captures the best possible complexity of the variable elimination method. Unfortunately, it

is in general an NP-complete task to find the best variable ordering. In practice, a number

of greedy algorithms exist, including the min-fill and min-induced-width heuristic methods

(see Dechter [2013, Section 3.4.2] for an introduction).

Backward Elimination for Computing Marginal Probabilities

Algorithm 3.1 only computes the partition function Z. If we are interested in calculating the

marginal probabilities, say p(xi), a näıve method is to simply fix xi and run Algorithm 3.1 for

all the possible values of xi. However, this approach is very inefficient if we want to calculate

1Note that the term “parent set” πi in variable elimination should be distinguished from the parent set
pa(i) in the definition of Bayesian networks (Chapter 2).
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Algorithm 3.1 Bucket (or variable) elimination for computing the partition function Z
[Dechter, 1999].

Input: Factors of a graphical model F = {ψα(xα)}, an elimination order o =
[x1, x2, · · · , xn].
Output: The partition function Z.

for i← 1 to n do
1. Find the set (or “bucket”) of factors involving variable xi:

Bi ← {ψ : ψ ∈ F, i ∈ scope(ψ)}.

2. Eliminate variable xi,

ψnewi (xπi) =
∑
xi

∏
ψ∈Bi

ψ(xscope(ψ)), (3.2)

where πi is the variable scope of ψnewi , that is, πi := scope(ψnewi ) = ∪ψ∈Bi
scope(ψ)\{i}.

3. Update the factor list: F← (F \Bi) ∪ {ψnewi }.
end for
Return: the partition function, Z =

∏
ψ∈F

ψ.

Note: after all eliminations, any remaining factors ψ are constants, i.e., scope(ψ) = ∅.

all the marginals p(xi) for all i simultaneously, since these computations would repeat many

of the same calculations. We can instead derive much more efficient algorithms by sharing

these repeated calculations. We do so by performing an additional backward elimination

pass (compared to the forward elimination pass described in Algorithm 3.1) that constructs

the marginal probabilities recursively using the chain rule of probability. Algorithm 3.2

shows an example of backward elimination that calculates the marginals {p(xπi∪{i}) : i ∈ [n]}

simultaneously, with a total computational complexity of only O(n exp(ωo + 1)).

Triangulation and the Induced Graph

Although the complexity bound ω can be evaluated by “simulating” Algorithm 3.1 before-

hand, it would be nice if there is a principled way to directly calculate it from the Markov

graph G. In this section, we interpret the variable elimination process as a sequence of graph-
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Algorithm 3.2 Bucket elimination with backward pass [Dechter, 1999]

Input: The set of factors of a graphical model F = {ψα(xα)}, an elimination order
o = [x1, x2, · · · , xn].
Output: The partition function Z and the marginal distributions {p(xπi∪{i}) : i ∈ [n]}.
Forward Pass: Run Algorithm 3.1 to calculate Z, and get the buckets {Bi} and
{ψnewi : i ∈ V }.
Backward Pass (to compute the marginals):

Initialization: p(xn) =
∏

ψ∈Bi
ψ(xscope(ψ))

for i ← n− 1 to 1 do

p(xi|xπi) =

∏
ψ∈Bi

ψ(xscope(ψ))

ψnewi (xπi)
p(xci) =

∑
xcj\ci

p(xi|xπi)p(xcj), (3.3)

where ci = πi ∪ {i} and j is the variable whose bucket Bj receives the factor ψnewi in
Forward elimination.

end for
Return partition function Z and marginals {p(xπi∪{i}) : i ∈ [n]}.

Note: marginals on smaller variable sets can be obtained by further marginalization, e.g.,
p(xi) =

∑
xπi

p(xci).

ical operations on the graph G; this results the notation of triangulation and of the induced

graph, which play an important role in analyzing and deriving many inference algorithms

(not limited to variable elimination).

It is useful to begin with some definitions.

Definition 3.1 (Ordered Graph). An ordered graph (G, o) is a undirected graph G :=

(V,E) equipped with a total ordering o over its node set V . For any node i ∈ V , the parent

set paG(i) of node i is its connected, subsequent nodes, that is, paG(i) = {i′ ∈ V : (i, i′) ∈

E, i ≺o i′}, where i′ ≺o i means that i′ is ranked later than i in the ordering o. The width of

a node is the size of its parent set, and the width of (G, o) is the maximal width of its nodes,

i.e., max{|paG(i)| : i ∈ V }.

Definition 3.2 (Induced Graph). Given an ordered graph (G, o), and a node i ∈ V ,

triangulating node i means adding edges between all the parents of i. The induced (or trian-
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Figure 3.1: Triangulating the graph in (a) along ordering [x1, x2, x3, x4]; the induced width
along this order is 2, but the induced width of the graph itself is 1, because it is a tree.

gulated) graph (G̃, o) is obtained by triangulating each of the nodes in turn along the order

o. The induced width of (G, o) is the width of its induced graph (G̃, o). The induced width of

the undirected graph G is the minimum induced width of all the ordered graphs generated by

G. See Figure 3.1 for an illustrative example.

There is a clear and intuitive meaning for the induced graph: it is simply the Markov network

of all the factors involved or generated during the variable elimination process. In particular,

the triangulation step (connecting the parents) corresponds to the creation of the new factors

ψnewi during the elimination step (3.2), and one can show that the variable scope πi of ψnewi

equals the parent set of node i in the resulting induced graph. Therefore, the induced width

equals the maximum number of variables involved in the elimination operation (3.2), and

hence characterizes the computational complexity.

The induced width of a tree is always one when eliminated from leaves to root; such orders

are called tree orders, and defined as follows.

Definition 3.3 (Tree Order). Given a tree G = (V,E), a total ordering o on V is called a

tree order if the induced width of (G, o) is one. In other words, each node i ∈ V should have

at most one parent along a tree order o. Nodes that have no parents are called roots; nodes

that are not parents of any other nodes are called leaves.
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Therefore, the complexity of variable elimination along tree orders are O(nd2), which is very

efficient.

Bucket Elimination for MAP and Marginal MAP

Although we have so far restricted our attention to sum-inference, the corresponding algo-

rithms for max-inference (MAP) and mixed-inference (e.g., marginal MAP) can be derived

in a straightforward way, by simply replacing the sum operators with max in the elimina-

tion steps whenever it is necessary. We omit the precise details of these different algorithm

versions, and refer the readers to Dechter [1999, 2013] for more details.

Following similar procedures for analysis, one can show that the best possible complexity of

variable elimination for MAP (along the best elimination order) is also O(n exp(ω+1)), again

governed by the induced width ω := mino{ωo} of G. However, marginal MAP, which consists

of a hybrid of both sum and max operators, can require significantly higher complexity due

to the restriction on the choice of elimination order. To see this, note that the max and sum

operators do not commute, that is,

max
x2

∑
x1

f(x1, x2) 6=
∑
x1

max
x2

f(x1, x2).

Therefore, when solving the marginal MAP task, maxxB
∑

xA
p(xA, xB), the elimination order

must be chosen such that all the sum variables (xA) are eliminated before any of the max

variables xB.

Definition 3.4. For any node subsets A ⊂ V , B ⊂ V with A∩B = ∅, the A-B constrained

induced width ωAB of G is the minimum induced width of (G, o) along orders where xA are

eliminated before xB, that is,

ωAB = min{ωo : i ≺o j, for ∀i ∈ A, j ∈ B}.
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Figure 3.2: (a) A tree graph on which we define a marginal MAP problem maxxB
∑
xA
p(x)

with A = [1, 2, 3, 4] and B = [5, 6, 7, 8]; due to the non-exchangeability of max and sum, any
valid elimination orders should eliminate A earlier than B. (b) The induced graph obtained
using eliminating order [x1, . . . , x8]. The A-B constrained induced width is ωAB = 4, while
the unconstrained induced width is only ω = 1.

Therefore, the best possible computational complexity of variable elimination for marginal

MAP is at least O(n exp(ωAB + 1)). Unfortunately, the constrained induced width ωAB can

be significantly larger than the regular induced width ω, depending on the choice of A and

B. For example, Figure 3.2 shows an example of simple tree of size n with ωAB as high as

n/2 (while the induced width ω is always 1). In general, marginal MAP can be NP-hard

even on trees, for which both pure sum- and max- inference can always be efficiently solved

(linear complexity in n). Obviously, more general queries such as the sum-max-sum form

of MEU (with perfect recall) may impose even more ordering restrictions, and cause even

higher computational complexity. Therefore, developing efficient approximations for these

hybrid tasks is of particular importance.

3.1.2 Mini-Bucket Elimination for Approximate Inference

The computational complexity of exact bucket elimination is exponential on the induced

width, which is often too large in practice. Mini-bucket elimination (MBE) [Dechter and

Rish, 2003] is an approximate version of bucket elimination that provides a flexible trade-off

between complexity and accuracy. As with bucket elimination, we illustrate the general idea
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of MBE using a toy example. Consider the summation task over x1 in (3.1),

ψnew23 (x2, x3) =
∑
x1

ψ12(x1, x2)ψ13(x1, x3). (3.4)

This calculation requires summing over x1 for each pair of values (x2, x3), and thus involves a

total computational cost of O(d3), where d is the number of states of xi. For the general case

in (3.2), the exact calculation involves summing over xi for all the values of xπi , requiring

O(d|πi|+1).

To decrease the complexity, Dechter and Rish [2003] developed an approximation that par-

titions the factors (or buckets) into several smaller groups (called “mini-buckets”), and elim-

inates over them separately. For the example in (3.4), Dechter and Rish [2003] provides the

following upper and lower bounds as approximations:

∑
x1

ψ12(x1, x2) ·max
x1

ψ13(x1, x3) ≥
∑
x1

ψ12(x1, x2)ψ13(x1, x3), (3.5)

∑
x1

ψ12(x1, x2) ·min
x1

ψ13(x1, x3) ≤
∑
x1

ψ12(x1, x2)ψ13(x1, x3). (3.6)

Here, we eliminate x1 in ψ12 and ψ13 separately, instead of within their product ψ12ψ13 jointly;

since the separate elimination operates over smaller functions, it requires a complexity of

only O(2d2), instead of O(d3).

More generally, we can apply a similar approximation within each elimination step (3.2), and

this results a general mini-bucket elimination (MBE) algorithm given in Algorithm 3.3. MBE

works in a style similar to exact bucket elimination, except that in each step the buckets

are first split into smaller “mini-buckets”, which are then eliminated separately before being

passed into their own subsequent buckets.

Usually, the amount of splitting in MBE is controlled by a parameter called the ibound,
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Algorithm 3.3 Mini-bucket elimination

Input: The factors of the graphical model F = {ψα(xα)}, an elimination order o =
[x1, · · · , xn], and an ibound.
Output: An upper (or lower) bound on the partition function Z.

for i← 1 to n do
1. Find the set (“bucket”) of factors involving variable xi:

Bi ← {ψ : ψ ∈ F, i ∈ scope(ψ)}.

2. Partition Bi into Ri subgroups {Bir}, such that ∪Rir=1Bir = Bi and

| ∪ψ∈Bir
scope(ψ)| ≤ ibound+ 1 for all r = 1, . . . , Ri.

3. Eliminate variable xi:
for r ← 1 · · ·Ri do

ψnewir (xπir ) =


∑
xi

∏
ψ∈Bir

ψ(xscope(ψ)), if r = 1,

max
xi

∏
ψ∈Bir

ψ(xscope(ψ)), if r 6= 1,
(3.7)

where the variable scope of the result is πir = ∪ψ∈Bir
scope(ψ) \ {i}.

end for

4. F← (F \Bi) ∪ {ψnewir : i = 1, · · · , Ri}.

end for
The partition function bound is Ẑ =

∏
ψ∈F ψ.

Note: after all eliminations, any remaining factors ψ are constants, i.e., scope(ψ) = ∅.
Note: replace the max operator with min in (3.7) to obtain a lower bound.

which represents the maximum number of variables allowed in the result of each mini-bucket.

Clearly, by controlling the size of the factor scopes, the complexity of MBE is reduced to

O(exp(ibound)) instead of O(exp(inducedwidth)) for exact bucket elimination. Note that

the ibound should be specified by the user to trade-off the complexity and accuracy: smaller

ibounds result in less computational cost, but are typically less accurate; higher ibounds give

more accurate results, but are more expensive to compute. If the ibound is greater than the

induced width, no bucket splitting is required, and the algorithm reduces to exact bucket

elimination.
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Mini-bucket is simple and fast. Unfortunately, however, the bounds defined in (3.6)-(3.5)

are relatively loose, and as a result we need to use a fairly high ibound (in practice, often 10

– 20) to achieve good performance. In Chapter 5, we will introduce a more general bound

based on Hölder’s inequality, and propose a more efficient weighted mini-bucket algorithm

that can obtain tighter bounds while using much smaller ibounds.

Remark. Note that Algorithm 3.3 only returns an approximation to the partition function.

It is also possible to develop a backward elimination similar to Algorithm 3.2 to obtain

approximations of the marginal probabilities [see Mateescu et al., 2010], but with a less

obvious interpretation as to how the approximation is defined. In Chapter 5, we develop a

more general, “weighted” mini-bucket approach, and discuss its resulting version of backward

elimination in more detail.

Factor Reallocation Between Mini-buckets

The mini-bucket elimination algorithm in Algorithm 3.3 assumes that each factor ψα is

assigned to exactly one of the mini-buckets. However, one could instead replace the factor

ψα with two factors whose product is ψα, e.g., ψα = ψ
1/2
α · ψ1/2

α , and assign these two

factors into two different mini-buckets. More generally, we can define a slightly more general

version of MBE that incorporates this freedom: we first split each original factor ψα into

the product of multiple factors {ψαs}, which together satisfy
∏

s ψαs = ψα, and then assign

the various ψαs into different mini-buckets. Note that this is effectively applying MBE

on a reparameterization p(x) ∝
∏

α

∏
s ψαs that is equivalent to the original distribution

p(x) ∝
∏

α ψα.

Another equivalent, but practically useful view is to think of the reparameterization as

“reallocating” (or “shifting”) the factors between mini-buckets while keeping the overall
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product of the factors unchanged. As an example, the bound in (3.5) can be extended to

[∑
x1

ψ12(x1, x2)ϕ(x1)
]
·
[

max
x1

ψ13(x1, x3)ϕ(x1)−1
]
≥
∑
x1

ψ12(x1, x2)ψ13(x1, x3), (3.8)

where ϕ is an arbitrary factor, which provides an additional degree of freedom within the

algorithm that can be tuned, or adjusted, to give a tighter bound. More generally, for any two

mini-buckets Bir1 and Bir2 that shares a variable clique α (that is, scope(Bir1 ) ∪ scope(Bir2 ) =

α, we have the freedom to “reallocate” (or “shift”) a factor ϕ(xα) between them, in order

to improve the bound.

Roughly speaking, it turns out that an optimal “reallocation” ϕ should be chosen in such

a way that the two mini-buckets’ functions are properly matched – often called a moment

matching condition – in a sense that is made concrete in Ihler et al. [2012] and Liu and

Ihler [2011], and is discussed in depth in Section 5.3.3 of the thesis. Often, the reallocation

process can be applied iteratively, until the moment matching condition is satisfied or the

computational resources are used up.

Mini-bucket as Sum-Max-Sum Inference on Augmented Model

The mini-bucket procedure given in Algorithm 3.3 works in a recursive fashion, interleav-

ing the bucket splitting (approximation) and variable elimination (inference) steps. An

alternate but equivalent formulation that will be important for later analysis involves pre-

defining the collection of splitting operations, and then performing all the elimination steps

afterwards. From this viewpoint, the mini-bucket bound can be written as a form of hybrid,

sum-max-sum (or sum-min-sum) inference on an augmented model constructed by splitting

the variables into multiple copies.

To be specific, we can view the partitioning of bucket Bi into mini-buckets {Bir} as splitting
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the variable xi into multiple copies (or replicates) x̄i = [x̄i1 , . . . , x̄iRi ], one for each bucket;

correspondingly, we let each factor ψ ∈ Bir be a function of the replicate x̄ir , rather than the

original xi. This reformulation involves increasing the number of variables in the model (to

include each bucket’s replicates); to this end, we define an augmented (or replicated) vector

of variables x̄ = [x̄11 , . . . , x̄1R1 , . . . , x̄nRn ], and a set of factors {ψ̄ᾱ(x̄ᾱ) : ᾱ ∈ Ī} that define

an new graphical model on x̄,

p̄(x̄) ∝
∏
ᾱ∈Ī

ψ̄(x̄ᾱ).

At a high level, we can describe the construction of the new model p̄(x̄) as consisting of two

steps, detailed in Algorithm 3.4 and Algorithm 3.5 and corresponding, respectively, to the

determination of the structure and factor reparameterization:

1. We first generate the factor cliques Ī of p̄(x̄) in Algorithm 3.4 by going through the

mini-bucket splitting process; this decides the Markov network structure of p̄(x̄), which

for convenience we refer to as a “covering graph” of the original Markov graph G (a

term taken from [Yarkony et al., 2010]). As illustrated in Figure 3.3, the partitioning

process can be viewed as splitting the nodes to break cycles in the original graph G,

so that the resulting covering graph will have lower induced width (controlled by the

ibound), and be computationally easier to process.

2. With fixed structure (cliques) Ī, we then decide the actual values of the augmented

factors {ψ̄ᾱ(x̄ᾱ) : ᾱ ∈ Ī}, such that the overall model will be equivalent to the original

model p(x) when all replicates of each variable are equal, that is,

∏
ᾱ∈Ī

ψ̄(x̄ᾱ) =
∏
α∈I

ψ(xα), when x̄ir = xi, ∀i ∈ [n], r ∈ [Ri]. (3.9)

In Algorithm 3.5, the augmented factors are determined by “splitting” each original

factor ψα(xα), α ∈ I into a product of multiple factors {ϕr}, such that
∏

r ϕr = ψα,

and then assigning each ϕr to the rth-replicate of xα (i.e., the r-th augmented clique
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which includes replicates from all original xi in α). This splitting operation corresponds

to the reparameterization perspective we discussed in the previous section, and gives

a slightly more general algorithm general than “standard” mini-bucket elimination.

With the augmented model constructed, we can then perform the elimination procedure as

defined in Algorithm 3.3; putting all the elimination steps together, it is straightforward to

see that the result of MBE can be written as a mixed inference computation that interleaves

sum and max (or min) operators,

Ẑ = max
x̄n2 ···x̄nRn

∑
x̄n1

· · · max
x̄12 ···x̄1R1

∑
x̄11

∏
ᾱ∈Ī

ψ̄(x̄ᾱ). (3.10)

Specifically, each bucket’s elimination operators are performed together, with the first mini-

bucket replicate (i1) eliminated using sum and the other replicates (i2 · · · iRi) eliminated

with max. Because the induced width of the augmented model p̄(x̄) is not greater than the

ibound by construction, the calculation can be performed using exact bucket elimination on

p̄(x̄). Thus, the complexity of this sum-max-sum inference is only exponential in the ibound,

which is controlled by the user. This closed form representation provides a useful tool for

analyzing and improving the quality of mini-bucket approximations, and plays a crucial role

in the development of our iterative, weighted mini bucket algorithm in Chapter 5.

Example 3.1. Consider the toy model illustrated in Figure 3.3,

p(x) ∝ ψ12(x1, x2)ψ14(x1, x4)ψ23(x2, x3)ψ24(x2, x4)ψ34(x3, x4)ψ1(x1)ψ2(x2).

The mini-bucket procedure as described in Figure 3.3 defines a replicated variable x̄ =

[x̄11 , x̄12 , x̄21 , x̄22 , x̄31 , x̄41 ], and an augmented model over x̄,

q̄(x̄) = ψ12(x̄11 , x̄21)ψ14(x̄12 , x̄41)ψ23(x̄21 , x̄31)ψ24(x̄22 , x̄41)ψ34(x̄31 , x̄41)ψ1(x̄11)ψ2(x̄22).

41



x1

x2

x3

x4

Original Graph:

p(x) = ψ12(x1, x2)ψ14(x1, x4)ψ23(x2, x3)ψ24(x2, x4)ψ34(x3, x4)ψ1(x2)ψ2(x2)

x1
1

x2 x4

x3

x2
1 Eliminating x1:

B1 = {ψ1, ψ12, ψ14}
split
=⇒ B11 = {ψ1, ψ12},B12 = {ψ14}

ψnew11 (x2) =
∑
x1

ψ1(x1)ψ12(x1, x2)

ψnew12 (x4) = max
x1

ψ14(x1, x4)

x1
2

x4x2
2

x1
1 x2

1

x3

Eliminating x2:

B2 = {ψnew11 , ψ2, ψ23, ψ24}
split
=⇒ B21 = {ψnew11 , ψ23},B22 = {ψ2, ψ24}

ψnew21 (x3) =
∑
x2

ψnew11 (x2)ψ23(x2, x3)

ψnew22 (x4) = max
x2

ψ2(x2)ψ24(x2, x4)

x1
2

x4x2
2

x1
1 x2

1

x3

Eliminating x3:
B3 = {ψnew21 , ψ34},
ψnew3 (x4) =

∑
x3

ψnew21 (x3)ψ34(x3, x4)

x4x2
2

x1
1 x2

1

x3

x1
2

Eliminating x4:
B4 = {ψnew12 , ψnew22 , ψnew3 }
Ẑ =

∑
x4

ψnew12 (x4)ψnew22 (x4)ψnew3 (x4)

Figure 3.3: Visualizing mini-bucket elimination. The mini-bucket partitioning process can be
viewed as splitting the nodes to break cycles in the original Markov graph G (top), resulting
a covering graph (bottom) – formally the Markov graph of some augmented model in which
variables have been replicated – that has much lower induced width (a tree in this case), and
is thus computationally easier to process.
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Algorithm 3.4 Constructing augmented factor cliques for mini-bucket elimination

Input: The factor cliques I of the original graphical model. An elimination order
o = [x1, · · · , xn], and an ibound. A bucket (clique) splitting strategy.
Output: The augmented factor cliques Ī over the replicated variables x̄ =
[x̄11 , . . . , x̄1R1

, . . . , x̄nRn ].

Initialize Ī = I.
for i← 1 to n do

1. Find the factor cliques involving variable xi: Bi ← {α : α ∈ Ī, i ∈ α}.

2. Partition Bi into Ri subgroups {Bir} according to the partition strategy, such that
∪Rir=1Bir = Bi and | ∪α∈Bir α| ≤ ibound+ 1 for all r = 1, . . . , Ri. For each Bir , construct
B̄ir by replacing xi with x̄ir in all α ∈ Bir . Update Ī = (Ī \ Bi) ∪ {B̄ir : r = 1, . . . , Ri}.

3. For r = 1, . . . , Ri, let πir = ∪ᾱ∈B̄ir ᾱ \ {i
r}, and add πir into Ī.

end for

Algorithm 3.5 Constructing augmented model for mini-bucket elimination

Input: The original factor graph p(x) ∝
∏

α ψα(xα), and the augmented factor cliques
I as output from Algorithm 3.4. A factor splitting strategy.
Output: An augmented model p̄(x̄) ∝

∏
ᾱ∈Ī ψ̄ᾱ(x̄ᾱ) over the replicated variables x̄.

Initialize to all-one factors: let ψ̄ᾱ(x̄α) = 1, for ∀ᾱ ∈ Ī and x̄.
for α ∈ I do

1. Let {ᾱr : r = 1, . . . , Rα} be the set of augmented factors which include replicates of
all the variables in α.

2. Split factor ψα into a product of ϕr such that
∏Rα

r=1 ϕr = ψα (e.g., by uniform
splitting: ϕr = (ψα)1/Rα).

3. Update: ψ̄ᾱr(x̄ᾱ)← ψ̄ᾱr(x̄ᾱ) · ϕr(x̄ᾱr) for all r = 1, . . . Rα.

end for
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Combining all the elimination steps in Figure 3.3, one can show that the resulting upper

bound Ẑ equals

Ẑ =
∑
x̄41

∑
x̄31

max
x̄22

∑
x̄21

max
x̄12

∑
x̄11

q̄(x̄),

which can be solved using exact variable elimination; the complexity of this procedure is O(d2),

since the covering graph is a tree (induced width of 1).

To summarize, mini-bucket elimination is reframed into a three-step procedure:

1. Generate a set of factor cliques Ī over the replicated variables (i.e., decide on the

covering graph structure) using Algorithm 3.4.

2. Determine the actual values of the augmented factors {ψ̄ᾱ(x̄ᾱ) : ᾱ ∈ Ī} by Algo-

rithm 3.5.

3. Perform sum-max-sum inference (3.10) on the augmented model via exact bucket elim-

ination, to get an upper bound of the original partition function. (A lower bound can

be obtained by using min instead.)

Note that we still require three components in order to fully specify the mini-bucket algo-

rithm: (1) a bucket (or clique) splitting strategy as used in Algorithm 3.4 for partitioning

the cliques; (2) an factor splitting or reallocation strategy to specify or adjust the augmented

factors {ψ̄ᾱ(x̄ᾱ) : ᾱ ∈ Ī} given the clique structure Ī – the uniform splitting suggested in

Algorithm 3.5 provides a simple heuristic or initialization, but can be further improved; and

(3) a strategy to decide which replicate should be (uniquely) assigned the sum operator when

performing the elimination steps – we arbitrarily assume this is the first replicate in (3.10).

All three of these components can greatly influence the results, and ideally should be op-

timized to obtain the best performance. Interestingly, these choices appear to have very

different degrees of difficulty: selecting the best clique splitting strategy (for deciding the

structure) involves a difficult combinatorial optimization, and currently only greedy heuris-

tics exist [see e.g., Dechter and Rish, 2003, Rollon and Dechter, 2010]. On the other hand,
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with the structure fixed, it is in fact possible to optimize (at least partly) the other two

components in a principled way; this is discussed in Chapter 5 in the context of the more

general, weighted mini-bucket procedure that we propose.

3.1.3 Elimination as Message Passing

In this section, we consider another view of the exact bucket elimination process in Algo-

rithm 3.2 that treats it as passing “messages” (or propagating beliefs) between nodes and

their parents along a tree structure; this reformulates the exact bucket elimination algorithm

as forward-backward belief propagation (BP) on trees. Belief propagation can be further ex-

tended to more general graph structures that include cycles, or loops, yielding loopy belief

propagation, which is no longer exact but often provides efficient and accurate approxima-

tions in practice.

At a high level, each newly generated factor ψnewi in the bucket elimination step (3.2) can be

viewed as a “message” that is passed forward from node i (or the bucket Bi) to its parents

πi. Correspondingly, we can treat the marginals p(xπi) in the backward elimination (3.3) as

messages that are passed backward from node i to its children. In the case that the graph G

is a tree, the forward and backward elimination processes can be directly viewed as passing

messages between the nodes, first from leaves to roots, and then backwards from the roots

to the leaves. However, for more general models, especially those with higher order cliques,

it is more notationally convenient to view the elimination as passing messages over a tree

structure, known as a junction tree, formed by subsets of nodes in the original graph.

We start with the simple case of tree-structured graphs, and formulate a forward-backward

belief propagation algorithm that passes messages between the variable nodes on the tree.

We then introduce the definition of a junction graph and junction tree, and formulate bucket

elimination as a forward-backward belief propagation on a junction tree. Finally, we intro-

duce loopy belief propagation as an approximation algorithm, extending forward-backward
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belief propagation to general loopy graphs.

Forward-Backward BP on Trees

We begin by setting up some notation. Assume G = (V,E) is a tree, and o is its tree-order.

Let paG(i) be the parent of node i along order o, and call i a child of j if j = paG(i). We

denote by ∂G(i) the neighborhood of i, that is, ∂G(i) = {i′ ∈ V : (i′i) ∈ E}. The operator

“\” denotes set-theoretic difference; for example, ∂G(i) \ {j} := {i′ ∈ ∂G(i) : i′ 6= j} denotes

neighboring nodes of i except j. Any model p(x) on tree G must be a pairwise model that

includes only factors of single or pairs of variables, and can be written as

p(x) ∝
∏
∈V

ψi(xi)
∏

(ij)∈E

ψij(xi, xj).

If we perform bucket elimination on G along order o, then πi equals paG(i), the unique

parent of node i on G along order o. If we consider the new factor ψnew(xπi) as a “message”,

denoted as mi→πi(xπi), passed from node i to its parent πi, then the forward elimination step

(3.2) can be rewritten as an update equation on the messages,

mi→πi(xπi)←
∑
xi

ψiπi(xi, xπi)ψi(xi)
∏

i′∈∂G(i)\{πi}

mi′→i(xi), (3.11)

where we take the product of all the factors involving i and all the messages sent forward

into i from its children i′ (since any node i′ ∈ ∂G(i) \ {πi} is a child of i; see Figure 3.4a),

and then eliminate xi from the product.

Similarly, the backward elimination can be treated as passing messages from each parent πi
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leaves

root

(a) Forward phase (b) Backward phase

Figure 3.4: Illustration of forward and backward message passing in a tree, in which messages
are computed (a) forward from leaves to root, then (b) backward from root to leaves. (a)
Forward messages (green) only depend on earlier forward messages, while (b) backward
messages (red) depend on both earlier backward messages as well as some forward messages.

backwards to node i, via a somewhat more complex definition of backward message mπi→i(xi),

mπi→i(xi) =
∑
xπi

ψiπi(xi, xπi)p(xπi)

mi→πi(xπi)
. (3.12)

Then the backward elimination in (3.3) is equivalent to a similar message update rule,

mπi→i(xπi)←
∑
xπi

ψiπi(xi, xπi)ψπi(xπi)
∏

i′∈∂G(πi)\{i}

mi′→πi(xπi), (3.13)

which is identical to the forward update (3.11), except that the incoming messages (from

any node i′ ∈ ∂G(πi) \ {i}) can now be interpreted as including both the earlier backward

message sent from the parent of πi and the forward messages sent from children of πi except

i (that is, the siblings of i). See Figure 3.4b for an illustration.

In addition, the marginal distribution of single variable p(xi) and adjacent pairs of variables
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Algorithm 3.6 Forward-backward belief propagation on trees

Input: A pairwise graphical model p(x) ∝
∏
∈V ψi(xi)

∏
(ij)∈E ψij(xi, xj) on a tree G; an

tree order o = [1, . . . n] of G.
Forward: For i = 1 to n, calculate mi→πi by (3.11).
Backward: For i = n to 1, calculate mπi→i by (3.13).
Return: Calculate marginals {p(xi) : i ∈ V } and {p(xi, xj) : (ij) ∈ E} by (3.14)-(3.15).

p(xi, xj), ∀(ij) ∈ E, can be calculated in terms of the messages via,

p(xi) ∝ ψi(xi)
∏

i′∈∂G(i)

mi′→i(xi), (3.14)

p(xi, xj) ∝ ψi(xi, xj)ψi(xi)ψj(xj)
∏

i′∈∂G(i)\{j}

mi′→i(xi)
∏

j′∈∂G(j)\{i}

mj′→j(xj), (3.15)

where p(xi) equals the product of the factor ψi and all the messages sent into node i from

its neighboring nodes, and similarly p(xi, xj) equals the product of all the factors that only

involve i and/or j, and the messages sent into i or j from the neighboring nodes outside of

the (ij) clique. Note that (3.15) is correct only when (ij) is an edge of tree G.

Overall, we can rewrite the bucket elimination of Algorithm 3.2 as a forward-backward

message passing algorithm known as belief propagation, shown in Algorithm 3.6, in which we

first pass messages in the forward direction, beginning at the leaves and passing from each

node to its parent, and then work backwards from the root (or roots) passing from nodes

to their children; finally, we calculate the marginal probabilities based on the messages by

(3.14)-(3.15).

Junction Tree and Junction Tree BP

When the graph is not a tree, or when the model includes high order factors, it is no

longer convenient (although still possible) to represent bucket elimination as passing messages

between the variable nodes. It turns out to be more natural to consider passing messages
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over a junction tree formed by subsets of variables (called clusters). In this section, we

introduce the notion of a junction tree and rewrite bucket elimination as a junction tree BP

that passes messages between clusters in the junction tree.

We start by introducing the general concepts of a cluster graph and a junction graph.

Definition 3.5 (Cluster Graph). Given a graphical model p(x) =
∏

α∈I ψα(xα), a cluster

graph is a graph of subsets of the variables. Formally, a cluster graph is a triple (G, C,S),

where C and S are families of subsets of variables, and G = (V , E) is an undirected graph.

Each node k ∈ V is associated with a variable subset (called a cluster) ck ∈ C, and each edge

(kl) ∈ E is also associated with a subset skl ∈ S (called a separator), such that skl = ck ∩ cl.

In addition, C should subsume I in the following sense:

(Subsumption Property). For any α ∈ I, there exists at least one element in C, denoted

by c[α], such that α ∈ c[α].

The subsumption condition above ensures that the original distribution p(x) =
∏

α∈I ψα(xα)

can be rewritten (or reparameterized) into the form p(x) =
∏

β∈C ψβ(xβ) by transforming

ψβ ←
∏

α∈I : c[α]=β ψα. Thus, we will always rewrite the distribution p(x) into the latter form

whenever we use a junction graph based on clusters C.

Definition 3.6 (Junction Graph). A cluster graph is called a junction graph if it satisfies

the running intersection property: for each variable i ∈ V , the sub-graph consisting of

the clusters and separators that include i is a connected tree. A junction graph G is a junction

tree if it is tree structured. A junction tree of G is also called a tree decomposition of G. The

width of a junction graph is its maximum cluster size minus, that is, max{|α| − 1: α ∈ C}.

Constructing Junction Tree via Triangulation. It is perhaps not immediately clear how to

construct a junction graph (or tree). Fortunately, we can conveniently construct a junction

tree G based on the induced graph (G̃, o) obtained by triangulation along ordering o: define
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Figure 3.5: Constructing a junction tree via triangulation.

the clusters by C = {ci := paG̃(i)∪{i} : i ∈ V }, and add an edge between two clusters ci and

cj if node j is the first parent of node i in the induced graph (G̃, o), that is, j = min{j′ : j′ ∈

paG̃(i)}. To connect this induced graph construction to the bucket elimination process,

the junction tree simply records the variable scopes of the buckets {Bi} and their message

trajectories (since j is the first parent of i iff the factor ψnewi created when eliminating xi

falls into the bucket Bj of variable xj). This process is visualized for a small graphical model

in Figure 3.5.

We can then readily see the following properties:

1. G is a junction tree, and the elimination order o also induces a tree order on the

clusters C, since any cluster can have at most one parent in G (that is, any ψnewi can

fall into only one subsequent bucket). In other words, each cluster ci in junction tree

G corresponds to node i in the induced graph (G̃, o), and the (unique) parent paG(i)

of ci in G corresponds the first parent of node i in (G̃, o).

2. G satisfies the running intersection property: the subgraph including variable xi records

the message passing trajectory of all the factors associated with xi, and this trajectory

can only be a tree (again, because any factor can only assigned to or passed into a
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single bucket).

3. The separator sij between cluster ci and its parent cj, j = paG(i), equals πi, the parent

set of node i in the induced graph (G̃, o), and equivalently, πi, the variable scope of

ψnewi in the bucket elimination step (3.2).

4. We can rewrite the original graphical model p(x) =
∏

α∈I ψα(xα) in a form defined

on the clusters of the junction tree, p(x) =
∏

ci∈C ψci(xci), by defining ψci ←
∏
{ψα ∈

Bi : α ∈ I}.

With the junction tree as constructed above, we can now rewrite the bucket elimination

algorithm as passing messages on the junction tree. Specifically, we define the forward and

backward messages between cluster ci and its parent cpaG(i) in junction tree G, in terms of

the quantities in bucket elimination,

Forward message: mi→paG(i)(xπi) = ψnewi (xπi),

Backward message: mpaG(i)→i(xsipaG(i)
) =

1

mi→paG(i)(xπi)

∑
x¬πi

p(xcpaG(i)
),

where mi→paG(i) and mpaG(i)→i are the forward and backward messages between cluster ci

and its parent cpaG(i), respectively. Both the messages are functions of xπi , where πi is the

separator between cluster ci and its parent cj, j = paG(i). Note that the message definitions

differ slightly from the tree forms (3.11)–(3.12); roughly, these differences arise because the

messages on junction trees correspond to messages between cliques, rather than between

variables. Comparing the backward messages, for example, the junction tree message is

defined on the separator set sipaG(i), rather than the neighboring variable xi, and no factor

ψ appears explicitly in the equation; any factors are included in the marginal p(xcpaG(i)
).

By re-arranging, one can then show that both the forward elimination (3.2) and backward
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Algorithm 3.7 Junction tree belief propagation

Input: A graphical model p(x) =
∏

α∈C ψα(xα), and a junction tree (G, C, E) (e.g., con-
structed via triangulation), an tree order o = [1, . . . , n] ofG.
Output: The marginals {p(xci) : ci ∈ C}.
Forward: For i = 1 to n, calculate mi→paG(i) by (3.16).
Backward: For i = n to 1, calculate mpaG(i)→i by (3.16).
Return: Calculate the marginals {p(xci)} by (3.17).

elimination (3.3) can be rewritten into the following message passing form,

mi→j(xsij) ∝
∑
xci\cj

ψci(xci)
∏

i′∈∂G(i)\{j}

mi′→i(xsi′i), (3.16)

where ∂G(j) is the neighborhood of the jth cluster in G, that is, ∂G(j) = {j′ : (j′j) ∈ E}. In

addition, the marginal probabilities can be calculated from the messages via

p(xci) ∝ ψci(xci)
∏

i′∈∂G(i)

mi′→i(xsi′i). (3.17)

Similar to BP on trees, we obtain the junction tree belief propagation algorithm in Algo-

rithm 3.7, which is equivalent to the bucket elimination algorithm in Algorithm 3.2, by

passing the messages first in the forward direction, beginning at the leaves and passing from

each node to its parent, and then working backwards from the roots passing from nodes to

their children.

Remarks. (1). Although we mainly discuss the specific junction tree constructed via the

variable elimination process here, Algorithm 3.7 works for arbitrary junction trees.

(2). On the other hand, note that message passing on an arbitrary junction tree along its

tree order is equivalent to a variable elimination process with any variable elimination order

consistent with the junction tree-order in the following sense: if node i ranks earlier than

node j in the variable elimination order, then there exists no cluster in the junction tree that
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contains (ij), while its parent (along the junction tree-order) contains i but not j.

(3). The complexity of the message passing in Algorithm 3.7 is exponential in the width

(i.e., the maximum cluster size minus one) of the junction tree G, which is equal to the

induced width of the ordered graph (G, o) if G is constructed via elimination along ordering o.

Additionally, the minimum possible width of any junction tree of G equals the induced width

(or tree width) of G. In fact, the complexity of exact algorithms are in general fundamentally

restricted by the induced width, regardless of the particular form of the algorithm used.

Therefore, for graphs with high induced width (which are common in practice), it is critical

to define efficient approximation algorithms to provide a trade-off between computational

complexity and accuracy.

Loopy Belief Propagation for Approximate Inference

Preceding sections presented the forward-backward belief propagation on trees and junc-

tion trees, both giving the exact variable elimination results. However, they have obvious

limitations when applied to practical graphs with high induced widths: the pairwise BP

in Algorithm 3.6 works only on trees by definition (i.e., induced width of one), while the

minimum width of any junction tree equals the induced width, making the complexity of

junction tree BP exponential in the induced width.

An important observation was made by Pearl [1988], that the message updates in belief

propagation ((3.11)-(3.13) and (3.16)) involve only the messages and factors associated with

the local neighborhood of a node, and therefore can be applied even when the graph includes

cycles. This gives a set of loopy belief propagation algorithms, which do not in general

provide the correct marginals (as with BP on tree structures), are widely used for efficient,

approximate inference.

Algorithm 3.8 shows loopy BP for pairwise models, which extends BP on trees from Al-
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Algorithm 3.8 Loopy belief propagation for pairwise models

Input: A pairwise model p(x) ∝
∏
∈V ψi(xi)

∏
(ij)∈E ψij(xi, xj) on a graph G = (V,E).

Initialize all the messages {mi→j(xj) : ∀(kl) ∈ E}.
Repeat until convergence:

For all the edges (ij) ∈ E (in some order as defined by a scheduling scheme), update
the messages via

mi→j ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏

i′∈∂G(i)\{j}

mi′→i(xi), (3.18)

End

Return: Calculate the approximate marginals {p(xi) : i ∈ V } and {p(xi, xj) : (ij) ∈ E}
by (3.14)-(3.15).

Note: “∝” denotes equality up to a multiplicative constant; for numerical stability, the
messages mi→j(xj) are usually normalized (e.g., to sum to one) each time they are updated.

gorithm 3.6; it uses the same message update as Algorithm 3.6, but has modifications for

initialization and message scheduling:

1. Because the graph may not contain any leaves, and the messages may depend on each

other in a cyclic way, one needs to initialize all the messages at the beginning and then

iteratively update the messages until they converge to some equilibrium, or meet some

stopping criterion.

2. In addition, at each iteration, there are no longer any constraints on the ordering of

the message updates. We can use an asynchronous scheduling, for example one that

obeys a forward-backward-like ordering when updating the messages (w.r.t. to some

order o), or proceed in a more distributed fashion by using a synchronous scheduling

where all nodes receive messages in parallel and then send out updated messages in

parallel. It is easy to show that in tree structured graphs, and with any schedule that

properly covers all the edges, the messages in loopy BP will converge to the messages

of exact, forward-backward BP on trees within a finite number of iterations, related to

the diameter of the tree.
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Algorithm 3.9 Loopy junction graph belief propagation

Input: A graphical model p(x) =
∏

ck∈C ψck(xck), and a junction graph (G, C, E), where
C = {ck} and S = {skl} are the clusters and separaters, respectively.
Initialize all the messages {mk→l(xskl) : ∀skl ∈ S}.
Until convergence, iteratively update messages on all the edges via

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)
∏

k′∈∂G(k)\{k}

mk′→k(xsk′k).

Return: Calculate the approximate marginals {p(xci)} by

p(xck) ∝ ψck(xck)
∏

k′∈∂G(k)

mk′→k(xck).

Note: as in Algorithm 3.8, it is usual to normalize each message when updated.

Convergence Issues. Unfortunately, loopy BP does not necessarily convergence on general

loopy graphs. In particular, synchronous scheduling often results in poorer convergence

behavior than asynchronous scheduling. There have been many theoretical works on the

convergence properties of loopy BP; see for example Ihler et al. [2005], Wainwright and

Jordan [2008] and references therein.

In practice, various methods for improving the convergence of BP have been proposed. One

simple way is to use damping. That is, instead of using the message mnew
i→j as calculated from

the update rule (3.18), we use a damped message mdamp
i→j by e.g., geometrically averaging the

old and newly computed message:

logmdamp
i→j ← β logmnew

i→j + (1− β) logmold
i→j, (3.19)

where mold
i→j is the message at the previous iteration, and 0 < β ≤ 1 is a damping coefficient.

Obviously, if β = 1, this reduces to standard loopy BP without damping. Damping can help

loopy BP converge more often, but may cause the algorithm to converge more slowly to a

fixed point. Therefore, for the experiments in this thesis, we apply damping only we when

find that loopy BP fails to converge after some number (e.g., 100) of iterations.
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In addition to the simple damping method, many other, more advanced methods have been

investigated to improve convergence. Residual BP [Elidan et al., 2006] works by using

an adaptive scheduling that prioritizes updating messages that differ the most from their

previous values, and has been found to converge faster and more often than synchronous

or many other asynchronous schedules. Another set of work relates to deriving double loop

algorithms that are guaranteed to converge to a fixed point of loopy BP [see e.g., Welling and

Teh, 2001, Yuille, 2002]; these are explained in more detail in Section 3.2 when we discuss

the variational interpretation of loopy BP.

Loopy BP on Junction Graphs. Similar to pairwise loopy BP, we can derive a loopy BP

algorithm for general junction graphs, shown in Algorithm 3.9; this generalizes exact in-

ference via BP on junction trees in Algorithm 3.7. Compared to pairwise loopy BP, the

advantage of loopy BP on junction graphs lies in the flexibility to define arbitrary loopy

junction graphs with various widths. Although the width of any junction tree is constrained

by the induced width, there are no substantial constraints on the width of general junction

graphs with circles, except that it can not be smaller than the maximum clique size minus

one (i.e., maxα∈I |α|−1) of the model p(x) ∝
∏

α∈I ψα(xα), due to the subsumption require-

ment in Definition 3.5. In particular, for any pairwise Markov random field, we can always

construct a junction graph with width 1 by selecting its edges as the clusters; see Figure 3.6

for an example.

The width of the loopy junction graph provides a cost-accuracy trade-off similar to the ibound

in mini-bucket elimination: junction graphs with higher width may need to introduce fewer

loops, leading to more accurate solutions, while junction graphs with lower width are only

possible by introducing many loops, usually causing loopy BP to be less accurate or less

likely to converge.
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Figure 3.6: Junction tree vs. junction graph. (a) A simple pairwise Markov random field,
with (b) a junction tree, and (c) a loopy junction graph. The width of the junction graph is
1, while that of the junction tree, and the induced with of the Markov random field, is 2.

3.2 Dual View { Variational Methods

In contrast to variable elimination methods, which directly eliminate the variables in some

sequence, variational optimization methods transform the inference problem into a func-

tional optimization problem over the space of distributions, minimizing a divergence to the

target distribution. Variational methods can be elegantly viewed as applying the theory

of convex conjugate duality to the inference task. Defining various approximations to the

dual optimization problem then leads to many efficient, approximate inference algorithms,

including another interpretation of loopy belief propagation [Pearl, 1988], as well as mean

field [Saul and Jordan, 1995] and many of their variants (see Wainwright and Jordan [2008]

and references therein).

This section reviews the variational inference framework and several important algorithms.

Section 3.2.1 introduces the exponential family form for probablistic graphical models, and

the variational form for the log-partition function (its convex conjugate function). The

subsequent sections then introduce several categories of variational inference methods based

on approximating the variational form, including loopy belief propagation (BP) and its

extensions on junction and factor graphs in Section 3.2.3, tree reweighted BP and convex

conditional entropy decompositiong in Section 3.2.4, and mean field and related methods in
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Section 3.2.5. Finally, although our presentation mostly focuses on sum-inference, we give

a brief discussion on max-inference in Section 3.2.6, where a linear programming relaxation

plays an important role similar to the dual representation of the log-partition function in

sum-inference, and enables a spectrum of efficient max-inference algorithms.

3.2.1 Exponential Family and Conjugate Duality

We start by rewriting the factorized distribution p(x) ∝
∏

α∈I ψα(xα) into an overcomplete

exponential family form [Wainwright and Jordan, 2008],

p(x|θ) = exp
(
θ(x)− Φ(θ)

)
, θ(x) =

∑
α∈I

θα(xα), (3.20)

where θα(xα) = log(ψα(xα)) are the log of our usual factors ψα. We denote by θ =

{θα(xα) : α ∈ I,xα ∈ Xα} the vector formed by elements (values) of the θα; these are called

the natural parameters of the exponential family distribution. The log-partition function

Φ(θ), treated as a function of θ, normalizes the distribution:

Φ(θ) = log
∑
x

exp(θ(x)).

This exponential family representation has several important properties that are central to

both inference and learning [e.g., Wainwright and Jordan, 2008].

Proposition 3.1. (1). Φ(θ) can be represented using the variational form,

Φ(θ) = max
q∈Px

{Eq(θ(x)) +H(x; q)}, (3.21)

where Px is the set of all possible distributions defined on x, that is,

Px =
{
q(x) :

∑
x

q(x) = 1, and q(x) ≥ 0,∀x
}
,
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and H(x; q) is the entropy of distribution q, that is, H(x; q) = −Eq(log q(x)). In addition,

the maximum q∗ is obtained when q∗(x) = p(x) = exp(θ(x)− Φ(θ)).

(2). Φ(θ) is a convex function of θ.

(3). The derivatives of Φ(θ) equal the marginal distributions of p(x), that is,

∂Φ(θ)

∂θα(xα)
= p(xα), ∀α ∈ I, ∀xα ∈ Xα. (3.22)

Proof. (1). The proof of (3.21) stems from the non-negativity of KL-divergence, i.e.,

min
q∈Px

KL(q(x)||p(x)) = 0, (3.23)

where the minimum is obtained when q(x) = p(x). Plugging the exponential form p(x) =

exp(θ(x)− Φ(θ)) into the definition of the KL divergence,

KL(q||p) = Eq log[q(x)/p(x)]

= −H(x; q)− Eq[θ(x)− Φ(θ)]

= −H(x; q)− Eq[θ(x)] + Φ(θ)

Combining this with (3.23) gives (3.21).

(2). One can prove the convexity of Φ(θ) by directly calculating and checking the semi-

definiteness of its Hessian matrix. However, a much simpler proof is based on the form

(3.21), by noting that supremums over sets of linear functions are always convex [Boyd and

59



Vandenberghe, 2009]. In detail, for any θ1, θ2 and α ∈ [0, 1], we use the form (3.21),

Φ(αθ1 + (1− α)θ2)

= max
q∈Px

{Eq(αθ1(x) + (1− α)θ2(x)) +H(x; q)}

≤ αmax
q∈Px

{Eq(θ1(x)) +H(x; q)}+ (1− α) max
q∈Px

{Eq(θ2(x)) +H(x; q)}

= αΦ(θ1) + (1− α)Φ(θ2).

(3). The derivatives are also implied immediately from (3.21):

∂Φ(θ)

∂θα(xα)
= q∗(xα) = p(xα).

This completes the proof.

The variational form (3.21) requires optimizing over the set of all distributions Px; this

is prohibitively high dimensional in practice, since specifying an arbitrary q(x) requires∏
i |Xi| − 1 = O(exp(n)) values. However, note that the expectation term Eq(θ(x)) can be

decomposed into terms defined only over each variable scope α:

Eq(θ(x)) =
∑
α∈I

Eq(θα(xα)) =
∑
α∈I

∑
xα

q(xα)θα(xα),

which can be calculated if we know all the marginal distributions {q(xα) : α ∈ I}. This

motivates the definition of the marginal polytope.

Definition 3.7. A marginal polytope M(I) is the set of all possible marginal distributions

τ := {τα(xα) : α ∈ I,xα ∈ Xα} that are consistent with (e.g., can be extended to) a valid
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joint distribution on x, that is,

M(I) =
{
τ : ∃ distribution q(x) ∈ Px, such that τα(xα) =

∑
x¬α

q(x) for ∀α ∈ I, xα ∈ Xα
}
.

Proposition 3.2 (Maximum Entropy Principle). For each τ ∈ M(I), denote by P [τ ]

the set of distributions whose marginals are τ . Note that P [τ ] is non-empty by defini-

tion. Then there exists an unique distribution with the maximum entropy in P [τ ], that is

q∗ = arg maxq∈P[τ ] H(x; q), which has the exponential family form of (3.20),

q∗(x) = exp(θ(x)− Φ(θ)),

where θ is chosen such that q∗(x) ∈ P [τ ].

Proof. See [Jaynes, 1957].

This proposition builds a one-to-one correspondence between valid marginals τ ∈M(I) and

joint distributions with the exponential family form defined by the sets I. With a slight

abuse of notation, we use τ(x) to refer to the maximum entropy distribution in P [τ ], and

correspondingly, we denote by H(x; τ ) the entropy of the distribution τ(x). We can now

immediately obtain an important result:

Proposition 3.3. Φ(θ) can be represented using the variational form,

Φ(θ) = max
τ∈M(I)

{〈τ ,θ〉+H(x; τ )}, (3.24)

where M(I) is the marginal polytope, and 〈τ ,θ〉 is the inner product,

〈τ ,θ〉 =
∑
α∈I

∑
xα

τα(xα)θα(xα).
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In addition, the maximum is attained when τ is equal to the marginals of p(x) = exp(θ(x)−

Φ(θ)), that is, τα(xα) = p(xα), ∀α ∈ I,∀xα ∈ Xα.

Proof. This is a direct result of Proposition 3.2 and 3.1.

The form (3.24) is of fundamental importance for the development of variational inference

methods: it transforms the sum inference task, calculating the log-partition function Φ(θ)

and the marginals {p(xα) : ∀α ∈ I} into a continuous optimization problem. However,

it should be noted that the form itself does not actually decrease the complexity of the

marginalization task, since (1) the marginal polytope M is difficult to characterize exactly

(and may require an exponential number of linear constraints), and (2) the entropy H(x; τ )

is usually intractable to calculate exactly from the marginals τ .

Although exact calculation remains difficult, the form (3.24) provides a flexible framework

for deriving a spectrum of powerful approximate inference algorithms (known as variational

inference) by approximating the marginal polytope M(I) and the entropy term H(x; τ )

using various techinques. In the sequel, we first introduce the local consistency polytope for

approximating the marginal polytope, and then various entropy approximation techniques

that yield different variational message passing algorithms, including the loopy BP algo-

rithm introduced in Section 3.1.3 via a Bethe entropy approximation, and its variant, tree

reweighted BP, via convex entropy approximations.

3.2.2 Local Consistency Polytope

It is intractable to specify the marginal polytope M(G) on general graphs; the local con-

sistency polytope provides a convenient approximation, and forms an important component

for most belief-propagation-type methods. For notational simplicity, we first restrict our

discussion on pairwise models, then discuss the more general case in Section 3.2.3.
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A pairwise graphical model on an undirected graph G = (V,E) can be written, in exponential

family form, as

p(x) ∝ exp(
∑
i∈V

θi(xi) +
∑

(ij)∈E

θij(xi, xj)− Φ(θ)).

We have I = V ∪E in this case, and the marginal polytope is defined in a vector space over

only the singleton and pairwise marginals, that is,

M(G) =
{
{τi, τij} : ∃ q ∈ Px, s.t. τi(xi) = q(xi), τij(xi, xj) = q(xi, xj), ∀i ∈ V, (ij) ∈ E

}
.

Note that for any τ ∈M(G), it is obvious that
∑

xj
τij(xi, xj) = τi(xi), that is, the pairwise

and singleton marginals will be consistent with each other. This motivates the definition of

the local consistency polytope,

L(G) =
{
{τi, τij} :

∑
xj

τij(xi, xj) = τi(xi),
∑
xi

τi(xi) = 1, τi(xi, xj) ≥ 0, ∀i ∈ V, (ij) ∈ E
}
.

Obviously, we have M(G) ⊆ L(G), that is, the marginal polytope is a subset of the local

consistency polytope. In addition, M(G) and L(G) are equal when G is a tree.

Proposition 3.4. If G is a tree structured graph, we have M(G) = L(G).

Proof. We already know that M(G) ⊆ L(G), and just need to prove that L(G) ⊆M(G). To

this end, we assign a tree order on G, such that the (unique) parent of node i is pa(i). Then

for any {τi, τij} ∈ L(G), we can construct a valid joint distribution by the chain rule, with

q(x)
def
=
∏
i∈V

q(xi|xpa(i)), where q(xi|xpa(i)) =
τij(xi, xpa(i))

τ(xpa(i))
,

where for the root node i0 with empty parents (pa(i0) = ∅), we set q(xi0|xpa(i0)) = q(xi0) =

τi0(xi0). Then it is straightforward to verify that {τi, τij} are the marginals of q(x).
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In contrast, when G has cycles, there can be locally consistent marginals in L(G) for which no

consistent joint distribution exists; this is not the case for M(G). See the following example:

Example 3.2. Consider the following marginals τ on [x1, x2, x3] ∈ {0, 1}3,

τ1 = τ2 = τ3 =

1/2

1/2

 τ12 = τ23 = τ13 =

 0 1/2

1/2 0

 .
Obviously the marginals are locally consistent with each other (i.e., τ ∈ L(G)). However,

there exists no joint distribution [x1, x2, x3] whose marginals are {τi, τij} (i.e., τ /∈ M(G)).

To see this, note that each pairwise marginal τij implies that the configurations with non-

zero probability should satisfy xi 6= xj; however, their exists no configuration in {0, 1}3 that

satisfies x1 6= x2, x2 6= x3 and x1 6= x3 simultaneously.

These marginals correspond to a frustrated cycle, in which the pairs (xi, xj) are all anti-

correlated (in fact, constrained to be different); looking at each pair locally without considering

the value of the third variable, it appears to be possible to satisfy the constraints, but satisfying

all three is impossible. Such frustrated cycles are often difficult for loopy BP and its local

polytope approximation L(G), and illustrates one way in which the approximation can fail.

3.2.3 Loopy Belief Propagation

An efficient approximation of the variational form (3.24) requires three components: (1) ap-

proximating the marginal polytope; (2) approximating the entropy H(x; τ ); and (3) solving

the continuous optimization with those approximations. We introduced the local consis-

tency polytope to approximate the marginal polytope; next, we introduce a Bethe entropy

approximation, which together with a Lagrange multiplier optimization method, derive the

loopy belief propagation algorithm introduced in Section 3.1.3. We first restrict discussion

to pairwise models, then give extensions to more general factor and junction graphs.
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Bethe Entropy Approximation

The exact joint entropy H(x; τ ) is in general intractable to calculate directly; the Bethe

entropy approximates H(x; τ ) using a linear combination of entropies on the singleton and

pairwise marginals. To motivate it, we begin by discussing the case when G is a tree, on which

the joint entropy exactly decomposes to a combination of singleton and pairwise entropies.

Proposition 3.5. For any distribution τ(x) on tree-structured graph G, whose marginals

on single and pairs of variables are {τi, τij}, we have

H(x; τ) =
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij), (3.25)

where Hi and Iij are the entropy and multual information on the singleton and pairwise

marginals, respectively, i.e.,

Hi(τi) = −
∑
xi

τi(xi) log τi(xi), Iij(τij) =
∑
xi,xj

τij(xi, xj) log
τij(xi, xj)

τi(xi)τj(xj)
.

Proof. Just note that when G is a tree, τ(x) can be written as

τ(x) =
∏
i∈V

τi(xi)
∏

(ij)∈E

τij(xi, xj)

τi(xi)τj(xj)
.

Substituting this into the entropy, we get

H(x; τ) = −Eτ [log τ(x)] = −Eτ

∑
i∈V

log τi(xi) +
∑

(ij)∈E

log
τij(xi, xj)

τi(xi)τj(xj)


=
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij).

This finishes the proof.
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The pairwise decomposition (3.25) no longer holds exactly in general, e.g., when the graph

G is loopy. However, it can be used to define a convenient approximation on loopy graphs,

H(x; τ ) ≈ Hbethe(τ )
def
=
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij),

which is known as the Bethe entropy approximation.

Remarks. (1). Although the exact entropy −H(x; τ ) is a convex function of τ , the Bethe

approximation −Hbethe(τ ) is generally not guaranteed to be convex; convexified variants are

discussed later in Section 3.2.4.

(2). Note that Hbethe(x) is well-defined on any marginals τ in L(G), even when τ /∈ M(G)

and an exact joint entropy is not defined.

Example 3.3. For the marginals τ = {τi, τij} defined in Example 3.2, we have

Hi(τi) = log 2, Hij(τij) = log 2, Iij(τij) = Hi(τi) +Hj(τj)−Hij(τij) = log 2.

We can calculate the Bethe entropy,

Hbethe(τ ) = H1(τ1) +H2(τ2) +H3(τ3)− I12(τ12)− I23(τ23)− I13(τ13) = 0.

On the other hand, the joint entropy itself is not defined in this case, since τ /∈M(G).
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Algorithm 3.10 Loopy belief propagation on pairwise models

Input: Pairwise graphical model p(x) ∝
∏

i∈V ψi(xi)
∏

(ij)∈E ψij(xi, xj) on undirected

graph G = (V,E). Let ∂(i) be the neighborhood of i ∈ V .

Output: Approximate marginals {τi, τij : i ∈ V, (ij) ∈ E}.

1. Pass messages between the nodes until convergence:

mi→j(xj) ∝
∑
xi

ψij(xi, xj) ψ(xi)
∏

i′∈∂(i)\{j}

mi′→i(xi). (3.27)

2. Calculate the approximate marginals,

τi(xi) ∝ ψi(xi)
∏
i′∈∂(i)

mi′→i(xi), (3.28)

τij(xi, xj) ∝ ψij(xi, xj)ψi(xi)ψj(xj)
∏

i′∈∂(i)\{j}

mi′→i(xi)
∏

j′∈∂(j)\{i}

mj′→j(xj), (3.29)

and the approximate log-partition function, Φ(θ) ≈ 〈τ ,θ〉+
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij).

Loopy BP via Lagrangian Multiplier Method

Using the local consistency polytope and the Bethe entropy approximation, the variational

form (3.24) can be approximated by

max
τ∈L(G)

{
〈τ ,θ〉+

∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij)
}
. (3.26)

This optimization is not convex in general. However, it is possible to find its local optima via

fixed point updates. The following result by Yedidia et al. [2005] shows that the stationary

points of (3.26) are fixed points of the loopy belief propagation algorithm introduced in

Section 3.1.3, which we repeat here in Algorithm (3.10), with ψi = exp(θi) and ψij = exp(θij).

Theorem 3.1. A set of strictly positive marginals {τi, τij} is a stationary point of (3.26) if

and only if there exists a set of positive functions (called “messages”) {mi→j(xi) : (ij) ∈ E},

which satisfy (3.28)-(3.29) and is a fixed point of (3.27).
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Proof. We start by writing the Lagrangian of (3.26) w.r.t. the local consistency constraint∑
xi
τij(xi, xj) = τj(xj), and the normalization constraints

∑
xi
τi(xi) = 1,

〈θ, τ 〉+
∑
i∈V

[Hi(τi) + λ0
i

∑
xi

τi(xi)]−
∑

(ij)∈E

[Iij(τij) +
∑
xj

λi→j(xj)
∑
xi

(τij(xi, xj)− τj(xj))],

where {λj→i(xi) : (ij) ∈ E, xi ∈ Xi} and {λ0
i : i ∈ V } are the Lagrange multipliers; because

we assume {τi, τij} are strictly positive, the inequality constraints τij(xi, xj) ≥ 0 are inactive

and not included (see Yedidia et al. [2005] for more discussion). Recall:

〈θ, τ 〉 =
∑
i∈V

θi(xi)τi(xi) +
∑

(ij)∈E

θij(xi, xj)τij(xi, xj),

Hi(τi) = −
∑
xi

τi(xi) log τi(xi),

Iij(τij) =
∑
xi,xj

τij(xi, xj) log
τij(xi, xj)∑

xi
τij(xi, xj)

∑
xj
τij(xi, xj)

.

Taking the derivative of the Lagrangian w.r.t. τi(xi) and τij(xi, xj) gives

θi(xi)− log τi(xi) +
∑
j∈∂(i)

λj→i(xi) = const, (3.30)

θij(xi, xj)− log
τij(xi, xj)

τi(xi)τj(xj)
− λi→j(xj)− λj→i(xi) = const, (3.31)

where we used the local consistency condition that
∑

xj
τij(xi, xj) = τi(xi) in (3.31).

Let us define mi→j(xj) = exp(λi→j(xj)); then (3.30) and (3.31) can be rewritten,

τi(xi) ∝ ψi(xi)
∏
i′∈∂(i)

mi′→i(xi), (3.32)

τij(xi, xj) ∝
ψij(xi, xj)

mi→jmj→i
τi(xi)τj(xj). (3.33)

This proves (3.28). Substituting (3.32) and its equivalent on τj(xj) into (3.33) gives (3.29).
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To derive the message update (3.27), we plug (3.32)-(3.33) into the consistency constraint

τj(xj) =
∑

xi
τij(xi, xj); this gives

τj(xj) ∝
∑
xi

ψij(xi, xj)

mi→jmj→i
τi(xi)τj(xj).

Canceling τj(xj) on both sides (assuming it is non-zero), and moving mi→j to the left side,

we get the message update (3.27):

mi→j ∝
∑
xi

ψij(xi, xj)
τi(xi)

mj→i
∝

∑
xi

ψij(xi, xj) ψ(xi)
∏

i′∈∂(i)\{j}

mi′→i(xi),

where we used (3.32). This proves that any stationary point of (3.26) is a fixed point of

Algorithm 3.10. Similarly, it is easy to show that any fixed point of Algorithm 3.10 should

satisfy the stationary conditions in (3.30)-(3.31). This completes the proof.

Therefore, we can solve the optimization (3.26) by performing the message update (3.27)

iteratively on the graph, and then decoding the marginals via (3.28)-(3.29) when the messages

converge; this gives the loopy belief propagation in Algorithm 3.10. In addition, we can also

estimate the log-partition function based on the decoded marginals via

Φ(θ) ≈ 〈τ ,θ〉+
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij).

Note that Algorithm 3.10 reduces to an exact variable elimination algorithm (and terminates

within finite steps) when applied on trees. In more general, loopy graphs, one is required to

iteratively update the messages until convergence (e.g., until some stopping criterion). How-

ever, loopy BP is generally not guaranteed to converge; see Ihler et al. [2005] for discussions

on convergence conditions.

Loopy BP was originally proposed (and is easily seen as) a heuristic that simply transforms
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Algorithm 3.11 Sum-product factor graph belief propagation

Input: Factor graphical model p(x) ∝
∏

α∈I ψα(xα). Let ∂(i) be the set of factors that
include i.

Output: Approximate marginals {τi, τα}.

1. Pass messages between the factors and variables until convergence:

Variables to Factors: mi→α(xi) ∝
∏

α′∈∂(i)\{α}

mα′→i(xi),

Factors to Variables: mα→i(xi) ∝
∑
xα\{i}

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′).

2. Calculate the approximate marginals:

τi(xi) ∝
∏
α∈∂(i)

mα→i(xi), τα(xα) ∝ ψα(xα)
∏
i∈α

mi→α(xi).

the steps of variable elimination into iterative updates applicable to loopy graphs [Pearl,

1988]. However, the variational form discovered by Yedidia et al. [2005] provides a more

principled interpretation, and more importantly, motivates many new methods that can im-

prove on loopy BP. For example, beyond the basic fixed point algorithm corresponding to

loopy BP, many potentially more efficient optimization algorithms, particularly ones with

convergence guarantees, can be used to directly solve the variational optimization (3.26) [see

e.g., Welling and Teh, 2001, Yuille, 2002]. It is also possible to modify or extend the vari-

ational objective, either by exploiting higher order cliques (such as generalized BP [Yedidia

et al., 2005]), or by using different entropy approximations to ensure that the variational

optimization is convex (see Wainwright and Jordan [2008] and reference therein).

Loopy BP on Factor Graphs and Junction Graphs

In the preceding sections, we restricted the discussion to pairwise models and pairwise en-

tropy approximations. There are many methods to extend loopy BP to handle and exploit
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higher order factors, including junction graph BP [Mateescu et al., 2010], factor graph BP

[Kschischang et al., 2001], and generalized BP [Yedidia et al., 2005]. In this section, we

briefly introduce junction graph BP and factor graph BP, and their associated Bethe-like

entropy approximations.

Factor Graph BP. Consider a factorized distribution p(x) ∝
∏

α∈I ψα(xα). Its factor graph

is a bipartite graph (V, I, E) consisting of variable nodes V = {i}, factor nodes I = {α},

and edges between factors and their associated variables E = {(i, α) ∈ V × I : i ∈ α}. We

denote by ∂(i) the set of factors that includes node i, that is, ∂(i) = {α ∈ I : i ∈ α}.

To approximate the variational form using a factor graph, we first approximate the marginal

polytope with a local consistency polytope on τ = {τi, τα : i ∈ V, α ∈ I},

L(V ∪I) = {τ :
∑
xα\{i}

τα(xα) = τi(xi),
∑
xi

τi(xi) = 1, τα(xα) ≥ 0, ∀i ∈ V, α ∈ I, x ∈ X},

and then approximate the entropy via

H(x; τ ) ≈
∑
α∈I

H(xα; τα)−
∑
i∈V

(|∂(i)| − 1)H(xi; τi).

For pairwise factors, this entropy form is equivalent to the Bethe entropy defined in the

previous section. Using this polytope and entropy approximation, we can derive factor graph

BP, shown in Algorithm 3.11, using a Lagrange multiplier method similar to that used in

Theorem 3.1 [Yedidia et al., 2005]. Note that the factor-to-variable and variable-to-factor

messages are given different update rules in factor graph BP.

Junction Graph BP. Assume (G, C,S) is a junction graph with clusters C and separa-

tors S. To approximate the variational form (3.24), we first replace the marginal polytope

with a higher order local consistency polytope L(C), which is the set of local marginals
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Algorithm 3.12 Sum-product junction graph belief propagation

Input: Graphical model p(x) ∝
∏

ck∈C ψck(xck) and its junction graph (G, C, E) with
clusters C and separators S.

Output: Approximate marginals {τck , τskl : ck ∈ C, skl ∈ S}.

1. Pass messages between clusters on the junction graph until convergence:

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)
∏

k′∈∂(k)\{l}

mk′→k(xsk′k), (3.34)

where ∂(k) is the neighborhoood of cluster ck.
2. Calculate the approximate marginal distributions:

τck(xck) ∝ ψck(xck)
∏

k′∈∂(k)

mk′→k(xsk′k), for all ck ∈ C, (3.35)

τskl(xskl) ∝ mk→l(xskl)ml→k(xskl), for all skl ∈ S. (3.36)

τ = {τck , τskl : ck ∈ C, skl ∈ S} that are consistent on the intersections of the clusters and

separators, that is,

L(C) =
{
τ :

∑
xck\skl

τck(xck) = τ(xskl), τck(xck) ≥ 0, for ∀ ck ∈ C, skl ∈ E
}
.

We then approximate the variational form as

max
τ∈L(C)

{
〈θ, τ 〉+

∑
k∈V

H(xck ; τ ck)−
∑

(kl)∈E

H(xskl ; τ skl)
}
, (3.37)

where the joint entropy is approximated by a linear combination of the entropies of local

marginals on the clusters H(xck ; τ ck) and separators H(xskl ; τ skl). Again, it is straightfor-

ward to show that this form is equivalent to the Bethe approximations on pairwise and factor

graphs, for an appropriately chosen junction graph. The approximate objective can again

maximized using the method of Lagrange multipliers [Yedidia et al., 2005], leading to the

sum-product belief propagation (BP) algorithm shown in Algorithm 3.12, which iteratively

updates a set of “messages” {mk→l(xskl)} between the neighboring clusters.
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3.2.4 Convex Variational Methods

The Bethe entropy approximation is a non-concave function of τ , causing (3.26) to be a non-

convex optimization. A large spectrum of methods have been proposed to define concave

entropy approximations, mostly by using more general counting numbers, or coefficients in

the linear combination of local entropies. In the pairwise case, these approximations have

the following form:

Hconv(τ ) =
∑
i∈V

Hi(τi)−
∑

(ij)∈E

ρijIij(τij), (3.38)

where {ρij : (ij) ∈ E} is a set of properly chosen weights that make the objective a concave

function. Heskes [2006] proposed a set of sufficient conditions on {ρij} to ensure concavity.

The idea is to make sure that (3.38) can be rewritten into a form,

∑
i∈V

κiH(xi) +
∑

(ij)∈E

κi→jH(xi|xj) + κijH(xi, xj), (3.39)

where κij, κi→j, κi are all non-negative numbers and H(xi|xj) := H(xi, xj) − H(xj) is the

conditional entropy. Equation (3.39) is guaranteed to be concave, because both the marginal

and conditional entropies are all concave functions. This motivates the following definition

[Heskes, 2006, Weiss et al., 2007],

Definition 3.8. A set of weights {ρij} in (3.38) is said to be provably convex, if there exist a

set of non-negative numbers κi→j such that
∑

i′∈∂(i) κi′→i ≥ (|∂(i)|−1) and κi→j+κj→i ≤ ρij.

Obviously, a set of provably convex weights {ρij} gives rise to a provably concave entropy

approximation.
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Tree Reweighted Belief Propagation

Wainwright et al. [2005] introduced an important subclass of provably concave entropy ap-

proximations that have the additional property of giving upper bounds for the exact entropy2.

Their idea is based on breaking the loopy graph into combinations of spanning trees. In de-

tail, let T be the set of spanning trees of G, and {wT : T ∈ T} a set of non-negative weights

assigned on T , such that
∑

T∈T w
T = 1. We define ρij to be the sum of weights of the

spanning trees that include (ij) as an edge, that is,

ρij =
∑

T : (ij)∈ET
wT .

The quantities ρij are called edge appearance probabilities. Then (3.38) can be rewritten

into a convex combination of the Bethe entropies on the trees,

H trw(τ ) =
∑
T∈T

wTHbethe(τ ;T ), Hbethe(τ ;T ) =
∑
i∈V

Hi(τi)−
∑

(ij)∈T

Iij(τij),

where each Hbethe(τ ;T ) is the Bethe entropy restricted to the spanning tree T . Wainwright

and Jordan [2008] showed the following properties of Hbethe(τ ;T ):

1. Hbethe(τ ;T ) is a concave function of τ ∈ L(G) (by rewriting it into (3.39) via the chain

rule).

2. If τ ∈M(G), then Hbethe(τ ;T ) ≥ H(x; τ ).

Therefore, H trw(τ ) is also a concave function and an upper bound of the exact joint entropy.

It is then natural to approximate the variational optimization via

Φtrw({ρij}) = max
τ∈L(G)

{
〈θ, τ 〉+

∑
i∈V

Hi(τi)−
∑

(ij)∈E

ρijIij(τij)
}
. (3.40)

2There exist other provably convex weights that are not TRW weights, as well; for example, the Bethe
weights on a single cycle are probably convex but are not valid TRW weights; see Weiss et al. [2007] for a
discussion
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This gives an upper bound on the log-partition function, that is, Φtrw({ρij}) ≥ Φ(θ), because

it maximizes an upper bound on a larger set compared to the exact variational optimization

(3.24). Since (3.40) is a convex optimization over τ , it can be solved efficiently using many

optimization methods, including tree reweighted BP, proposed in Wainwright et al. [2005],

which iteratively passes messages that are similar to loopy BP, but uses powered sums in

the message updates.

In addition, one can search for the optimal {ρij} to minimize Φtrw({ρij}) and obtain the

tightest possible upper bound. Wainwright et al. [2005] performs this minimization using a

double-loop conditional gradient descent, with an inner loop that optimizes τ to solve (3.40)

with fixed {ρij} via tree reweighted BP, and an outer loop that takes conditional gradient

descent updates on {ρij} (which, very elegantly, corresponds to solving a maximum spanning

tree problem in this case). Practical experiments have shown that optimized weights {ρij}

can significantly outperform näıve weight choices, such as using uniform or randomly chosen

weights. Unfortunately, the conditional gradient descent procedure is very slow due to the

expensive inner loops. In Chapter 5, we introduce a new class of related upper bounds on

which we can update the weights more efficiently with single-loop algorithms.

Tree Reweighted BP via Jensen's Inequality

In addition to its interpretation as a convex entropy approximation, tree reweighted BP can

also be nicely interpreted as directly building an upper bound for the log-partition function

Φ(θ) via Jensen’s inequality.

In detail, let us denote by {θT : T ∈ T } a set of natural parameters such that (1) the Markov

network of p(x|θT ) := exp(θT (x) − Φ(θT )) is the spanning tree T , and (2)
∑
∈T∈T θ

T = θ.

In this way, the original θ is decomposed into a combination of sub-models defined on the
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spanning trees. Because Φ(θ) is a convex funciton of θ, by Jensen’s inequality, we have

Φ(θ) = Φ
(∑
T∈T

wT
θT

wT

)
≤

∑
T∈T

wTΦ
(θT
wT

)
def
= Ψ({θT}, {wT}).

where Ψ({θT}, {wT}) is both convex and an upper bound of Φ(θ). The choice of the spanning

tree parameters {θT} and their weights {wT} influences the tightness of the bound, and

one can find the optimal ({θT} and {wT} to give the tightest upper bound. Wainwright

et al. [2005] showed that the TRW variational optimization in (3.40) is the dual problem of

optimizing {θT} with fixed weights {wT}, that is,

min
{θT }

Ψ({θT}, {wT}) = max
τ∈L(G)

{
〈θ, τ 〉+

∑
i∈V

Hi(τi)−
∑

(ij)∈E

ρijIij(τij)
}
.

These two forms of the TRW bound have their own pros and cons: although the variational

form on the right side (which we call the dual form) is guaranteed to be an upper bound

only when τ is fully optimized, the primal bound Ψ({θT}, {wT}) on the left side provides a

provable bound for any {θT} and {wT}. On the other hand, it is computationally intractable

to fully optimize the primal bound Ψ({θT}, {wT}) directly, since the number of spanning

trees may be extremely large. For efficiency, some approaches restrict to a small subset of

trees [e.g., Jancsary and Matz, 2011], but if too few trees are included, the quality of the

bound will suffer. Ideally, we would like to combine the advantages of both the primal and

variational bounds; this is possible under a new method we propose in Chapter 5.

Conditional Entropy Decomposition

The standard form of TRBP is defined on pairwise models; generalized TRBP [Wainwright

et al., 2005, Wiegerinck, 2005] extents TRBP to use combinations of junction trees and

works for models with higher order cliques. Additionally, conditional entropy decomposition

(CED) [Globerson and Jaakkola, 2007a] uses combinations of even more general (possibly
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un-triangulated) ordered graphs. This section gives a brief introduction to CED.

Consider a set of ordered graphs Gced = {(Gr, or) : r = 1, . . . , R}, where Gr = (V,Er) is a

sub-graph of the triangulation of G along order or, and or = [or1, . . . , o
r
n] is an total ordering

over nodes V . We assign a set of weights w = {w1, . . . , wR} on Gced such that
∑R

r=1 w
r = 1,

and wr ≥ 0. Let par(i) be the parent set of i on Gr under ordering or. It is noted in

Globerson and Jaakkola [2007a] that

H(x; τ ) =
N∑
i=1

H(xori |xori+1:n
; τ ) ≤

N∑
i=1

H(xori |xpar(o
r
i )

; τ ), (3.41)

where the first equality holds by the entropic chain rule, and the second inequality holds

because ori+1:n ⊆ par(o
r
i ), and the entropy can only increase when conditioning on fewer

variables; see, e.g., Cover and Thomas [2006].

We can also construct a local consistency polytope based on Gced. Let Iced = {par(o
r
i ) ∪

{ori} : ori ∈ V, r = 1, . . . , R} be the cliques defined by the graphs Gr and orders or, and define

a local consistency polytope on the marginals τ = {τc : c ∈ I(Gced)},

L(Gced) =
{
τ ≥ 0:

∑
xc

τc(xc) = 1,
∑
xc∩t

τc(xc) =
∑
xc∩t

τt(xt), ∀c, t ∈ I(Gced)
}
.

Clearly, M ⊆ L(Gced). This gives an variational upper bound for the log-partition function,

Φ(θ) ≤ max
τ∈L(Gced)

{
〈θ, τ〉+

R∑
r=1

wr
n∑
i=1

H(xori |xpar(o
r
i )

)
}
, (3.42)

where the inequality holds because the objective function is upper bounded and the opti-

mization’s constraint set is relaxed.

It is easy to see that the CED bound (3.42) generalizes that of TRBP and generalized TRBP:

when Gr in Gced are all trees and or are the tree-orders, CED reduces to TRBP; when Gr
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in Gced are all triangulated along order or, corresponding to junction trees, CED reduces to

generalized TRBP. Unfortunately, this generality does not directly imply better practical

performance, because it is intractable to choose the optimal weights {wr} over the set of

all possible ordered subgraphs. This problem is partly addressed in Chapter 5 where we

propose a novel weighted mini-bucket method, for which we show it is possible to optimize

the weights efficiently on subsets of ordered graphs that share a common total ordering o.

3.2.5 Mean Field and Lower bounds

Mean field methods are another class of approximate inference algorithms, which work by

restricting M to a set of tractable distributions on which both the marginal polytope and joint

entropy are tractable. More precisely, let Mmf be a subset of M that corresponds to a set of

tractable distributions; for example, näıve mean field selects fully factored distributions,

Mmf =
{
τ ∈M : τ(x) =

∏
i∈V

τi(xi)
}
.

Note that the joint entropy H(x; τ ) for any τ ∈ Mmf decomposes to the sum of singleton

entropies Hi(τi) of the marginal distributions τi(xi), that is,

H(x; τ ) =
∑
i

Hi(τi).

Näıve mean field then approximates the log-partition function by

max
τ∈Mmf

{
〈θ, τ 〉+

∑
i∈V

Hi(τi)
}
, (3.43)

which is guaranteed to give a lower bound of the log-partition function, because Mmf ⊆

M. Unfortunately, mean field methods usually lead to non-convex optimization problems,

because Mmf is usually a non-convex set. In practice, block coordinate descent methods
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can be adopted to find the local optima of (3.43). Näıve mean field can be extended to

structured mean field [Xing et al., 2002] by using sets of distributions on tree graphs.

Another, related lower bounding algorithm is our negative tree reweigthed BP [Liu and Ihler,

2010], which derives a lower bound using a reverse Jensen’s inequality; negative TRBP has

the same form as TRBP, but uses properly chosen negative weights to obtain lower bounds.

Negative TRBP reduces to näıve or structured mean field bounds when the weights are taken

to approach negative infinity in carefully chosen ways; see Liu and Ihler [2010] for details.

3.2.6 Variational Methods for Max-Inference

We have discussed various variational methods for sum-inference, all of which are based on

the variational (dual) form (3.24) for the log-partition function. A similar representation

exists for max-inference tasks, and also allows us to develop efficient algorithms in similar

ways. Specifically, we have,

max
x

θ(x) = max
τ∈M
〈θ, τ 〉. (3.44)

The right-hand side of (3.44) is a linear program on τ ; when the marginal polytope con-

straint set M is relaxed to a more manageable constraint set, such as the local consistency

polytope L(G), the resulting approximation is known as the linear programing relaxation

for MAP. Notice that (3.44) differs from the log-partition dual form (3.24) only in that it

is missing the entropy term. Many efficient algorithms have been developed to solve the

linear program (3.44), including max-product linear programming [Globerson and Jaakkola,

2007b], dual decomposition [e.g., Sontag et al., 2011, Komodakis et al., 2011], and more

recently augmented Lagrangian methods [e.g., Meshi and Globerson, 2011, Aguiar et al.,

2011, Forouzan and Ihler, 2013].

In addition to approaches that directly solve the linear programming objective (3.44), various
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methods can also be derived by solving a related, “entropy regularized” version that connects

closely to the earlier sum-inference algorithms,

max
τ∈M

{
〈θ, τ 〉+ εĤ(x; τ )

}
,

where ε is a small positive number (known as the “temperature” or “annealing parameter”),

and Ĥ(x; τ ) is any entropy approximation used for sum-inference. The sum-inference algo-

rithms introduced earlier can be extended for solving this ε-annealed version; we can then

take ε→ 0+ to obtain corresponding algorithms for max-inference. Roughly speaking, doing

so leads to algorithms that replace the sum operators with max operators in the message up-

dates. For example, the max-product BP algorithm for max-inference can be interpreted as a

zero-temperature limit of loopy sum-product BP. Weiss et al. [2007] showed that the resulting

zero temperature algorithms are guaranteed to return solutions for the linear programming

relaxation when the entropy approximation Ĥ(x; τ ) is provably concave. Otherwise, a zero

temperature algorithm – such as max-product BP derived via a non-convex Bethe entropy –

may still give reasonable approximations on the MAP problem even if it does not solve the

linear programming relaxation.

One of the contributions of this thesis is to provide similar extensions for the more general

MAP and maximum expected utility (MEU) tasks. Doing so requires that we also develop

more general variational representations for these mixed inference problems, which will be

discussed in Chapter 4.
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Chapter 4

Unifying Variational Representations

In Section 3.2, we introduced the classical variational forms for both max-inference (combi-

natorial optimization problems) and sum-inference (weighted counting and marginalization

problems), given by

log max
x

exp(θ(x)) = max
τ∈M

〈τ ,θ〉, (4.1)

log
∑
x

exp(θ(x)) = max
τ∈M
{〈τ ,θ〉+H(x; τ )} , (4.2)

and showed how these forms provide a powerful toolkit for developing various efficient ap-

proximate message passing algorithms. However, many of the inference tasks presented in

Chapter 2, including marginal MAP and maximum expected utility queries, involve mixed

inference tasks, corresponding to a combination of both max and sum elimination operators.

In this section, we generalize many of these tasks to a unified framework of weighted infer-

ence problems, and develop a variational representation for exact inference in this weighted

framework. This representation forms the foundation of many of the results developed in

subsequent chapters, such as the design and analysis of efficient approximate algorithms for

the various inference tasks.

We begin in Section 4.1 by simply presenting a number of the key results of our work, specif-

ically the variational forms of various types of mixed inference problems, while highlighting
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marginal
MAP

max-sum

MEU with
perfect recall
sum-max-sum

MEU with
imperfect

recall Sequential
powered sum

Figure 4.1: Venn diagram of various inference tasks. MEU for decision networks and sequen-
tial powered sum represent two types of general inference tasks, both of which include the
mixed-elimination forms for marginal MAP and MEU with perfect recall as special cases.

some of the useful intuitions that underlie the results. The subsequent sections then go on

to prove these results in two different ways, by studying two generalizations of mixed infer-

ence: sequential power sum tasks, and generalized maximum expected utility (MEU) tasks.

Specifically, Section 4.2 defines the weighted or powered sum elimination operator, which

generalizes both the max and sum elimination operators, and presents a variational repre-

sentation for a sequential powered sum inference task. This result is sufficient to provide

most of the key results stated in Section 4.1, including marginal MAP and decision networks

with perfect recall. Section 4.3 then gives an alternate generalization of these inference

problems, providing a unified variational form for maximum expected utility inference in

decision networks (including those without perfect recall). Both perspectives are useful in

understanding certain properties of the inference problems themselves, and in developing

new approximations and algorithms in later chapters. An illustration of the relationship

among these inference tasks is shown in Figure 4.1.
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4.1 Overview and Intuitions

To start, note that the variational forms of max-inference (4.1) and sum-inference (4.2) differ

only in the presence or absence of an entropy term. We can understand intuitively what

is the effect of this additional term: for maximization, we expect the optimal distribution’s

moments τ to correspond to a deterministic assignment, with all probability mass assigned

to the most likely configuration. For summation, in contrast, the entropy term causes the

optimal distribution to spread its probability over many high-probability assignments to

increase its entropy – specifically, matching the probability of those assignments. Our main

observation is that this intuition applies even to the more general case, such as when max

and sum are applied sequentially. Taking marginal MAP as example, our results in this

chapter (Section 4.2) show that

log max
xB

∑
xA

exp(θ(xA∪B)) = max
τ∈M

{
〈θ, τ 〉+H(xA|xB; τ )

}
(4.3)

= max
τ∈M

{
〈θ, τ 〉+H(xA∪B; τ )−H(xB; τ )

}
, (4.4)

where H(xA|xB; τ ) := −
∑
x τ(x) log τ(xA|xB) is the conditional entropy of the sum vari-

ables xA conditioned on the max variables xB. The equivalent form in (4.4) follows from the

entropic chain rule, that the conditional entropy equals the joint entropy minus the entropy

of the max variables (H(xA∪B; τ ) − H(xB; τ )). Intuitively, this objective corresponds to

spreading the probability mass of τ over the xA part (as with sum-inference), while encour-

aging a deterministic assignment on the xB part (as with max-inference). Since, like the

joint entropy, the conditional entropy is a concave function of τ , this variational form is also

a concave optimization over τ . Obviously, the variational forms of both sum-inference in

(4.2) and max-inference in (4.1) are special cases of (4.4), corresponding to when the max

set B is empty or consists of all nodes, respectively.
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Taking this intuition still further, we find that it also applies to more general hybrid se-

quences, including sum-max-sum inference (corresponding to MEU queries with perfect re-

call), where sum and max are interleaved in an arbitrary order:

log max
xDm

∑
xRm

· · ·max
xD1

∑
xR1

exp(θ(x))

= max
τ∈M

{
〈τ ,θ〉+

m∑
k=1

H(xRk |xpa(Rk) ; τ )
}
, (4.5)

= max
τ∈M

{
〈τ ,θ〉+H(x; τ )−

m∑
k=1

H(xDk |xpa(Dk) ; τ )
}
, (4.6)

where x = [xR1 ,xD1 , . . . ,xRm ,xDm ], and pa(Rk) := ∪mk′=k+1(Rk′∪Dk′)∪Dk are the variables

that are not eliminated yet while processing xRk , and similarly pa(Dk) := ∪mk′=k+1(Rk′∪Dk′).

Here, again, the entropic term can be written either as the sum of conditional entropies of the

random (sum) variables xRm in (4.5), or as the joint entropy minus the conditional entropies

of the decision (max) variables xDm in (4.6). Once again, this variational form is a concave

optimization over τ .

Interestingly, we show in Section 4.3 that the “entropy truncation” form in (4.6) remains

correct even for more general MEU inference problems in models without perfect recall; in

this case, the parent set pa(Dk) of the decision variables xDk is specified by the information

arcs, and is only a subset of ∪mk′=k+1(Rk′ ∪Dk′).

However, in this case the entropic chain rule does not apply, and the “entropy truncation”

form (4.6) is no longer equal to the “conditional entropy” form (4.5). Importantly, without

perfect recall the objective (4.6) is no longer guaranteed to be concave, because when pa(Dk)

is too small, the negative conditional entropy terms in (4.6) can be “too convex”, making the

overall entropic term not provably concave, in that it can not be written as a positive com-

bination of conditional entropies. For example, if pa(Dk) are all empty sets (that is, all the

decisions are made independently and simultaneously, without any observed information),
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then the entropy term in (4.6) becomes H(x; τ )−
∑m

k H(xDk), which resembles a (negative)

mutual information, and is generally non-concave. See Theorem 4.3 for a full statement of

the results.

One of our unifying perspectives is that we can treat both max and sum as special cases of a

weighted or powered sum, defined as

w∑
x

f(x) =
[∑

x

f(x)1/w
]w
,

where w can be viewed as a “temperature” or annealing parameter; note that the power sum

is equivalent to a p-norm with p = 1/w. The power sum elimination reduces to either sum or

max for the specific choices of weights w = 1 and w → 0+ (i.e., p→∞), respectively. In this

view, it is perhaps not surprising to obtain the following result, that interpolates between

(4.1) and (4.2):

log
w∑
x

exp(θ(x)) = max
τ∈M
{〈τ ,θ〉+ wH(x; τ )} ,

for any positive number w.

More generally, we can extend this weighted elimination result to a sequence of eliminations

using power sums, in which each variable is given a different weight, that is,

log
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)) = max
τ∈M

{
〈τ ,θ〉+

∑
i

wiH(xi|xi+1:n ; τ )
}
,

where the wi are arbitrary positive weights. This form includes (4.1)–(4.6) as special cases,

when the various wi are each chosen to be either 1 or 0+.

Some important comments are in order:

(1). It is important to note that the ordering of the max and sum elimination operators on

the left-hand sides are encoded in the conditioning sets of the entropies (e.g., pa(Rk)) of the
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variational forms on the right-hand sides. Altering the elimination order (among operators

that do not commute, e.g., have different weights wi) thus changes the entropy term in the

variational form. For example, it is not difficult to show from (4.12) that the “reversed

marginal MAP”
∑
xA

maxxB exp(θ(x)) problem has a form given by

log
∑
xA

max
xB

exp(θ(xA∪B)) = max
τ∈M

{
〈θ, τ 〉+H(xA; τ )

}
= max

τ∈M

{
〈θ, τ 〉+H(xA∪B; τ )−H(xB|xA; τ )

}
,

which is distinct from the marginal MAP task form in (4.3)–(4.4). In this case, marginal MAP

requires us to compute the conditional entropy H(xA|xB; τ ), while the reversed marginal

MAP requires the marginal entropy H(xA; τ ).

(2). The difficulty caused by the non-exchangeability of the max and sum operations is

also encoded in the entropy terms, in that these conditional and marginal entropies can be

more difficult to calculate than the joint entropy. For example, the variational form (4.4)

of marginal MAP requires us to calculate the marginal entropy H(xB; τ ), which may be

intractable even when the joint distribution τ(xA∪B) is a tree; this is because the marginal

distribution τ(xB) =
∑
xA
τ(xA∪B) does not necessarily inherit the factorization structure of

the joint distribution τ(xA∪B). Therefore, the dual optimization in (4.4) may be intractable

even on a tree, reflecting the intrinsic difficulty of marginal MAP compared to joint MAP

or marginalization.

(3). One important feature of our variational representations for these mixed inference tasks

is that they naturally integrate the max and sum sub-problems into one joint optimization

problem, which serves to provide a novel and potentially more efficient framework for mixed

inference problems such as marginal MAP, compared to traditional approaches that treat the

marginalization sub-problem as a sub-routine of the maximization problem. As we show in

Chapter 6 and 7, this viewpoint enables us to derive efficient “mixed-product” message pass-
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ing algorithms that simultaneously take marginalization and maximization steps, avoiding

expensive and possibly wasteful inner loop steps in the marginalization sub-routine.

4.2 Variational Form for Sequential Powered Sum

In this section, we study the properties of and derive a dual representation for sequential

powered sums.

We start by establishing the zero-temperature limits, showing that max and min are special

cases of powered sum with weights w → 0+ and w → 0−, respectively.

Lemma 4.1. For any positive function f(x), we have

lim
w→0+

[
∑
x

f(x)1/w]w = max
x

f(x), (4.7)

lim
w→0−

[
∑
x

f(x)1/w]w = min
x
f(x). (4.8)

Proof. Without loss of generality, we can assume max
x

f(x) = 1. Then it is easy to see that

lim
w→0+

f(x)1/w = 1[x ∈ arg max
x

f(x)], ∀x.

Summing over x on both sides, we get

lim
w→0+

∑
x

f(x)1/w = | arg max
x

f(x)| def= C,

where C is the number of global maxima of f(x). Since we always have C ≥ 1 > 0, we get

lim
w→0+

[
∑
x

f(x)1/w]w = lim
w→0+

Cw = 1.

This proves (4.7). The result for w → 0− follows similarly.
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We then prove a simple dual form for a single powered sum.

Proposition 4.1. For any scalar weight w, and the powered sum defined as

w∑
x

exp(θ(x)) =
[∑

x

exp
( 1

w
θ(x)

)]w
, (4.9)

we have:

If w > 0, log
w∑
x

exp(θ(x)) = max
τ∈M
{〈τ ,θ〉+ wH(x; τ )} . (4.10)

If w < 0, log
w∑
x

exp(θ(x)) = min
τ∈M
{〈τ ,θ〉+ wH(x; τ )} . (4.11)

Clearly, (4.10) reduces to the standard sum-inference dual (4.2) (with the entropy term)

when w = 1, and to the max-inference dual (4.1) (which is missing the entropy term) when

w → 0+ (e.g., in the limit from the positive side), while (4.11) reduces to a “min-inference”

dual form when w → 0−.

Proof. Simply applying (4.2) on exp
(

1
w
θ(x)

)
, we get

w log
∑
x

exp(
1

w
θ(x)) = wmax

τ∈M

{
〈τ , 1

w
θ〉+H(x; τ )

}
=


max
τ∈M

{
〈τ ,θ〉+ wH(x; τ )

}
, w>0

min
τ∈M

{
〈τ ,θ〉+ wH(x; τ )

}
, w<0

where in the last equality, moving w into the max operator yields either (4.10) or (4.11)

depending on the sign of w.

The preceding result applies only to powered sums with a scalar weight. In general, we can

sequentially apply powered sums with different weights on different variables. For example,

in a simple two variable case, the sequential powered sum is

w2∑
x2

w1∑
x1

f(x1, x2) = (
∑
x2

(
∑
x1

f(x1, x2)1/w1)w1/w2)w2 ,
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which is equivalent to the mixed norm when treating [f(k, l)]kl as a matrix. Note that

powered sums with different weights are not commutative; in fact, we have

w2∑
x2

w1∑
x1

f(x1, x2) <

w1∑
x1

w2∑
x2

f(x1, x2), when w1 < w2,

unless f(x1, x2) does not depend on x1 or x2 (e.g., when f(x1, x2) = f(x1)). This property is

a generalization of the non-commutativity that arises between the max and sum operators.

The following theorem provides the dual form for general, sequential powered sums.

Theorem 4.1. Consider a weight vector w = [w1, . . . , wn] associated with variables x =

[x1, . . . , xn]. Define the w-weighted log-partition function of p(x) ∝ exp(θ(x)) as

Φw(θ,w) = log
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)),

where
∑

is the powered sum as defined in (4.9). Then

(1). If wi > 0, we have

log
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)) = max
τ∈M

{
〈τ ,θ〉+

n∑
i=1

wiH(xi|xi+1:n ; τ )
}
, (4.12)

where H(xi|xi+1:n ; τ ) is the conditional entropy of τ(x) defined by

H(xi|xi+1:n ; τ ) = −
∑
x

τ(x) log τ(xi|xi+1:n).

As a direct result of (4.12), Φw(θ,w) is a jointly convex function of (θ,w) when wi > 0,∀i ∈

[n], because the supremum over a set of linear functions is convex.
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(2). The maximum of (4.12) is obtained by τ ∗(x) defined recursively as follows,

τ ∗(x) =
∏
i

τ ∗(xi|xi+1:n), τ ∗(xi|xi+1:n) =

(
Zi−1(xi:n ; θ,w)

)1/wi(
Zi(xi+1:n ; θ,w)

)1/wi
, (4.13)

where Zi is the partial powered sum upto x1:i, that is,

Z0(x;θ,w) = exp(θ(x)), Zi(xi+1:n ; θ,w) =

wi∑
xi

· · ·
w1∑
x1

exp(θ(x)).

Note that we have
∑

xi
Z

1/wi
i−1 = Z

1/wi
i by recursion; this guarantees the conditional distribu-

tion τ ∗(xi|xi+1:n) to be properly normalized, that is,
∑

xi
τ ∗(xi|xi+1:n) = 1.

(3). The form (4.12) makes it easy to calculate the derivatives of Φw(θ,w), so that

∂Φw(θ,w)

∂θα(xα)
= τ ∗(xα),

∂Φw(θ,w)

∂wi
= H(xi|xi+1:n ; τ ∗),

where τ ∗ is defined in (4.13).

Proof. The proof is straightforward based on the following more general result that we will

prove in Lemma 4.2:

Φw(θ,w)−
∑
i

wi KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n)) = 〈τ ,θ〉+
∑
i

wiH(xi|xi+1:n ; τ )

where the last terms on the left are conditional KL divergences, and τ ∗ is as defined in

(4.13). Because the minima of the KL divergence terms equal zero and are achieved when

τ ∗(x) = τ(x), if all wi > 0 we obtain the dual form (4.12) immediately by simply maximizing

over τ on both sides.
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Lemma 4.2. For any values of (θ̄, w̄) and τ ∈M, we have

Φw(θ,w)−
∑
i

wi KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n)) = 〈τ ,θ〉+
∑
i

wiH(xi|xi+1:n ; τ )

(4.14)

where τ ∗(xi|xi+1:n) are as defined in (4.13), and the last terms on the left are conditional

KL divergences (see e.g., Cover and Thomas [2006]), defined by

KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n)) = Eτ log
[ τ(xi|xi+1:n)

τ ∗(xi|xi+1:n)

]
,

where Eτ [·] is the expectation under distribution τ(x).

Proof. By the definition in Theorem 4.1(2), we have

logZ0(x1:n ; θ,w) = θ(x), logZn(∅ ; θ,w) = Φw(θ,w).

Then, we can write the LHS of (4.14) as

Φw(θ,w)−
∑
i

wiKL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n))

= logZn −
∑
i

wiEτ
[
− log τ ∗(xi|xi+1:n) + log τ(xi|xi+1:n)

]
Applying the definition of τ ∗ in (4.13) and of the conditional entropy gives,

= logZn +
∑
i

Eτ
[

logZi−1 − logZi
]

+
∑
i

wiH(xi|xi+1:n ; τ)

= logZn + Eτ
[

logZ0

]
− logZn +

∑
i

wiH(xi|xi+1:n ; τ)

= Eτ [θ(x)] +
∑
i

wiH(xi|xi+1:n ; τ).

which demonstrates (4.14) and completes the proof.
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Remarks. (1). The results in Theorem 4.1 only apply for positive weights wi > 0; later,

we will provide more general results for both positive and negative weights in Theorem 4.2

(proof also based on Lemma 4.2, which establishes for general weights). In particular, the

same derivative forms directly extend to general weights.

(2). The result in Theorem 4.1 works for any potential function θ(x). When θ(x) has a

factorization structure that is Markov with respect to a graph G, (4.12) can be simplified to

log
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)) = max
τ∈M

{
〈τ ,θ〉+

∑
i

wiH(xi|xpaG̃(i) ; τ )
}
,

where the conditioning sets on the right side are replaced by paG̃(i), the parent set of i in the

induced graph G̃ obtained when triangulating along order [x1, . . . , xn]. This form is more

computationally efficient, and should be used in practice.

By taking the weights to be either 1 or 0+, we immediately obtain general variational repre-

sentations for marginal MAP and interleaved, sum-max-sum inference as follows:

Corollary 4.1. (1). For marginal MAP, we have

log max
xB

∑
xA

exp(θ(x)) = max
τ∈M

{
〈τ ,θ〉+H(xA|xB ; τ )

}
, (4.15)

whose maximum is obtained by τ ∗(x) = p(xA|xB) · 1[xB ∈ arg maxxB
∑
xA

exp(x)], where

p(xA|xB) = exp(θ(x))/
∑
xA

exp(x), and 1[·] is the indicator function.

(2). For random variables x = [x1, . . . , xn], assume there is a partition {Di, Ri : i ∈ [m]},

satisfying R1 ∪D1 ∪ · · ·Rm ∪Dm = [n]. Then, we have

log max
xDm

∑
xRm

· · ·max
xD1

∑
xR1

exp(θ(x)) = max
τ∈M

{
〈τ ,θ〉+

m∑
k=1

H(xRk |xpa(Rk) ; τ )
}
, (4.16)

where pa(Rk) = ∪mk′=k+1(Rk′ ∪Dk′) ∪Dk.
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Proof. Both (1) and (2) are direct results of (4.12) by taking weights to be either 1 or 0+.

Here, we give another simpler, more direct proof of (1).

For any τ ∈ M and its corresponding joint distribution τ(x), consider the conditional KL

divergence between τ(xA|xB) and p(xA|xB;θ) := exp(θ(x))/
∑
xA

exp(θ(x)),

KL(τ (xA|xB) || p(xA|xB)) =
∑
x

τ(x) log
τ(xA|xB)

p(xA|xB ; θ)

= −H(xA|xB ; τ )− Eτ [log p(xA|xB ; θ)]

= −H(xA|xB ; τ )− Eτ [θ(x)] + Eτ [log
∑
xA

exp(θ(x))] ≥ 0,

where the last inequality follows from the non-negativity of KL divergence, and is tight if

and only if τ(xA|xB) = p(xA|xB ; θ). Therefore, we have for any τ(x),

log max
xB

∑
xA

exp(θ(x)) ≥ Eτ [
∑
xA

exp(θ(x))] ≥ Eτ [θ(x)] +H(xA|xB ; τ ).

It is easy to show that the two inequality signs are tight if and only if τ(x) equals τ ∗(x)

defined above. Substituting Eτ [θ(x)] = 〈θ, τ 〉 completes the proof of (4.15).

As we show in Chapters 6 and 7, these new variational representations play fundamental roles

in deriving efficient message passing algorithms for the marginal MAP and sum-max-sum

inference problems.

Negative Weights The result in (4.12) applies to positive weights, and allows us to deal

with arbitrary combinations of max and sum. However, in some cases it may also be useful

to use negative weights, or the min operator (which corresponds to w → 0−), together with

positive weights and max and/or sum operations. As one example, consider two person, zero-

sum games, such as captured under multi-agent influence diagram representations [Koller

and Milch, 2003] that generalizes influence diagrams; these games involve both min and max,
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corresponding to the two players’ decisions, and sum operators for averaging over random

variables. Related examples arise in adversarial learning, or robust optimization, in which

we desire to maximize a worse-case objective against an adversary working to degrade (min)

our results. In addition, the min operator and negative weights can be used for constructing

and analyzing lower bounds for inference; examples include the mini-bucket lower bound

that we introduced in Section 3.1.2 (e.g., see (3.6)), the more general negatively weighted

mini-bucket that we introduce in Chapter 5, or our related work on negative tree reweighted

BP [Liu and Ihler, 2010], which uses negative counting numbers in TRBP to obtain lower

bounds on the log-partition function.

For these reasons, it is important to extend (4.12) to cases involving both positive and

negative weights; then, we can take wi → 0− to get min and wi → 0+ (or wi = 1) to get

max (or sum). The following theorem provides this extension, where the variational form

involves finding a saddle point on τ instead of an maximum.

Theorem 4.2. (1). Consider a non-zero weight vector w = [w1, . . . , wn] associated with

variables x = [x1, . . . , xn]. Let V + (resp. V −) be the subsets on which wi > 0 (resp. wi < 0).

Let τ V + = {τ(xi|xi+1:n) : i ∈ V +} and τ V − = {τ(xi|xi+1:n) : i ∈ V −}, that is, the set of

conditional distributions with positive and negative weights, respectively. We have

log
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)) = min
τV−

max
τV+

{
〈τ ,θ〉+

n∑
i=1

wiH(xi|xpaG̃(i) ; τ )
}
, (4.17)

for which the τ ∗ as defined in Theorem 4.1 is a minimax solution. By taking weights equal to

0± or 1, we can derive variational forms for arbitrary combinations of min, max, and sum

elimination operators.

(2). For any θ and non-zero weights w, the derivatives of Φ(θ,w) (the LHS of (4.17)) w.r.t.

(θ,w) are the same as that in Theorem 4.1(3).
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Proof. Similarly to the proof of Theorem 4.1, we maximize τ V + and minimize τ V − on the

both sides of (4.14) in Lemma 4.2, and (4.17) follows immediately by the non-negativity of

the conditional KL divergence. Note that we can exchange the order of the min and max

over τ V − and τ V + because of the minimax theorem.

The derivative results can be also conveniently calculated through (4.14). Note that 〈τ ,θ〉 =∑
α τ(xα)θα(xα). Taking the derivative w.r.t. θα(xα) on both sides of (4.14), we get

∂Φw(θ,w)

∂θα(xα)
= τ(xα) +

∑
i

wi
∂KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n))

∂τ ∗(xi|xi+1:n)
× ∂τ ∗(xi|xi+1:n)

∂θα(xα)
,

where the terms in the sum on the right use the derivative chain rule and appear because

τ ∗(xi|xi+1:n), as defined in (4.13), is a function of θ. Now taking τ = τ ∗ on the both sides,

the terms in the sum become zero because the conditional divergences achieve their minima,

and have zero gradient when τ = τ ∗; this proves that

∂Φw(θ,w)

∂θα(xα)
= τ ∗(xα).

Similarly, taking the derivative w.r.t. wi on the both sides of (4.14), we get

∂Φw(θ,w)

∂wi
= H(xi|xi+1:n ; τ ) + KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n)) + · · ·

· · · +
∂KL(τ(xi|xi+1:n) || τ ∗(xi|xi+1:n))

∂τ ∗(xi|xi+1:n)
× ∂τ ∗(xi|xi+1:n)

∂wi
.

Again, by taking τ = τ ∗ on the both sides, and noting that both the conditional KL

divergences and their derivatives equal zero when τ = τ ∗, we get

∂

∂wi
Φw(θ,w) = H(xi|xi+1:n ; τ ∗).

This completes the proof.
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4.3 Variational Form for Decision Making With Imperfect Recall

The preceding section provided variational representations for a general sequential powered

sum inference task, which includes marginal MAP and decision making with perfect recall

(sum-max-sum) as special cases, but does not encompass decision making without perfect

recall. In this section, we give a similar variational representation for decision making with-

out perfect recall, which demonstrates the results for marginal MAP and sum-max-sum

(Corrolary 4.1) from another perspective.

We start by setting up the MEU task. Consider a decision network (or influence diagram)

on x = [xR,xD] where xR and xD are random and decision variables, respectively. Let

pa(i) be the parent set of decision variable xi, ∀i ∈ D as specified by the information arcs.

Given the conditional probability p(xR|xD) and a utility function u(xR,xD), the maximum

expected utility task (MEU) is to find an optimal decision strategy δ = {δi(xi|xpa(i)) : i ∈ D}

to maximize the expectation of the utility function, that is,

MEU = max
δ∈∆

E(u(xR,xD) | δ)

= max
δ∈∆

∑
x

p(xR|xD)u(xR,xD)
∏
i∈D

δ(xi|xpa(i)), (4.18)

where

∆ = {δ(xi|xpa(i)) : δ(xi|xpa(i)) ≥ 0,
∑
xi

δ(xi|xpa(i)) = 1 ∀i ∈ D, x ∈ X}.

Theorem 4.3. (1). Let θ(x) = log(p(xR|xD)u(xR,xD)). Then we have

log MEU(θ) = max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )}. (4.19)

Suppose τ ∗ is a maximum of (4.19), then δ∗ = {τ ∗(xi|xpa(i)) : i ∈ D} is an optimal strategy

that solves (4.18).
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(2). If the perfect recall condition is satisfied, then (4.19) reduces to a convex optimization,

log MEU(θ) = max
τ∈M
{〈θ, τ 〉+

∑
oi∈R

H(xoi |xoi+1:n
; τ )}, (4.20)

where o = [r0, d1, r1, · · · , dm, rm] is the reverse of a “temporal” ordering of the decision and

chance nodes as implied by the perfect recall.

Proof. (1) Let δ = {δi(xi|xpa(i)) : i ∈ D} be any randomized strategy, and let exp(θδ(x)) =

exp(θ(x))
∏

i∈D δi(xi|xpa(i)). We apply the standard duality result (4.2) of the log-partition

function on pδ(x) ∝ exp(θδ(x)):

log MEU(θ) = max
δ

log
∑
x

∏
i∈R

p(xi|xpa(i))
∏
i∈D

δi(xi|xpa(i))

= max
δ

log
∑
x

exp(θδ(x))

= max
δ

{
max
τ∈M

[
〈θδ, τ 〉+H(x; τ )

]}
= max

τ∈M

{
max
δ

[
〈θδ, τ 〉

]
+H(x; τ )

}
. (4.21)

Then, note that

max
δ

[
〈θδ, τ 〉

]
= max

δ
{〈θ +

∑
i∈D

log δi(xi|xpa(i)), τ 〉}

= 〈θ, τ 〉+
∑
i∈D

max
δi
{
∑
x

τ(x) log δi(xi|xpa(i))}

∗
= 〈θ, τ 〉+

∑
i∈D

{
∑
x

τ(x) log τ(xi|xpa(i))}

= 〈θ, τ 〉 −
∑
i∈D

H(xi|xpa(i); τ ), (4.22)

where the equality “
∗
=” holds because the solution of maxδi{

∑
x τ(x) log δi(xi|xpa(i))} subject

to the normalization constraint
∑

xi
δi(xi|xpa(i)) = 1 is δi = τ(xi|xpa(i)). Finally, we obtain
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(4.19) by plugging (4.22) into (4.21).

(2) Note that the perfect recall assumption by definition implies pa(oi) = oi+1:n for oi ∈ D.

By the entropic chain rule, we have

H(x; τ ) =
∑

ok∈R∪D

H(xoi |xoi+1:n
).

Subtracting the terms in (4.19) leaves exactly those terms in (4.20).

Remarks. (1). Note that Theorem 4.3 applied to the case of perfect recall is equivalent to

Corollary 4.1 for its sum-max-sum form, but provides a different proof.

(2). It is interesting to see that, under the variational forms, the perfect recall and imperfect

recall cases differ in whether the optimization is guaranteed to be convex. In the perfect

recall case, (4.20) is always a convex optimization (if perhaps not strictly convex), due to

the concavity of each conditional entropy function in the sum. In contrast, (4.19) may be

non-convex – each subtracted entropy term is conditioned on fewer variables than in perfect

recall, which increases their entropy, and may “overwhelm” the joint entropy causing their

difference to be non-convex. This matches the intuition that incomplete information sharing

gives rise to multiple, locally optimal strategies (corresponding to locally optimal points of

the non-convex optimization), and greatly increases the computational difficulty for finding

the global optimal solution.

Example 4.1. Consider the two simple decision networks in Figure 4.2(a) and Figure 4.2(b),

which have perfect recall and imperfect recall, respectively (see also Figure 2.5 for more

details). Their variational representations are

Figure 2.5(a), Perfect Recall: max
τ
〈τ ,θ〉,

Figure 2.5(b), Imperfect Recall: max
τ

{
〈τ ,θ〉+H(x1, x2)−H(x1)−H(x2)}
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d2d1

u

d2d1

u

d1 d2 u(d1, d2)
1 1 3
0 1 1
1 0 1
0 0 2

(a) Perfect Recall (b) Imperfect Recall (c) Utility Function

Figure 4.2: Figures for example 4.1. (a)-(b) Two decision networks sharing a utility function
in (c), with perfect recall (a), and imperfect recall (b), respectively.

where there is no entropic term for Figure 2.5(a) since no random variables exist; the entropic

term for Figure 2.5(b) equals the negative mutual information, −I(x1, x2) = H(x1, x2) −

H(x1)−H(x2) and is not a concave function of τ .

Another corollary provides additional insights into the non-convexity issues raised by imper-

fect recall. Let us consider extending the parent sets of a LIMID to ensure that it has the

perfect recall property. Given a LIMID, assume o is an “reverse temporal ordering” over the

chance and decision nodes that is consistent with its information arcs — for any decision

variable oi, all of its parent set pa(oi) should rank later than oi in o, that is, pa(oi) ⊆ oi+1:n

for ∀oi ∈ D. We can then relax the LIMID to a new ID with perfect recall by augmenting

the parent sets of each decision node to {pa(oi) = oi+1:n : oi ∈ D}, that is, the decision

policies can depend on more information (pa(oi)) than before (pa(oi)). The imperfect recall

MEU then corresponds to an optimization in the perfect recall ID, subject to additional

constraints on what policies (and thus marginals) are allowed:

Corollary 4.2. For an ID with natural parameter θ and an augmented parent set {pa(oi) =

o1:i−1 : oi ∈ D} as defined above, we have

log MEU(θ) = max
τ∈I
{〈θ, τ 〉+

∑
oi∈R

H(xoi |xoi+1:n
; τ )}, (4.23)

where I = {τ ∈M : xoi ⊥ xpa(oi)\pa(oi)|xpa(oi), ∀oi ∈ D}, corresponding to those distributions
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that respect the imperfect recall constraints; “x ⊥ y | z” denotes conditional independence of

x and y given z, that is, τ(x, y|z) = τ(x|z)τ(y|z). Thus, I is the set of marginals whose

policies leave the distribution of decision variable xoi independent of its ancestors, except for

its original information arcs pa(oi).

Proof. See Appendix.

Thus Corollary 4.2 gives another intuitive interpretation of imperfect vs. perfect recall: MEU

with imperfect recall can be viewed as optimizing the same objective function as the “relaxed”

perfect recall ID, but over a subset of the marginal polytope that restricts the observation

domains of the decision rules; this inner subset is non-convex and similar to the mean field

approximation for partition functions. See Wolpert [2006] for a similar connection between

mean field and bounded rational game theory. Interestingly, this shows that extending a

LIMID to have perfect recall (by extending the observation domains of the decision nodes)

can be considered a convex relaxation of the LIMID.

We can also introduce an “annealing” parameter to control the convexity of the objective

function, giving us the following corollary.

Corollary 4.3. For any ε, if τ ∗ is a global optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑
i∈D

H(xi|xpa(i))}. (4.24)

and δ∗ = {τ ∗(xi|xpa(i)) : i ∈ D} is a deterministic strategy, then δ∗ is an optimal strategy

for MEU.

Proof. See Appendix.

The annealing parameter ε in Corollary 4.3 increases the convexity of the (negative) objective
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Problem Type Primal Form Variational Form

Max-inference max
x

exp(θ(x)) max
τ∈M
〈θ, τ 〉

Sum-inference
∑
x

exp(θ(x)) max
τ∈M
{〈θ, τ 〉+H(x; τ ) }

Marginal MAP max
xB

∑
xA

exp(θ(x)) max
τ∈M
{〈θ, τ 〉+H(xA|xB ; τ )}

Decision Making
(perfect recall)

∑
xr1

max
xd1

· · ·
∑
xrm

exp(θ(x)) max
τ∈M
{〈θ, τ 〉+

∑
oi∈R

H(xoi |xo1:i−1
; τ )}

Decision Making
(imperfect recall)

max
δ∈∆

∑
x

exp(θ(x))δ(xD|xR) max
τ∈M
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i) ; τ )}

Powered Sum
wn∑
xn

· · ·
w1∑
x1

exp(θ(x)) max
τ∈M
{〈θ, τ 〉+

n∑
i=1

wiH(xi|xi+1:n ; τ )}

Table 4.1: Summarizing the variational forms of various inference problems. The results of
sum-inference and max-inference are well known, while the rests are our contributions in this
thesis. All of the variational forms differ only on their entropy terms.

function, but at the risk of losing optimality of the strategy: for sufficiently large ε, e.g.,

ε ≥ 1, the negative objective in (4.24) is a strictly convex function, but δ∗ is unlikely to be

deterministic nor optimal (notice, if ε = 1, (4.24) reduces to standard marginalization). As

ε is decreased towards zero, δ∗ becomes more deterministic, but (4.24) becomes more non-

convex and hence harder to solve. See Theorem 6.1 for a similar result on marginal MAP.

In Chapter 7, we derive several optimization approaches by manipulating this annealing

parameter.

4.4 Conclusion

This chapter introduced a spectrum of variational forms, which are summarized in Table 4.1

and extend those known for standard sum-inference and max-inference problems. These
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results form the basis for our algorithmic developments in the following chapters:

1. The variational form of the sequential powered sum (and its properties) in Theorem 4.1

are exploited in Chapter 5 to tighten a novel weighted mini-bucket bound that we

propose, which generalizes the mini-bucket algorithm from Section 3.1.2. It also serves

to connect our weighted mini-bucket bound to convex variational methods, such as

tree reweighted belief propagation and conditional entropy decomposition.

2. The variational form for marginal MAP in Corollary 4.1 allows us to develop a spectrum

of efficient belief propagation-type algorithms for marginal MAP inference in Chapter 6,

which greatly enhance the state of the art for this problem.

3. Similarly, the result for decision making in Theorem 4.3 forms the basis for our algo-

rithmic developments in Chapter 7, enabling a set of powerful algorithms for solving

decision networks. Importantly, our novel decision-making algorithms are applicable

even in systems with imperfect recall (i,e., LIMIDs), for which few efficient algorithms

beyond the greedy single policy update exist.
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Chapter 5

Weighted Mini-Bucket Elimination

In this section, we introduce Hölder’s inequality as a generalization of the mini-bucket elim-

ination (MBE) bound, and propose a more general weighted mini-bucket (WMB) elimina-

tion algorithm. Compared to standard MBE, which approximates intractable summation

operators using upper (resp. lower) bounds built on max (resp. min) operators, weighted

mini-bucket builds its approximation using the more general powered sum, and returns an

upper or lower bound depending on the signs of the weights. In addition, we also study

iterative tightening methods to find the optimal weight values, as well as the optimal factor

splitting (or reparameterization) in weighted mini-bucket.

By using the variational representation of the sequential powered sum in Theorem 4.1, we

show that the dual form of weighted mini-bucket is equivalent to that of tree-reweighted be-

lief propagation (TRBP), and more generally conditional entropy decomposition variational

methods, revealing a close connection between the mini-bucket elimination method and con-

vex variational methods. Importantly, our weighted mini-bucket technique inherits many of

the benefits of both variational and elimination approaches, resulting in significant advan-

tages over either — compared with mini-bucket, we can iteratively improve the parameters,

leading to tighter bounds; compared with TRBP, we provide a concise and relatively tight

primal bound with far fewer parameters. In experiments, we show that WMB effectively

trades off iterative updates with clique size to greatly improve the overall bound quality.
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This chapter is organized as follows. Section 5.1 introduces Hölder’s and reverse Hölder’s In-

equalities. Section 5.2 proposes weighted mini-bucket elimination, and discuss its connection

with the tree reweighted (TRW) primal bound (Section 5.2.2). Section 5.3 studies iterative

methods for tightening upper bounds and lower bounds, respectively. Section 5.4 provides

the dual form of the weighted mini-buck bound, and develops its connection with the TRW

dual bound and conditional entropy decomposition. We present experiments in Section 5.5,

then discuss conclusions and outline future directions in Section 5.6.

5.1 H�older's and Reverse H�older's Inequalities

Generally speaking, the partition function of a factorized distribution Z =
∑
x

∏
α ψα(xα)

involves calculating the (high dimensional) sum of products of functions. Hölder’s and reverse

Hölder’s inequalities provide general tools for constructing bounds or approximations to the

sum of products, and form the foundation for our method.

Proposition 5.1 (Hölder’s and reverse Hölder’s Inequalities). Let fr(x), r = 1 . . . p

be a set of positive functions over the discrete variable x, and let w = [w1, w2, . . . , wR] be a

vector of non-zero weights. Define

W+ =
{
w :

∑
r

wr = 1, and wr > 0, ∀r = 1, . . . , R
}
,

W− =
p
∪
k=1
W−k , where W−k =

{
w :

∑
r

wr = 1, and wk > 0, wr < 0 ∀r 6= k
}
,

that is, W+ is the probability simplex, while W− is the set of normalized weights with exactly

104



w1

w2

w3

(1,0,0)
(0,1,0)

(0,0,1)

W+

W−1

W−2

W−3

Figure 5.1: Illustrating the weight domains for Hölder’s and reversed Hölder’s inequalities.
For three weights (w1, w2, w3), we restrict our attention to the plane defined by normalized
wr, i.e., W = {w :

∑
r wr = 1}, on which the blue lines lie. Hölder’s inequality holds on

the probability simplexW+ in which all the weights are positive; reverse Hölder’s inequality
holds on W−1 ∪W−2 ∪W−3 , where exactly one weight is positive. However, neither inequality
holds in the unmarked domains between W−r where exactly two weights are positive.

one positive element (see Figure 5.1 for a visualization). Then we have

∑
x

∏
r

fr(x) ≤
∏
i

wr∑
x

fr(x), when w ∈ W+, (5.1)

∑
x

∏
r

fr(x) ≥
∏
i

wr∑
x

fr(x), when w ∈ W−. (5.2)

where as usual,
∑w

x f(x) = (
∑

x f(x)1/w)w is the weighted or powered sum (see Section 4.2).

In both cases, the equalities hold if there is some common function g(x) such that fr(x)1/wr =

g(x), ∀r = 1, . . . , R.

Proof. See Hardy et al. [1988].

The directions of the inequalities above depend on the sign of the weights: using weights

with all positive elements yields the well-known Hölder’s inequality, while using weights

with exactly one positive element (e.g., w = [2,−1/(R − 1), . . . ,−1/(R − 1)]) yield the

reverse Hölder’s inequality. If the weight vector satisfies neither of the above conditions
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(e.g., w = [1, 1,−1/(R−2), . . . ,−1/(R−2)]), then no inequalities hold in general. Figure 5.1

shows an illustration of the various domains and where the inequalities hold.

The weights should also be properly normalized (i.e.,
∑

r wr = 1), so that the function values

are not over- (or under-) counted. For example, although the inequality (5.1) still holds with

the all-one weight (w = [1, . . . , 1]), that is,

∑
x

∏
fr(x) ≤

∏∑
x

fr(x),

this gives a very loose (almost trivial) upper bound because the terms are over-counted on

the right-hand side (to see this, take fr(x) = 1; then the right hand side becomes |X |R, while

the left hand side is |X |, where |X | is the domain size of x). On the other hand, one may

form a reasonable approximation by using a more careful normalization,

1

|X |
∑
x

∏
r

fr(x) ≈ 1

|X |p
∏∑

x

fr(x).

However, this is in general neither an upper nor a lower bound; see Sutton and McCallum

[2009] for an application of such a type of approximation, and its connection with Bethe

entropy approximation.

5.2 Weighted Mini-Bucket Elimination

The inequalities in (5.1)-(5.2) can be viewed as approximating the sum of products of func-

tions using products of powered sums over the individual functions; in this sense, they can

be used to provide upper (resp. lower) bounds for the partition function in a manner simi-

lar to mini-bucket elimination. We illustrate the idea using our running example from the
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description of mini-bucket elimination in Section 3.1.2,

ψnew23 (x2, x3) =
∑
x1

ψ12(x1, x2)ψ13(x1, x3),

for which Hölder’s and reversed Hölder’s inequalities give

w1∑
x1

ψ12(x1, x2) ·
w2∑
x1

ψ13(x1, x3) R
∑
x1

ψ12(x1, x2)ψ13(x1, x3), (5.3)

where w1 and w2 are weights satisfying w1 + w2 = 1, and the direction of the inequality

depends on the sign of the weights [w1, w2].

Recall that the powered sum
∑w

x f(x) = (
∑

x f(x)1/w)w approaches maxx f(x) as w → 0+,

and minx f(x) as w → 0−. Then it is easy to see that (5.3) is an immediate generalization

of the mini-bucket upper bound (3.6) and lower bound (3.5), in which we take w1 = 1,

w2 → 0+ (corresponding to a max operator) and w1 = 1, w2 → 0− (corresponding to a min

operator), respectively.

Based on the above observation, it is straightforward to generalize mini-bucket elimination

to the weighted mini-bucket elimination (WMB) presented in Algorithm 5.1, by replacing

the näıve mini-bucket bound with Hölder’s inequality. This algorithm uses the same basic

procedure as standard mini-bucket, except that sum/max are replaced by powered sum, whose

weights sum to one for each variable.

Remark. To implement Algorithm 5.1 for lower bounds (w ∈ W−), one needs to select

a single replicate of each node to take on a positive weight; in relation to standard mini-

bucket in Algorithm 3.3, this corresponds to selecting a single mini-bucket on which the

sum operator is applied in (3.7). On the other hand, for obtaining upper bounds (w ∈ W+),

weighted mini-bucket avoids the corresponding selection problem since all the weights should

take positive values, and are thus treated equally.
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Algorithm 5.1 Weighted mini-bucket elimination

Input: Factors of a graphical model F = {ψα(xα)}, an elimination order o = [x1, · · · , xn],
and an ibound.
Output: An upper (or lower) bound on the partition function Z.
for i← 1 to n do

1. Find the factors involving variable xi: Bi ← {ψ : ψ ∈ F, xi ∈ scope(ψ)}.

2. Partition Bi into Ri subgroups {Bir}, such that ∪Rir=1Bir = Bi and

| ∪ψ∈Bir
scope(ψ)| ≤ ibound+ 1 for all r = 1, . . . , Ri.

Assign each Bir with a weight wir , such that
∑

r wir = 1.
for r ← 1 · · ·Ri do

ψnewir (xπir )←
[∑

xi

∏
ψ∈Bir

ψ(xscope(ψ))
1/wir )

]wir
, (5.4)

where the variable scope is πir = ∪ψ∈Bir
scope(ψ) \ {i}.

end for

3. F← (F \Bi) ∪ {ψnewir : r = 1, · · · , Ri}.

end for
The partition function bound is Ẑ =

∏
ψ∈F ψ. (All the factors are constant (i.e.,

scope(ψ) = ∅) when the elimination are completed).

Note: Ẑ is an upper or lower bound of the partition function depending on the signs of the
weights wri ; see Proposition 5.1.
Note: when the wri are set to be either 1 or 0+/0−, the algorithm reduces to the standard
mini-bucket elimination of Algorithm 3.3.

5.2.1 Weighted Mini-Bucket as Powered Sum Inference

Just as we showed in Section 3.1.2 that standard MBE was equivalent to a sum-max-sum (or

sum-min-sum) form, we can also represent our weighted mini-bucket bound as a sequential

powered sum inference on the augmented model defined by splitting variables. This char-

acterizes the weighted mini-bucket bound as an explicit function of the augmented model

parameters and the weights, and enables us to make connection with tree reweighted BP

(Section 5.2.2 and Section 5.4), as well as develop efficient algorithms that optimize the

parameters and weights to get the tightest bounds (Section 5.3).
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To be specific, let p̄(x̄) ∝
∏

ᾱ∈Ī ψ̄(x̄ᾱ) = exp(
∑

ᾱ∈Ī θᾱ(x̄ᾱ)) be the augmented model on

the replicated variables x̄ obtain by Algorithm 3.5, and w̄ = [w̄1, . . . , w̄n], where w̄i =

[w̄i1 , . . . , w̄iRi ], are the weights on assigned on x̄. Following the elimination steps in Algo-

rithm 5.1, the log of the resulting bound can be written into the form of a sequential powered

sum on p̄(x̄) (see Theorem 4.1), that is,

Φ̄w(θ̄, w̄) = log
w̄n̄∑
x̄n̄

· · ·
w̄1∑
x̄1

exp
(∑
ᾱ∈Ī

θᾱ(x̄ᾱ)
)

(5.5)

where the powered sums (with different weights) are applied recursively on the variables

along the ordering x̄ = [x̄11 , . . . , x̄1R1 , . . . , x̄n1 , . . . x̄nRn ]. In this sense, weighted mini-bucket

elimination uses the w̄-weighted partition function of the augmented model to approximate

the regular partition function of the original model.

Theorem 4.1 in Chapter 4 examined some of the important properties of Φ̄w(θ̄, w̄): we

showed that Φ̄w(θ̄, w̄) is a joint convex function of (θ̄, w̄) for positive weights, and derived

its derivates w.r.t. both θ̄ and w̄, as well as a variational dual representation. In the sequel,

Sections 5.2.2–5.4 leverage these results to analyze weighted mini-bucket, connecting it to

convex variational methods such as TRBP, and develop efficient algorithms to optimize θ̄

and w̄ to get tight bounds.

5.2.2 Connection to TRW Primal Bounds

Our weighted mini-bucket works by splitting the variables node by node, forming the aug-

mented model p̄(x̄) whose induced width is controlled by the ibound. As we illustrated in

Section 3.1.2 and in particular Figure 3.3, this process can be graphically interpreted as

splitting the nodes to break the loops in the original Markov graph, forming a“covering

graph” (the Markov graph of the augmented model) to approximate the original graph. A

related but different notion of graph splitting has been used in tree reweighted BP (TRBP)
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[Wainwright et al., 2005] (see also Section 3.2.4), which splits the original graph into a set

of spanning trees. In this section, we connect and compare the TRW primal bound and our

weighted mini-bucket bound. We further discuss TRW in Section 5.3 and Section 5.4, where

we make connections with the TRBP algorithm and the dual form of the TRW bound.

We start by reviewing the TRW primal bound briefly. For notational convenience, we restrict

the discussion to pairwise models with a Markov graph G in this section. Let T = {T} be a

collection of spanning trees of G which are assigned a set of positive weights {wT} satisfying∑
T∈T w

T = 1 (that is, {wT} ∈ W+). We split the original natural parameter θ into the

sum of {θT : T ∈ T }, where each θT is defined on tree T and together satisfy θ =
∑

T∈T θ
T .

The TRW primal bound, as derived via Jensen’s inequality in Section 3.2.41, can be formed

using the powered sum notation as follows,

Ψtrw({θT}, {wT}) = log
∏
T∈T

wT∑
x

exp(θT (x)). (5.6)

To more closely connect to our weighted mini-bucket, we can assume the sum for each tree

T is performed on a copy xT of variable x. This creates an augmented variable vector

xT = [xT1 , . . . ,xTK ], where Tk is the k-th tree in T , and a large augmented model p̄(xT ) ∝

exp(
∑

k θ
Tk(xTk)), consisting of a set of disconnected spanning trees (that is, a “forest”).

Then the TRBP primal bound is rewritten as a sequential weighted sum over p̄(xT ),

Ψtrw({θT}, {wT}) = log
∏
T∈T

wT∑
x

exp(θT (x)) = log
wTK∑
xTK

· · ·
wT1∑
xT1

exp(
∑
k

θTk(xTk)). (5.7)

Therefore, we can view TRBP as splitting each variable into K = |T | copies, and assigning

the k-th copy xTk = [xTk1 , . . . , x
Tk
n ] of all the variables with a tied positive weight wTk .

1The TRW primal bound can also be derived by Hölder’s inequality. To see this, note that the log
partition function is Φ(θ) = log

∑
x exp(θ(x)) = log

∑
x

∏
T exp(θT (x)); applying Hölder’s inequality by

treating each exp(θT (x)) as the fr(x) in (5.1) gives the bound in (5.6).
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Figure 5.2: Comparing the weighted mini-bucket and TRW primal bounds in Example 5.1.
(a) The original Markov graph as used in Example 5.1. (b) A covering tree of the graph
in (a) by splitting node x1. (c) A “overly-split” covering tree that further splits x2 and x3.
It consists of two connected components, each of which is a spanning trees of the original
graph in (a). If the weights on each tree are tied, that is, w1 = w1

1 = w1
2 = w1

3 and
w2 = w2

1 = w2
2 = w2

3, then it corresponds to a TRW primal bound over these two spanning
trees with weight w1 and w2, respectively.

The idea is best illustrated in a toy example as follows.

Example 5.1. Consider a three-node pairwise model p(x) ∝ exp(θ12(x1, x2) + θ23(x2, x3) +

θ13(x1, x3)) shown in Figure 5.2(a), whose exact partition function equals

Z =
∑
x3

∑
x2

∑
x1

exp(θ12(x1, x2) + θ23(x2, x3) + θ13(x1, x3)).

In this example, we demonstrate two weighted mini-bucket bounds on p(x) (as illustrated

in Figure 5.2(b)-(c)) and discuss the connection to a TRW primal bound. We only discuss

weighted mini-bucket upper bounds, so that all weights are positive.

(1). Figure 5.2(b) illustrates a weighted mini-bucket procedure that splits variable x1 into

two copies and forms a “covering tree” (ibound = 1); a corresponding WMB bound is

Ẑ =
∑
x3

∑
x2

w2
1∑
x2

1

w1
1∑
x1

1

exp(θ12(x1
1, x2) + θ13(x2

1, x3) + θ23(x2, x3)).

where [w1
1, w

2
1] are weights on the replicates [x1

1, x
2
1]. Here, no splitting is applied to x2 or x3,

because splitting x1 breaks the cycle, so that the augmented graph is a tree.
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(2). If we continue to split x2 and x3 (although it is unnecessary), we get the “over-split”

covering tree shown in Figure 5.2(c), consisting of two connected components, each being a

spanning tree of the original graph. A corresponding weighted mini-bucket bound is

Ẑ ′ =

w2
3∑
x2

3

w1
3∑
x1

3

w2
2∑
x2

2

w1
2∑
x1

2

w2
1∑
x2

1

w1
1∑
x1

1

exp(θ12(x1
1, x

1
2) + θ1

23(x1
2, x

1
3) + θ13(x2

1, x
2
3) + θ2

23(x2
2, x

2
3)),

which can be obtained from Ẑ by applying Holder’s inequality on the sum of x2 and then of

x3, so that it is at most as tight as Ẑ, that is, Ẑ ≤ Ẑ ′. Note that four additional weights

[w1
2, w

2
2] and [w1

3, w
2
3] are defined on the replicates of x2 and x3; the edge potential θ23 is also

split into θ1
23 and θ2

23, satisfying θ1
23 + θ2

23 = θ23.

The values of [θ1
23, θ

2
23] should be chosen to make the bound Ẑ ′ as tight as possible. Indeed, as

we make clear in Section 5.4, there is an optimal value of [θ1
23, θ

2
23] (for any fixed weights),

such that Ẑ = Ẑ ′. That is, Ẑ ′ is as good as Ẑ, once the values of [θ1
23, θ

2
23] are optimized.

(3). Because the first replicates x1 = [x1
1, x

1
2, x

1
3] and the second replicates x2 = [x2

1, x
2
2, x

2
3] are

disconnected, their powered sums can be performed independently, and Ẑ ′ can be rewritten

Ẑ ′=

[ w1
3∑
x1

3

w1
2∑
x1

2

w1
1∑
x1

1

exp(θ12(x1
1, x

1
2) + θ1

23(x1
2, x

1
3))

]
·
[ w2

3∑
x2

3

w2
2∑
x2

2

w2
1∑
x2

1

exp(θ13(x2
1, x

2
3) + θ2

23(x2
2, x

2
3))

]
,

If we further assume all the first replicates x1 = [x1
1, x

1
2, x

1
3] share the same weight w1, that

is, w1 = w1
1 = w1

2 = w1
3, and similarly w2 = w2

1 = w2
2 = w2

3, then Ẑ ′ reduces to

[ w1∑
x1

exp(θ12(x1
1, x

1
2) + θ1

23(x1
2, x

1
3))

]
·
[ w2∑
x2

exp(θ13(x2
1, x

2
3) + θ2

23(x2
2, x

2
3))

]
,

where x1 = [x1
1, x

1
2, x

1
3] are all summed with weight w1 and x2 = [x2

1, x
2
2, x

2
3] all with w2.

Comparing with (5.6), we can readily see that Ẑ ′ is equivalent to a TRW primal bound with

the two spanning trees in Figure 5.2(c), with weights w1 and w2, respectively.
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In conclusion, the TRW primal bounds Ψtrw({θT}, {wT}) can be interpreted as weighted

mini-bucket bounds with “over-split” covering graphs consisting of a forest of spanning trees,

with all replicates in a given tree sharing a single weight. However, a large number of span-

ning trees is often necessary to obtain tight bounds in practice, making it computationally

inefficient to use the TRW primal bound directly.

In addition, the TRW primal bound also requires optimizing the values of {θT} and {wT} to

get tight bounds. As described in Section 3.2.4, Wainwright et al. [2005] addressed both the

representation and optimization issues by instead using the TRW variational (dual) form,

min
{wT }

min
{θT }

Ψtrw({θT}, {wT}) = min
{ρij}

max
τ∈L

{
〈θ, τ 〉+

∑
i∈V

Hi(τi)−
∑

(ij)∈E

ρijIij(τij)
}

(5.8)

where {ρij :=
∑

T : (ij)∈ET w
T} are the edge appearance probabilities associated with {wT}.

This transforms the joint minimization over {θT} and {wT} into a minimax problem on

the marginals τ and {ρij}, whose dimensions do not depend on the number of spanning

trees. Wainwright et al. [2005] addressed the inner maximization over τ using a TRW belief

propagation (TRBP) algorithm, and optimized {ρij} using a conditional gradient descent

algorithm. One disadvantage of this approach is that each gradient step on {ρij} is required

to fully optimize τ (e.g., pass TRBP messages until convergence), making the search over

{ρij} relatively slow. For this reason, in practice implementations often use fixed, usually

randomly chosen, weights for TRBP in practice, limiting the power of the TRW bounds.

On the other hand, because our weighted mini-bucket bound Φ̄w(θ̄, w̄) is much more com-

pact and computationally efficient, we can instead directly minimize it jointly over (θ̄, w̄),

enabling more efficient algorithms, especially in terms of optimizing over the weights. In the

next section, we discuss optimization algorithms on θ̄ and w̄, for both positive and negative

weights. Then in Section 5.4 we discuss a similar dual form for Φ̄w(θ̄, w̄), which allows us

to compare the TRW bounds and weighted mini-bucket bounds in a more principled way.
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Remark. A similar connection can be drawn with our own negative tree reweighted (TRW)

BP [Liu and Ihler, 2010], which, by using a reverse Jensens inequality, shows that the same

tree reweighted form in (5.6) gives a lower bound on the log-partition function when the

weights {wT} take values in W−, that is, a single spanning tree takes a positive weight, and

all the other trees take negative weights. Obviously, the negative TRW bound can be viewed

as a “over-split” weighted mini-bucket bound with weights inW−, where a single positively-

weighted spanning tree (wT > 0) includes all the positive replicates of the weighted mini-

bucket. Negative tree reweighted BP uses a similar dual optimization to tighten (maximize)

the lower bound, and correspondingly has similar problems to standard TRBP.

5.3 Tightening Weighted Mini-Bucket Bounds

The sequential powered sum form Φ̄w(θ̄, w̄) in (5.5) characterizes the weighted mini-bucket

bound as an explicit function of the augmented natural parameter θ̄ and the weights w̄; it

is therefore possible to jointly optimize θ̄ and w̄ to get the tightest bounds. This section

derives efficient tightening algorithms.

We start with Section 5.3.1, framing the tightening problem for both minimizing the upper

bounds and maximizing the lower bounds: minimizing the upper bounds corresponds to a

convex optimization, while maximizing the lower bounds gives a challenging non-concave

optimization. In Section 5.3.2, we augment the weighted mini-bucket algorithm in Algo-

rithm 5.1 with an additional backward elimination that calculates the derivative Φ̄w(θ̄, w̄)

w.r.t. θ̄ and w̄, framed as an forward-backward message passing algorithm over the junc-

tion tree of the augment model (Algorithm 5.2). With the derivatives calculated, we can

in principle call any black box solver to optimize θ̄ and w̄; however, this may not be com-

putationally efficient because each derivative calculation requires a full forward-backward

sweep. This motivates us to derive a more efficient algorithm in Section 5.3.3 that updates
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θ̄ and w̄ more frequently, while passing messages. In particular, we show that the optimal θ̄

and w̄ should satisfy moment matching and entropy matching conditions, respectively, and

derive efficient fixed-point or gradient-based updates for θ̄ and w̄ that are inserted into the

forward-backward messaging passing updates.

5.3.1 Upper vs. Lower Bounds

To tighten our bounds, we can minimize the upper bound or maximize the lower bound:

Upper bound: min
θ̄,w̄

Φ̄w(θ̄, w̄) s.t. θ̄ ∈ Θ, w̄ ∈ W+
, (5.9)

Lower bound: max
θ̄,w̄

Φ̄w(θ̄, w̄) s.t. θ̄ ∈ Θ, w̄ ∈ W−, (5.10)

where Θ is the set of augmented natural parameters θ̄ = {θ̄ᾱ : ᾱ ∈ Ī} that are consistent

with the original model p(x) ∝ exp(
∑

α∈I θα(xα)) in that

Θ =
{
θ̄ :

∑
ᾱ∈Ī

θ̄ᾱ(x̄ᾱ) =
∑
α∈I

θα(xα), when x̄ir = xi, ∀i, r
}
.

The W+
and W− are precisely the sets of weights w̄ that make the Hölder’s and reverse

Hölder’s inequalities in Proposition 5.1 hold, respectively, that is,

W+
=
{
w̄ :

∑
r

w̄ir = 1, w̄ir ≥ 0, ∀i, r
}
,

W− = ∪W−[κ1···κn] where W−[κ1···κn] =
{
w̄ :

∑
r

w̄ir = 1, w̄iκi ≥ 0, w̄ir ≤ 0,∀r 6= κi

}
.

In other words, W+
requires all the weights to be positive, while W− requires exactly one

replicate for each node (or variable) to have positive weight, and is formed as the union of

W−[κ1···κn], indexed by the array [κ1 · · ·κn], in which the positive weight is assigned to the

κi-th replicate for node i.
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Because Φ̄w(θ̄, w̄) is a joint convex function of (θ̄, w̄) for w̄ ∈ W+
(see Theorem 4.1),

and both Θ and W+
are convex sets, minimizing of the upper bound (5.9) is a convex

optimization whose global optimum can be calculated efficiently. On the other hand, the

maximization of the lower bound (5.10) is not a concave optimization, and it is significantly

more challenging to find the global optimum. In particular, Φ̄w(θ̄, w̄) is not a concave

function for w̄ ∈ W−, and even more importantly, W− is a non-convex set that is very

difficult to search over: it is a union of a combinatorial number (
∏

iRi, where Ri is the

number of replicates of i) of disconnected subsets W−[κ1···κn], and finding the global optimum

is at least as difficult as solving the combinatorial optimization problem of finding the optimal

choice of positive replicates [κ∗1 · · ·κ∗n]. However, from a practical point of view, it may not

be wise to spend too much of our computational resources here: although intellectually

appealing to achieve the global optimum by searching among the possible subdomains, it

may be more effective to expend computational effort on improving other, more dominant

aspects of the approximation, such as the ibound.

5.3.2 Weighted Mini-Bucket as Forward-Backward Message Passing

To solve (5.9)-(5.10) efficiently, we need efficient algorithms to calculate Φ̄w(θ̄, w̄) and its

derivatives. Using the results in Theorem 4.1, we show that the derivatives of Φ̄w(θ̄, w̄)

w.r.t. θ̄ and w̄ correspond to the marginal probability and conditional entropy of a special

“weighted” distribution over x̄ constructed based on the augmented model p̄(x) ∝ exp(θ̄(x̄))

and the weights w̄. We then present a forward-backward message passing algorithm that

calculates Φ̄w(θ̄, w̄) via a forward pass identical to weighted mini-bucket in Algorithm 5.1,

and calculates the derivatives via an additional backward pass.

We use the results from Theorem 4.1, which we re-state here for convenience:

116



Theorem 5.1. (1). The derivatives of Φ̄w(θ̄, w̄) w.r.t. θ̄ and w̄ are

∂

∂θ̄ᾱ
Φ̄w(θ̄, w̄) = p̄w(x̄ᾱ), (5.11)

∂

∂w̄k
Φ̄w(θ̄, w̄) = Hw(x̄k|x̄k+1:n̄ ; p̄w), (5.12)

where p̄w(x̄ᾱ) and Hw(x̄k|x̄k+1:n̄ ; p̄w) are marginals and conditional entropies based on a

joint distribution p̄w(x̄), which is defined via a chain rule expansion as follows:

p̄w(x̄) =
n̄∏
k=1

p̄w(x̄k|x̄k+1:n̄; θ̄, w̄), p̄w(x̄k|x̄k+1:n̄) =
(Zi−1(x̄i:n̄ ; θ̄, w̄))1/w̄i

(Zi(x̄i+1:n̄ ; θ̄, w̄))1/w̄i
, (5.13)

where the Zi are partial powered sums up to x̄1:i,

Zi(x̄i+1:n̄ ; θ̄, w̄) =

w̄i∑
x̄i

· · ·
w̄1∑
x̄1

exp(
∑
ᾱ∈Ī

θ̄(x̄ᾱ)).

Note that we have
∑

x̄i
Z

1/w̄i
i−1 = Z

1/w̄i
i by recursion; this makes the conditional distribution

p̄w(x̄i|x̄i+1:n̄) properly normalized, that is,
∑

x̄i
p̄w(x̄i|x̄i+1:n̄) = 1.

(2). If all the elements of w̄ are positive, then Φ̄w(θ̄, w̄) is a convex function with respect to

θ̄ and w̄ jointly.

Proof. See Theorem 4.1.

Remark. The p̄w(x̄) in Theorem 5.1 should be distinguished from the augmented model

p̄(x̄): the augmented model p̄(x̄) is obtained directly by splitting variables within the mini-

bucket procedure (which is independent of the weights), while the distribution p̄w(x̄) is the

result of combining p̄(x̄) with the weights w̄.

Given the factorization form p̄(x̄) =
∏

ᾱ∈Ī ψ̄(x̄ᾱ), the calculation of p̄w(x̄) in (5.13) can

be organized in a forward-backward message-passing algorithm on the junction tree of
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p̄(x̄) obtained by triangulation along order [x̄11 , . . . , x̄1Ri , . . . , x̄nRn ]. This is shown in Algo-

rithm 5.2: the forward pass is exactly equivalent to weighted mini-bucket in Algorithm 5.1,

with Φ̄w(θ̄, w̄) equaling the WMB bound; the backward pass computes the marginals of

distribution p̄w(x̄). Since the induced width of p̄(x̄) is bounded by ibound, the complexity of

Algorithm 5.2 is O(n̄ exp(ibound + 1)). Note that the backward elimination described here

can also be applied to regular mini-bucket for an approximation to the marginal probabilities.

Using the values and derivatives as output from Algorithm 5.2, we could directly apply black-

box optimization routines to optimize the bound. This approach is particularly promising

for tightening the upper bounds with positive weights in (5.9), since it is a convex optimiza-

tion with simple constraint conditions. However, since Φ̄w is calculated using a relatively

expensive forward-backward message-passing algorithm, it seems most effective to update θ̄

and w̄ while computing messages. Note that the messages in Algorithm 5.2 converge after

one forward-backward propagation for fixed θ̄ and w̄, but updating θ̄ and w̄ can make the

messages “loopy”. This idea yields Algorithm 5.6, discussed in the next section. A sur-

prisingly powerful version of this message update framework is explored in our experiments

(Section 5.5), by non-iteratively optimizing “on the fly” during only a single forward pass.

5.3.3 Tightening via Moment and Entropy Matching

Using the derivative results in Theorem 5.1 and the KKT conditions with respect to the

constraints in Θ and W+
(or W−), we show that optimizing θ̄ corresponds to matching the

marginals of the replicates, while optimizing w̄ corresponds to matching their conditional

entropies; both conditions have the intuition of encouraging the replicates to behave simi-

larly. The notion of moment matching has been a well studied for variational methods [e.g.,

Wainwright et al., 2005], and is closely related to reparameterization [Wainwright et al.,

2003a]. However, entropy matching is less well known, and as we show in the experiments,

it can significantly improve the accuracy of the bounds, most noticeably the upper bound.
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Algorithm 5.2 Calculating the WMB bound, Φ̄w, and its derivatives (see Theorem 5.1)

Input: Augmented factors {ψ̄ck : ck ∈ Ī} and their junction tree Ḡ = (V̄ , Ē) as
output from Algorithm 3.5. A weight vector w̄ = [w̄1, . . . , w̄n]. Elimination order
ō = [11, . . . , 1R1 , . . . , n1, . . . , nRn ].

Output: Φ̄w and its derivative as per Theorem 5.1.

1. Forward: (for computing the value of Φ̄w, equivalent to WMB in Algorithm 5.1)

For k = 1 to n̄: mk→l(x̄cl) =
[∑

x̄k

(
ψ̄ck(x̄ck)

∏
j∈child(k)

mj→k(x̄ck)
)1/w̄k

]w̄k
, (5.14)

where l = paḠ(k) is the parent of ck in Ḡ along order ō, and child(k) := {k′ : k ∈ paḠ(k
′)}

is the set of its children.

2. Backward: (for computing the gradient of Φ̄w)

For k = n̄ to 1: ml→k(x̄ck) =
[ ∑
x̄cl/ck

[ψ̄cl(x̄cl)m∼l(x̄cl)]
1/w̄lmk→l(x̄cl)

−1/w̄k
]w̄k

, (5.15)

where l = paḠ(k) is the parent of ck and m∼l(x̄cl) :=
∏

j∈∂Ḡ(l) mj→l(x̄cl) is the product all

messages sent to cl from its neighborhood ∂Ḡ(l) = {l′ : (ll′) ∈ Ē}.
(Note that backward messages depend on the forward ones, but not vice versa.)

3. Return: The log weighted mini-bucket bound Φ̄w is calculated by

Φ̄w(θ̄, w̄) = log
∏

k:paḠ(k)=∅

w̄k∑
x̄k

ψ̄ckm∼k. (5.16)

The derivatives of Φ̄w are calculated by (5.11)-(5.12), with

p̄w(x̄ck) ∝
(
ψ̄ck(x̄ck)m∼k(x̄ck)

)1/wk . (5.17)

Optimizing θ̄ as Moment Matching

We consider the problem of minimizing the WMB upper bound over its parameterization,

minθ̄∈Θ Φ̄w(θ̄, w̄), with fixed weights w̄ > 0 in this section. Consider a node i ∈ V and its

replicates {ir}. For a given initial θ̄, we have the freedom to reallocate factors among the

replicates, as discussed in Section 3.1.2, such that the original model is unchanged – e.g.,

we can update θ̄ to θ̄ +
∑

r ϑir(x̄ir), where {ϑir(x̄ir)} is a set of factor on {x̄ir} satisfying
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Algorithm 5.3 Fixed-point update on θ̄ (or ψ̄ = exp(θ̄)) to tighten the WMB bound at
node i

1. Calculate marginals {p̄w(x̄ir) : r = 1, · · · , Ri} based on the messages in Algorithm 5.2,

p̄w(x̄ir) =
∑
x̄cir \ir

[
ψ̄cir (x̄cir ) m∼ir(x̄cri )

]1/w̄ir
2. Compute a weighted geometric average of the marginals,

pavg(xi) =
[∏

r

p̄w(x̄ir = xi)
w̄ir
]1/

∑
r w̄ir

3. Update ψ̄ (or equivalently, θ̄ = log ψ̄ ):

ψ̄cir (x̄cir )← ψ̄cir (x̄cir )
[pavg(x̄ir)
p̄w(x̄ir)

]w̄ir
(5.18)

∑
r ϑir(x̄ir = xi) = 0, for any r and xi. The problem of finding an optimal ϑ-update can be

framed as

min
ϑ

Φ̄w(θ̄ +
∑
r

ϑir , w̄), s.t.
∑
r

ϑir(x̄ir = xi) = 0, ∀xi ∈ Xi.

Using Theorem 5.1, one can show that the KKT condition of {ϑir} is

p̄w(x̄ir = xi) = λ(xi), for ∀r = 1, . . . , Ri, xi ∈ Xi (5.19)

where λ(xi) is the Lagrange multiplier for the constraint
∑

r ϑir(x̄ir = xi) = 0. This par-

allels the moment matching, or marginal matching condition in Wainwright et al. [2005].

Intuitively speaking, it implies that the marginals {p̄w(x̄ir)} of the replicates {x̄ir} should

be equal. Since the original “correct” model corresponds to forcing all the replicates {x̄ir}

to be equal, the moment matching condition can be viewed as a “relaxation” of this exact

equality, so that they are only equal in distribution. Note that satisfying (5.19) guarantees

global optimality for upper bounds with positive weights due to convexity; it is a necessary,

but usually not sufficient, condition for optimality in the non-convex, lower bound setting.
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Updating θ̄. In order to update θ̄ to achieve the moment matching condition (5.19), we

can use the fixed-point update given in Algorithm 5.3, where an “average” marginal pavg(xi)

is computed by taking the (weighted) geometric mean of marginals pavg(xi) of the replicates

{p̄w(x̄ir)}, and then adjusting θ̄ to correct for the difference between each p̄w(x̄ir = xi) and

the mean pavg(xi). It is easy to show that this update keeps θ̄ inside Θ, the set of augmented

models consistent with the original model, and that its fixed point satisfies the moment

matching condition (5.19).

Many other update choices are equally valid. For example, applying the projected gradient

algorithm to update θ̄ results in a particularly simple form:

θ̄cir (x̄cir )← θ̄cir (x̄cir ) + µ

[
p̄w(x̄ir)−

1

Ri

∑
r

p̄w(x̄ir)

]

where each θ̄cir is adjusted according to difference between p̄w(x̄ir) and their arithmetic mean;

the µ is the step size. Other types of optimization algorithms can also be used. For example,

applying second-order, Newton-like methods could be used to improve the convergence speed.

Remarks. (1). Most belief propagation based algorithms, including loopy BP and tree

reweighted BP, can be treated as reparameterizing the distribution to achieve some notion

of moment matching. For example, the tree reweighted BP message passing is derived to

solve the variational optimization over τ on the right side of (5.8), which is equivalent to

optimizing {θT} on its left side. In this sense, our updates to θ̄ are effectively message

passing for our framework; we revisit these connections in Section 5.3.3 and Section 5.4.

(2). In addition to sharing replicates of single variables xi, sometimes the different mini-

buckets may also share larger sets of replicated variables, for which θ̄ can also be reallocated

in the same way.
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Optimizing w̄ as Entropy Matching

We next consider the problem of optimizing the weights w̄, with fixed augmented model

parameter θ̄. By the KKT conditions and Theorem 5.1, we can show that the optimal

weights w̄, for both the upper and lower bounds in (5.9)-(5.10), should satisfy an entropy

matching condition:

w̄ir(Hir|≺ −Hi|≺) = 0, ∀ir ∈ V̄ , (5.20)

where Hir|≺ = H(x̄ir |x̄πir ; p̄w) is the conditional entropy of the rth replicate, as per (5.12),

and Hi|≺ =
∑

r w̄irHir|≺ is the (weighted) average conditional entropy over the replicates.

Thus at a stationary point, either the weight w̄ir is zero, or the replicate’s conditional entropy

equals the average. See Appendix A.1 for the proof. Although the entropy matching con-

dition applies in both cases, the sets W+
and W− associated with upper and lower bounds

are very different, and thus their update algorithms should be considered separately.

Updating Positive Weights. To update {w̄ir} in W+
, one straightforward approach is

to transform the optimization to an unconstrained problem by representing the weights as

w̄ir = exp(uir)/
∑

r exp(uir), for uir ∈ R. The gradient of Φ̄w with respect to the transformed

weights uri is

∂Φ̄w

∂uir
= w̄ir(Hir|≺ −Hi|≺).

Taking a gradient step on uir and updating w̄ir correspondingly yields the log-gradient

algorithm given in Algorithm 5.4. This update ensures that the weights w̄ remain in W+,

and its fixed point satisfies the KKT condition (5.20).

As with θ̄, other optimization methods of w̄ are equally valid. For example, we can derive

a conditional gradient update as,

r∗ = arg min
r

Hir|≺, w̄ir → w̄ir + µ(1[r = r∗]− w̄ir),
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Algorithm 5.4 Log-gradient update of weights w̄i = {w̄ir} at node i for minimizing the
WMB upper bound

1. Compute the conditional entropy Hir|≺ = H(x̄ir |x̄paḠ(ir) ; p̄w), for all replicates r ∈
1, . . . , Ri based on the marginals {p̄w(x̄cir )} calculated from Algorithm 5.2.

2. Update weights:

w̄ir ← w̄ir exp
[
−µ w̄ir

(
Hir|≺ −

∑
r

w̄irHir|≺

)
], ∀r = 1, . . . , Ri,

w̄ir ← w̄ir/
∑

rw̄ir , ∀r = 1, . . . , Ri.

(5.21)

where µ is a step size.

where δ[·] is the indicator function, and µ is a step size, which is required to satisfy 0 < µ < 1

in this case. Note that this update simply finds the replicate with lowest conditional entropy,

and increases its weight by an amount specified by the step size. In Section 5.4, we elaborate

on the close connection between our WMB bound and tree-reweighted belief propagation;

this conditional gradient update is roughly analagous to the weight update for TRBP given

in Wainwright et al. [2005]. However, in our experiments we use the log-gradient update, as

it appeared to converge better than the conditional gradient method.

Updating Negative Weights. Updating the weights inW− is considerably more challeng-

ing, mainly due to the difficulty of selecting the choice of positive replicates; this is essentially

equivalent to jumping between the various disconnected subdomains that comprise W−.

However, it is possible to find local optima when the positive replicate is fixed. Assume κi is

the unique replicate of i that is assigned to have a positive weight (w̄iκi ≥ 0). Let us apply

the transformation of variables, w̄ir = exp(uir) for r 6= κi and w̄iκi = 1 −
∑

r 6=κi w̄ir , where

uir ∈ R. Taking a gradient step on uir and updating the original weights w̄ir correspondingly,

we get the log-gradient update shown in Algorithm 5.5, which is analogous to Algorithm 5.4

for optimizing the upper bound.

To decide which replicate should be assigned positive weight, we can run the local search

algorithm for each possible choice of κi, and then select the best one. Note that this corre-
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Algorithm 5.5 Log-gradient update of weights w̄i = {w̄ir} at node i for maximizing the
WMB lower bound (with the unique positive replicate fixed to be iκi)

1. Compute the conditional entropy Hir|≺ = H(x̄ir |x̄paḠ(ir) ; p̄w) for all replicates ir, based
on the marginals {p̄w(x̄cir )} calculated from Algorithm 5.2.

2. Update weights:

w̄ir ← w̄ir exp
(
ε w̄ir(Hir|≺ −Hiκi |≺)

)
, for all r 6= κi

w̄iκi ← 1−
∑

r 6=κiw̄ir .
(5.22)

where ε is a step size.

sponds to a greedy update on κi, keeping the positive weight choice {κi′ : i′ 6= i} of the other

nodes fixed.

Putting it All Together

The updates of θ̄ and w̄ can be inserted into the forward-backward calculations in Algo-

rithm 5.2 in different ways, leading to different optimization algorithms; Algorithm 5.6 out-

lines a general framework, with two significant variants depending on whether the backward

messages are pre-updated or not. Note that the value of the backward messages mpaḠ(ir)→ir

depend on the current forward messages mir→paḠ(ir) as well as the subsequent backward mes-

sages (see (5.15)), all of which become invalid when the earlier forward messages are updated.

To make the backward messages mpaḠ(ir)→ir valid again, one needs to update mir→paḠ(ir) as

well as all forward, and then backward, messages on the entire graph below {x̄ri}; in general,

this is computationally expensive and impractical, and the old message values are simply

used anyway. The optional step of Algorithm 5.6 implements an approximate version of

this sweep, which pre-updates mir→paḠ(ir) and then immediately mpaḠ(ir)→ir , but temporarily

ignores any additional changes in messages in the lower part of the graph. Note that in

contrast, it is always unnecessary to pre-update the forward messages, because the value

of forward messages does not depend on the backward messages, as shown in (5.14). See

Figure 5.3 for an illustration of the various updates.
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Algorithm 5.6 Tightening the weighted mini-bucket bound Φ̄w

Input: The original graphical model p(x) ∝
∏

α∈I ψα(xα); the clique set Ī = {cir} of an
augmented model p̄w(x̄) and its junction tree Ḡ = (V̄ , Ē) as outputted from Algorithm 3.4.
Output: An optimal θ̄ and w̄, and the weighted mini-bucket bound Φ̄w(θ̄, w̄).

Initialize θ̄, w̄ and messages {mi→j}.
repeat

for i← 1 to n do
pre-update backward messages (optional):
update mir→paḠ(ir) and then mpaḠ(ir)→ir by (5.14)-(5.15) for all replicates ir of i.
Reallocate / reweight:
Update θ̄ and/or w̄ by the fixed point step in Algorithm 5.3, the log-gradient step in
Algorithm 5.4 or 5.5, or other methods.
Update forward messages:
Update mir→paḠ(ir) by (5.14) for all replicates ir of i.

end for
Calculate the bound Φ̄w by (5.16).
for i← n to 1 do

Reallocate / reweight:
Update θ̄ and/or w̄ by the fixed point step in Algorithm 5.3, the log-gradient step in
Algorithm 5.4 or 5.5, or other methods.
Update backward messages:
Update mpaḠ(ir)→ir by (5.15) for all replicates of i.

end for
until stopping criterion satisfied.

Remarks. (1). As we discussed earlier, the update on θ̄ is closely related to the message

updates in TRBP. In fact, we can show that for pairwise models, Algorithm 5.6 with only θ̄-

updates (without the reweighting and the optional pre-update) corresponds to the sequential

schedule of TRBP [Wainwright et al., 2005] (to see this, substitute (5.18) into (5.14) and

(5.15), and cancel ψ̄ck). However, with the optional pre-update step, or the weight updates,

it is not equivalent to existing algorithms. In practice, we find that the pre-update step

can sometimes help convergence, but not always. See Section 5.4 for more discussion on the

connection to TRBP.

(2). Similarly, our update to the weights w̄ corresponds to the optimization of the tree

weights and the edge appearance probabilities in TRBP. However, TRBP optimizes their
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Figure 5.3: Illustrating Algorithm 5.6. The updates of θ̄ and w̄ depend on both the forward
and backward incoming messages ( 1 and 2 ). The backward messages 2 depend on the
current forward messages 3 as well as the subsequent backward messages (not shown in
the picture), all of which depend on the earlier forward messages 1 . Therefore, in the
forward phase, both 2 and 3 become outdated due to the update on 1 . To make 2

become valid again, one needs to pre-update 3 as well as all the forward and then backward
messages on entire graph below {x̄ri}. Since this is impractically expensive, the optional step
of Algorithm 5.6 implements an approximate version of this process by only pre-updating
mir→paḠ(ir) and then immediately mpaḠ(ir)→ir , ignoring all the messages in the lower part of
the graph. On the other hand, since the forward messages do not depend on the backward
messages, a similar pre-update would not have any effect in the backward phase.

weights on the dual objective, and uses a double-loop weight optimization algorithm that

is required to fully optimize θ̄ before taking a gradient update on their weights (because

the gradient is correct only when θ̄ is fully optimized). Our algorithm has the significant

advantage that we can simultaneously update w̄ and θ̄ by directly optimizing the bound

Φ̄w(θ̄, w̄), which is a jointly convex function on (θ̄, w̄). This greatly enhances our ability to

search for better weights, which as we show in our experiments can be surprisingly important.

(3). Standard mini-bucket can be viewed as a special case of our framework, which takes

weights only on the vertices ofW+
andW−. In this case, selecting weights corresponds to the

combinatorial problem of selecting a single replicate (or mini-bucket) for each node on which

the sum operator (w = 1) will be applied in (3.7). This perspective has different implications

for upper bounds versus lower bounds due to the convexity/non-convexity dichotomy:

1. For minimizing upper bounds, relaxing to continuous weights makes the selection sim-

pler, more accurate, and efficient due to the convexity of the weight optimization.
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Although finding the combinatorial solution may be challenging, optimizing over the

continuous weights is relatively simple, and must be at least as good as any vertex.

2. In contrast, for lower bounds, using continuous weights may still give more accuracy,

but may increase the computational difficulty to some extent: it imposes an additional

local optimization problem inside each subdomain (corresponding to the unique repli-

cate eliminated by sum in regular MBE) in order to evaluate each discrete choice.

Although we can obtain a better solution within a fixed subdomain using the negative

weight updates in Algorithm 5.5, selecting the best subdomain remains combinato-

rial and difficult. It remains an open direction to derive more efficient methods here,

possibly by incoporating our entropy matching condition into the search heuristic.

Choosing the Covering Structure

The tightness of the bound also depends on the structure of the covering graph (that is,

the clique set Ī of the augmented model p̄(x̄)), which stems from the bucket partitioning

strategy and elimination order by following Algorithm 3.4. These elements are difficult to

optimize, although some heuristics exist [e.g., Rollon and Dechter, 2010]. In this work, we

use the simplest scope-based heuristic [Dechter and Rish, 2003], which greedily attempts to

minimize the number of splits (replicates) that are required.

For completeness, we introduce the method briefly. We first sort the factors in decreasing

order of their number of variables and set the mini-buckets to be empty. Then, for each

factor, we either put it into an existing mini-bucket if the ibound is not violated, or put it

into a new empty mini-bucket. To increase the degrees of freedom of θ̄ over which we can

optimize, we also add a refill phase at the end, which goes through each factor and each

mini-bucket other than the one to which it is assigned, and increases the scope of the mini-

bucket by the factor’s domain (as if the factor had also been added to that mini-bucket) if

doing so does not violate the ibound.

127



5.4 Duality and Connection to TRBP

For positive weights w̄ > 0, Theorem 4.1 gives a variational representation for the weighted

mini-bucket bound Φ̄w(θ̄, w̄). This allows us to draw a connection to convex variational

methods such as tree-reweighted BP and conditional entropy decomposition.

To set up, let Ḡ be the junction tree of p̄(x̄) constructed by triangulating along order

[x̄11 , . . . , x̄1R1 , · · · , x̄nRn ]; note that the clusters of Ḡ should equal Ī = {cir} as obtained

from Algorithm 3.4. Let Γ be the mapping from the replicates to their corresponding orig-

inal nodes, that is, Γ(ir) = i for ∀ir. Then we can obtain a junction graph G := Γ(Ḡ) on

the original model p(x), by applying Γ on the clusters and separators of Ḡ and connecting

the clusters associated with different replicates with proper separators so that the running

intersection property is satisfied – In Mateescu et al. [2010], this is done by connecting the

clusters of different replicates of xi with separators that consist of just xi, and form a chain

or tree structure2. Note that while Ḡ is a junction tree on the augmented graph, this will

generally result in a loopy junction graph G over the original variables. Let L(Ḡ) and L(G)

be the locally consistent polytopes on Ḡ and G, respectively. The following Theorem is a

direct result of Theorem 4.1.

Theorem 5.2. (1). For fixed w̄ > 0, Φ̄w(θ̄, w̄) as a convex function of θ̄ has dual represen-

tation,

Φ̄w(θ̄, w̄) = max
τ̄∈L(Ḡ)

{
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄ )
}
, (5.23)

where Hw(x̄k|x̄ck\{k} ; τ̄ ) is the conditional entropy under τ̄ . The maximum is obtained iff

τ̄(x̄) = p̄w(x̄|θ̄, w̄).

2Because the clusters of different replicates of xi may have overlapping variables other than xi, the
separators defined here may be only a subset of the intersections of the clusters, slightly generalizing the
definition of junction graphs given in Section 3.1.3; see Mateescu et al. [2010] for more details.

128



(2). For fixed w̄ > 0, we have

min
θ̄∈Θ

Φ̄w(θ̄, w̄) = max
τ∈L(G)

{
〈τ ,θ〉+

n̄∑
k=1

w̄kH(xΓ(k)|xΓ(ck\{k}), τ )
}
. (5.24)

i.e., the optimal choice of θ̄ has a dual form representable in terms of the polytope, marginals,

and conditional entropies defined on the cliques of the junction graph G.

Proof (sketch). (1) is a direct result of Theorem 4.1(1) when applied on p̄(x̄). For (2), we

use the result of (1),

min
θ̄∈Θ

Φ̄w(θ̄, w̄) = min
θ̄∈Θ

max
τ̄∈L(Ḡ)

{
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄ )
}

= max
τ̄∈L(Ḡ)

min
θ̄∈Θ

{
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄ )
}
.

where the max and min commute due to strong duality. The result (5.24) then follows by

solving the inner minimization on θ̄ (which is linear program). See Appendix A.2 for the

detailed proof.

Note that L(Ḡ) is the locally consistent polytope over the replicated variables x̄, while L(G)

is over the original variables x. Theorem 5.2(2) gives a dual approach for finding the θ̄-

optimal bound. It has the form of a weighted sum of conditional entropies, and as we

show in the sequel, it is equivalent to conditional entropy decomposition (CED) with certain

CED-subgraphs that are all consistent with the same elimination order o; furthermore, if

these conditional entropies are consistent with some hyper-tree order (which is always true

for ibound = 1), it will also be a form of generalized TRBP. This suggests that the θ̄-

optimal bound in (5.24) is a restricted form of CED. However, just as CED uses a weighted

combination of CED-subgraphs, we could similarly elect to use a weighted combination of

more than one covering tree to achieve as tight a bound as CED. In this work, however, we
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focus on the expressive power of a single covering tree, which enables a simple and efficient

primal bound as well as the use of existing heuristics for clique choice. See the next Section

for more discussion on the connection between CED and WMB.

5.4.1 Covering Trees vs. Spanning Trees

Although the θ̄-optimal bound in (5.24) is equivalent to that of generalized TRBP or CED,

WMB has significant practical advantages. First, it gives a concise and novel primal bound.

Note that the primal form of TRBP is intractable unless the number of spanning trees is

small. In the general CED, the CED-subgraphs corresponds to the spanning trees of TRBP,

so CED is also intractable unless the number of CED-subgraphs is small; Globerson and

Jaakkola [2007a] derived a primal form of CED based on geometric programming, but it is

generally computationally infeasible. In contrast, WMB is able to use only a few parameters

to capture the equivalent of a large collection of spanning trees or CED-subgraphs.

Let Bwmb(o) be the set of θ̄-optimal bounds as shown in Theorem 5.2(2) by an arbitrary

covering structure and weights w̄ with elimination order o, and Bced(o) be the set of CED

bounds with arbitrary CED-subgraphs and arbitrary weights all assigned with elimination

order o. The following theorem clarifies the equivalence between WMB and CED.

Theorem 5.3. Bwmb(o) = Bced(o), that is, the set of weighted mini-bucket θ̄-optimal bounds

with elimination order o is equivalent to the set of CED bounds with all CED-subgraphs

assigned with elimination order o.

Proof. Simply compare the WMB dual form (5.24) and the CED bound (3.42).

We illustrate Theorem 5.3 with a simple example in Figure 5.4. For a 3×3 grid, the covering

tree in panel (c) gives a bound equivalent to that of the collection of 16 spanning trees in

panel (d). In general the covering tree can have many fewer degrees of freedom than its
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Figure 5.4: Covering trees vs. spanning trees. (a) A 3 × 3 grid. (b) A covering tree
(ibound = 1). (c) The set of spanning trees that is equivalent to the covering tree in (b); a
single covering tree can have the same representational power as a large collection of spanning
trees (here, 16).

corresponding collection of trees or orders, e.g., the weights on the covering tree have only 4

degrees of freedom, while the weights on the spanning trees have 15 degrees of freedom.

Not only is the covering graph representation more efficient, it also improves the pre-

convergence bound quality. In particular, the “extra” degrees of freedom in TRBP/CED

can only loosen the bound; their removal corresponds to enforcing that they take on optimal

values. These advantages improve our ability to represent and optimize a primal form of the

bound with many spanning trees. Additionally, advantages over the dual form include (1)

easily optimizing w̄ (since in TRBP, the gradient is technically valid only at convergence),

(2) the ability to flexibly balance optimizing θ̄, w̄, or increasing the ibound, and (3) providing

a valid bound at any point, i.e., an any-time property.

5.5 Experiments

We tested our weighted mini-bucket approach using both positive or negative weights on

synthetic Ising model networks, and on a number of real-world linkage analysis models from

the UAI’08 competition to show its effectiveness compared to standard TRBP, mini-bucket

and mean field.
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Figure 5.5: Upper bound results on 10× 10 Ising model with mixed interactions. (a) Mini-
bucket is often worse than TRBP unless a high ibound is used, but (b),(c) weighted mini-
bucket is often better even with only a single, forward pass. (d) Fully optimized WMB is
slightly looser than TRBP for ibound = 1, but quickly surpasses TRBP as ibound increases.
See also Figure 5.7.

Ising models. We generated random 10× 10 Ising models (binary pairwise grids),

p(x|θ) = exp
[∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj − Φ(θ)
]
,

where xi ∈ {−1, 1} and we draw θi ∼ N (0, 0.1), θij ∼ N (0, σ), while varying the strength

σ ∈ [0, 2]. This distribution of parameter values gives rise to “mixed” interactions; the

relative performance of the various methods on purely-attractive models (θij positive) was

similar and has been omitted.
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Figure 5.6: Lower bound results on 10× 10 Ising model with mixed interactions. (a) Mini-
bucket is often worse than the näıve mean field, and (c) optimizing weights seems does not
help significantly in this case. But (b) optimizing θ greatly improves the bound within the
first 5 iterations. (d) Fully optimized WMB outperforms näıve mean field in all the cases.
See also Figure 5.7.

For WMB with either positive or negative weights, we use the column-first elimination order

on the variables and scope-based heuristic for splitting as described in Section 5.3.3. The

parameterization θ̄ is initialized by splitting θ across replicates according to θir = wirθi; this

guarantees that
∑

r θir = θi since
∑

r wir = 1. For the upper bound we initialize the positive

weights uniformly. For the lower bound, we assign the first replicate to have positive weight

w+ = 1 + β where β = 10, and all other replicates are assigned uniform negative weights,

i.e., wir = (1−w+)/(Ri− 1). All the messages are initialized uniformly in both positive and

negative settings.
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Figure 5.5 shows several curves comparing the upper bound quality as σ is varied in [0, 2]. In

each plot, TRBP-∞ represents TRBP when the weights are fully optimized using conditional

gradient (this corresponds to the best possible bound with tree-width 1). The first panel

shows the bound found by näıve mini-bucket (MBE) for various ibounds. We then show our

proposed WMB bound when either θ̄ or w̄ is modified during a single forward pass (so that

the estimate has the same computational complexity as mini-bucket), and when the bound

is fully optimized. Figure 5.6 shows similar curves for the lower bound qualities of WMB and

näıve mean field. Figure 5.7 (a) and (b) respectively show a calibrated timing comparison

on a single example (with σ = 0.6) for positive and negative weights, in which one unit of

time equals a full iteration of TRBP or näıve mean field, or a single forward-backward pass

of WMB. We use a gradient step on the edge appearance probability at each iteration of

TRBP (with step size .1) to find the optimal bound.

With positive weights, the näıve mini-bucket bound is generally worse than TRBP-∞, unless

used with a relatively large ibound (e.g., 8). In contrast, WBM with θ̄ or w̄ updated using

only one iteration performs almost or equally as well as TRBP-∞ using only ibound = 2.

Perhaps surprisingly, within this problem setting we found that optimizing w̄ consistently

gave tighter bounds than optimizing θ̄. Although this is not always true for other models

or lower bound settings (as we will show later), it does highlight the potential benefit of

updating the weights. However, most implementations of TRBP [e.g., Mooij, 2010, Schmidt,

2007] do not include weight optimization even for pairwise models, and it becomes even more

difficult for larger clique sizes.

The story for negative weights is quite different here. First, the basic mini-bucket method

outperforms näıve mean field for small interaction strength σp, but gets significantly worse as

σp increases. For our weighted mini-bucket bound, we find that updating θ̄ or w̄ for only one

iteration (as we did with positive weights) does not give impressive performance. However,

the bounds are significantly improved when θ̄ is updated for five iterations. Interestingly,
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Figure 5.7: Calibrated timing comparison on a single grid. Colors indicate increasing ibound,
and symbols indicate update strategies (θ, w, or both); for example, see also Figure 5.5. One
unit of time corresponds to a full iteration of TRBP or mean field (plus a weight update
step for TRBP), or a single forward-backward pass of WMB with ibound = 1; trajectories
indicate the current tightest bounds. In this instance, WMB with w-steps out-performs
θ-steps for the upper bound (a), while exactly the opposite is true for the lower bound (b).
Optimizing both θ&w is usually best. The largest gain comes from increasing the ibound,
e.g., for the upper bound, WMB2-θ&w is better than TRBP-∞ in its first iteration.

updating w̄ in this case seems to not contribute greatly to the quality of the lower bound, the

opposite situation to the positive weights setting. This could be because we do not search for

the optimal set of positive replicates. When both θ̄ and w̄ are updated to convergence (or

after a maximum of 50 iterations), our WMB bound significantly outperforms näıve mean

field, even with ibound = 1.

Additionally, the most benefit occurred within the first few iterations of WMB, suggesting

that running message-passing to convergence may be wasteful. It appears better to extract a

primal WMB bound early, then increase ibound if possible. This shows the advantage of the

primal bound’s any-time property: the algorithm can stop prior to convergence and return

a valid bound.

Linkage analysis. We also compared our algorithm to standard mini-bucket on models

for pedigree linkage analysis from the UAI’08 approximate inference challenge. The models
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Figure 5.8: Weighted mini-bucket bounds on linkage analysis networks. (a)-(b) We show the
upper bound error relative to the tightest upper bound found on 10 problems at two different
ibounds, for mini-bucket and four single-pass WMB estimates: uniform (no updates), w or
θ only, and both. All four consistently outperform standard mini-bucket. (c) A typical
instance, showing upper bound quality as ibound is increased. (d)-(f) show the corresponding
plots for computing lower bounds, except that the WMB variants use 5 iterations rather than
a single pass.

have ∼300-1000 nodes, with induced width of ∼20-30. For computing upper bounds, we

compare MBE to WMB with only one forward elimination, giving both methods equal time

complexity and varying ibound ∈ [4 . . . 15]. For computing lower bounds, we again find

that running WMB for a few more iterations gives significant improvements compared to

the first iteration, so we show WMB after 5 iterations. The implementation of MBE follows

Rollon and Dechter [2010], which used advanced heuristics for bucket partitioning; our WMB

continued to use näıve scope-based heuristics (see section 5.3.3).
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Figure 5.8 shows that all versions of WMB significantly outperform standard mini-bucket.

Even WMB-uniform, which performs no updates to θ̄ or w̄, outperforms standard MBE (for

WMB-uniform we use uniform initial weights w̄ and a uniform allocation of θ̄ obtained by

splitting each factor in the original θ uniformly). Unlike in the Ising model experiments,

here we find that WMB-w is not consistently better than WMB-θ.

5.6 Conclusions and Future Directions

We presented a weighted mini-bucket algorithm that unifies and extends elimination-based

methods such as mini-bucket and variational approaches including tree-reweighted BP, neg-

ative tree-reweighed BP and conditional entropy decomposition. Our algorithm inherits

significant benefits from both views: it is able to produce a bound at any point (often a few

or even one iteration is sufficient); it compactly represents and can optimize over a large class

of TRBP bounds; it can easily improve its bounds with either iterations or by increasing

clique size; and it provides a unified method for calculating both upper and lower bounds.

We also showed extensive experiments that demonstrate the flexibility of WMB for trading

off increased clique sizes and iterative updates to obtain tight bounds in both the upper

and lower bound settings. Interestingly, while most existing variational methods focus on

the notion of reparameterization, corresponding to the update of θ̄ and enforcement of mo-

ment matching in our method, we show that optimization of the weights, and enforcement

of the entropy matching condition, may dramatically improve the accuracy of the method,

particularly when computing upper bounds.

Future Directions. The WMB framework and algorithms open many potential directions.

For example, our resulting bounds depend strongly on both the elimination ordering and

the bucket partitioning policy, making it an important problem to develop more advanced

heuristics for selecting both. In the case of computing lower bounds using negative weights,
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it is likely important to develop efficient algorithms to select the best subdomains W−[κ1···κn]

(i.e., the set of positive replicates); a similar issue arises in negative TRBP, for which Liu and

Ihler [2010] proposed a selection heuristic that may be useful here. Additionally, the choices

of weights that belong neither to W+
nor W− do not provide upper or lower bounds, but

may still be able to provide accurate approximations; an interesting problem is to consider

how to select among these weights to yield accurate estimates. Another interesting problem

is whether one can construct a better approximation given a (properly constructed) pair of

upper and lower bounds (e.g., one simple strategy could be to average the upper and lower

bounds in order to get a better approximation).

Algorithmic improvements are also possible. Our fixed point update on θ̄ is fast and does

not require any step size tuning, unlike gradient based updates. However, the fixed point

update is not guaranteed to converge. It would be interesting to construct a convergent

fixed-point variant. In addition, we only provided a gradient based update on the weight

w̄; deriving similar fixed point updates on w̄ is less straightforward, but comprises another

interesting open direction.

Finally, our techniques can be conveniently applied to the problem of learning graphical

models from data, and in particular for trading off bias and variance effects; see, e.g., Gelfand

et al. [2013] for a recent discussion.
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Chapter 6

Variational Message Passing For

Marginal MAP

It is relatively straightforward to extend most variable elimination-based methods, such as

bucket or weighted mini-bucket elimination, to solve marginal MAP problems. However,

extending variational approaches to this setting is less obvious and has not been previously

studied; these extensions are enabled by the novel mixed-inference variational forms we

developed in Chapter 4. In this chapter, we leverage the variational form of marginal MAP

given in Corollary 4.1, and develop a spectrum of efficient message passing algorithms that

both admit appealing theoretical properties and perform well in practice. Compared to

variable elimination-based methods, our variational viewpoint allows us to define flexible

approximation schemes to derive and analyze novel analogues of loopy BP and mean field

like methods for marginal MAP, and to leverage the set of advanced approximation and

optimization techniques that have been developed for variational inference over the years

[e.g., Wainwright and Jordan, 2008].

In particular, we extend the Bethe and tree reweighted (TRW) entropy approximations and

derive a novel “mixed-product” belief propagation (BP) that is a hybrid of max-product,

sum-product, and special “argmax-product” message updates. We also derive a class of con-

vergent algorithms based on the proximal point method, which have the form of iteratively
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solving pure (or annealed) marginalization tasks. In addition, we discuss theoretical condi-

tions under which our mixed-product BP algorithms obtain both global and local optimality

guarantees. More general algorithms based on junction graph and factor graph represen-

tations are also derived to exploit higher order cliques. We further discuss the application

of mean field type approximations to our variational form, highlighting their connection to

expectation-maximization (EM). Our numerical experiments show that our methods can

provide significantly better solutions than existing algorithms, including a similar hybrid

message passing algorithm by Jiang et al. [2011] and a state-of-the-art algorithm based on

local search methods.

This chapter is organized as follows. Section 6.1 reviews the definition and variational repre-

sentation of marginal MAP, and studies its properties on what we term A-B trees, on which

the pairwise entropy approximation is exact. We propose analogues of the Bethe and tree-

reweighted approximations for marginal MAP in Section 6.2. A class of “mixed-product”

message passing algorithms is proposed and analyzed in Section 6.3, and in Section 6.4 con-

vergent alternatives are proposed based on proximal point methods. We then discuss the

EM algorithm for marginal MAP and show that it corresponds to a mean-field-like approx-

imation within our variational representation. We provide extensions of our algorithms to

factor graphs and to junction graphs in Section 6.6 and Section 6.7, respectively. We discuss

some related work in Section 6.8 and present numerical results in Section 6.9. Finally, the

conclusion and future directions are discussed in Section 6.10. Some proofs and additional

information can be found in Appendix B.

6.1 Background

We start by reviewing some background and stating several important definitions and results.

For notational simplicity, in most of the chapter we will focus our discussion on pairwise
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Markov random field models, that is,

p(x) = exp(θ(x)− Φ(θ)), where θ(x) =
∑
i

θi(xi) +
∑

(ij)∈E

θij(xi, xj), (6.1)

where G := (V,E) is the associated Markov graph. More general models with higher order

factors will be discussed in Section 6.6 and Section 6.71. In parallel, we will also make use

of the multiplicative factorization form,

p(x) =
1

Z

∏
i∈V

ψi(xi)
∏

(ij)∈E

ψij(xi, xj), (6.2)

where

ψi(xi) = exp(θi(xi)), ψij(xi, xj) = exp(θij(xi, xj)), Z = exp(Φ(θ))

are the singleton and pairwise factors, and partition function, respectively.

Let A be a subset of the nodes V , and B = V \ A be the complement of A. The marginal

MAP problem seeks a partial configuration x∗B that maximizes its marginal probability

p(xB) =
∑
xA
p(x). Formulated in terms of the exponential family form, we have

ΦAB(θ) = max
xB

Q(xB ; θ), where Q(xB ; θ) = log
∑
xA

exp[θ(x)],

where the maximizing configuration x∗B of Q(xB ; θ) is called the marginal MAP solution.

Corollary 4.1 provides an equivalent variational representation for ΦAB,

ΦAB(θ) = max
τ∈M

{
〈τ ,θ〉+H(xA|xB; τ )

}
, (6.3)

where M is the marginal polytope – the set of marginals τ = {τ i, τ ij : i ∈ V, (ij) ∈ E} which

1In addition, any higher-order model can be transformed into a pairwise model [e.g., Wainwright and
Jordan, 2008].
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correspond to some valid joint distribution on x. The methods we develop in this chapter

are all based on approximating this variational form.

The variational form (6.3) is proven in Corollary 4.1 using the more general variational form

of sequential powered sums in Theorem 4.1. Here, we also give a direct, independent proof.

Direct Proof of (6.3). For any τ ∈ M and its corresponding joint distribution τ(x), the

conditional KL divergence between τ(xA|xB) and p(xA|xB;θ) := exp(θ(x))/
∑
xA

exp(θ(x))

is written as

KL(τ (xA|xB) || p(xA|xB)) =
∑
x

τ(x) log
τ(xA|xB)

p(xA|xB ; θ)

= −H(xA|xB ; τ )− Eτ [log p(xA|xB ; θ)]

= −H(xA|xB ; τ )− Eτ [θ(x)] + Eτ [log
∑
xA

exp(θ(x))] ≥ 0,

where the last inequality follows from the non-negativity of KL divergence, and is tight if

and only if τ(xA|xB) = p(xA|xB ; θ). Therefore, we have for any τ(x),

log max
xB

∑
xA

exp(θ(x)) ≥ Eτ
[∑
xA

exp(θ(x))
]
≥ Eτ [θ(x)] +H(xA|xB ; τ ).

It is easy to show that the two inequality signs are tight if and only if τ(x) equals τ ∗(x) =

p(xA|xB;θ) · 1[xB ∈ arg maxxB
∑
xA

exp(x)]. Substituting Eτ [θ(x)] = 〈θ, τ 〉 completes the

proof of (6.3).

6.1.1 A-B Tree

Although either max-inference or sum-inference can be solved with computational complexity

that grows linearly in the number of variables for tree-structured graphs, the marginal MAP

can in general be NP-hard on trees. The difficulty arises because the max and sum operators
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(a). A = {1,2} B = {3,4} (b). A = {1,2}, B = {3,4}

Figure 6.1: Examples of AB-trees. (a) is an A-B tree, but (b) is not. Note that they have
the same graph structure, but different A, B nodes.

Figure 6.2: Illustrating the structure of A-B trees (in Proposition 6.1). Each connected
component of GA (shaded nodes) can connect with at most one edge in ∂AB (green lines).

do not commute, which restricts the feasible elimination orders to those in which all the sum

nodes are eliminated before any max nodes (see Figure 3.2 for an illustration). However, it

is useful to characterize a more restrictive set of structural constraints that will ensure that

marginal MAP remains tractable; to this end we define the concept of A-B trees.

Definition 6.1. We call G an A-B tree if its A-B induced width ωAB equals one, that is,

there exists a tree order on G (in which each node has at most one parent), such that all the

nodes in A rank earlier than the nodes in B. We call this tree order an A-B tree-order of

G. See Figure 6.1 for illustrative examples.

For further notation, let GA = (A,EA) be the subgraph induced by nodes in A, i.e., EA =

{(ij) ∈ E : i ∈ A, j ∈ A}, and similarly for GB = (B,EB). Let ∂AB = {(ij) ∈ E : i ∈ A, j ∈

B} be the crossing edges that join the sets A and B.
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Structure of A-B trees. Obviously, if G is an A-B tree, then both GA and GB should be

trees; in addition, GA and GB should be connected by a set of crossing edges ∂AB satisfying

certain constraints, as characterized in the following:

Proposition 6.1. If G is an A-B tree, then both GA and GB are trees. In addition,

(1). Any two edges of in ∂AB can not be connected by edges or nodes of T in the sum part

GA. That is, each connected component of the sum part GA can connect to at most one edge

in ∂AB.

(2). Conversely, any trees GA, GB and ∂AB satisfying (1) above form an A-B tree.

Proof. These results are straightforward, ensuring existence of a summation-first tree order.

For a pictorial illustration, see Figure 6.2.

This suggests a constructive process for generating A-B trees – taking any two trees GA and

GB, and then connecting each connected component of GA to at most one node in GB.

Marginal MAP on A-B trees. Obviously, marginal MAP on an A-B tree can be tractably

solved with linear complexity by exact bucket elimination along the A-B tree-order. We

show that its variational form (6.3) is also tractable in this case.

Lemma 6.1. If G is an A-B tree, then

(1). The locally consistent polytope equals the marginal polytope, that is, M = L.

(2). The conditional entropy has a pairwise decomposition,

H(xA|xB; τ ) =
∑
i∈A

Hi(τi) −
∑

(ij)∈EA∪∂AB

Iij(τij). (6.4)
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Proof. (1). If G is A-B tree, it is also a tree; see Proposition 3.4. (2). Because G is an A-B

tree, both p(x) and p(xB) have tree-structured conditional dependency. We then have [see

e.g., Wainwright and Jordan, 2008] that

H(x; τ ) =
∑
i∈V

Hi(τi)−
∑

(ij)∈E

Iij(τij), and H(xB; τ ) =
∑
i∈B

Hi(τi)−
∑

(ij)∈EB

Iij(τij).

Equation (6.4) follows from the entropic chain rule, H(xA|xB; τ ) = H(x; τ )−H(xB; τ ).

Remark. If G is a tree, but not an A-B tree, then the marginal distribution p(xB) is in

general not tree structured, and the conditional entropy H(xA|xB; τ ) = H(x; τ )−H(xB; τ )

is generally intractable due to the difficulty of calculating H(xB; τ ).

6.2 Entropy Approximations

Lemma 6.1 suggests that the conditional entropy H(xA|xB; τ ) in (6.3) is tractable on A-B

trees, and can be decomposed into singleton and pairwise terms that are easy to deal with.

This is not true for general graphs, but motivates a set of “Bethe” and “tree reweighted”

approximations, analagous to the approximations for sum-inference.

6.2.1 Bethe-like Entropy Approximation

We define the following “Bethe-like” entropy approximation to approximate the variational

form (6.3) for marginal MAP,

Φbethe(θ) = max
τ∈L

{
〈θ, τ 〉 +

∑
i∈A

Hi(τi) −
∑

(ij)∈EA∪∂AB

Iij(τij)
}
, (6.5)

where the entropy is a “truncated” version of the usual Bethe entropy approximation, in

which the entropy and mutual information terms that involve only max nodes are truncated
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(removed). If G is an A-B tree, Φbethe equals the true ΦAB, giving an intuitive justification

to the approximation. In the sequel we give more general theoretical conditions under which

this approximation gives the exact solution; we also find empirically that it often gives

surprisingly good solutions in practice. Similarly to the standard Bethe approximation,

(6.5) leads to a nonconvex optimization problem, and we will derive both message passing

algorithms and provably convergent algorithms to solve it.

6.2.2 Tree-reweighted Entropy Approximation

Building on the idea of tree reweighted (TRW) BP [Wainwright et al., 2005] (see Section 3.2.4

for an introduction), we also construct an approximation to the marginal MAP problem using

a convex combination of A-B spanning trees (spanning trees of G that are A-B trees). Let

TAB be a collection of A-B spanning trees of G. We assign to each T ∈ TAB a weight wT

satisfying wT ≥ 0 and
∑

T∈TAB w
T = 1. For each A-B spanning tree T = (V,ET ), the

entropy on tree T is given by

H(xA|xB; τ ; T ) =
∑
i∈A

Hi(τi) −
∑

(ij)∈ET \EB

Iij(τij).

As shown in Wainwright and Jordan [2008], the entropy H(xA|xB; τ ; T ) is always a concave

function of τ on L, and H(xA|xB; τ ) ≤ H(xA|xB; τ ; T ) for all τ ∈M and T ∈ TAB. More

generally, we have

H(xA|xB; τ ) ≤
∑
T∈TAB

wTH(xA|xB; τ ; T ) =
∑
i∈A

Hi(τi) −
∑

(ij)∈EA∪∂AB

ρijIij(τij),

where ρij =
∑

T :(ij)∈ET w
T are the edge appearance probabilities as defined in Wainwright

and Jordan [2008]. Replacing M with L and H(xA|xB; τ ) with this bound yields a TRW-like
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(a) Not an A-B tree (b) GA-maximal A-B

spanning tree
(c) ∂AB-maximal A-B

spanning tree

Figure 6.3: (a) is not an A-B tree, and (b) and (c) are, respectively, GA-maximal and
∂AB-maximal A-B spanning trees of (a).

approximation of marginal MAP,

Φtrw(θ) = max
τ∈L

Ftrw(τ ,θ), Ftrw(τ ,θ) = 〈θ, τ 〉 +
∑
i∈A

Hi(τi) −
∑

(ij)∈EA∪∂AB

ρijIij(τij). (6.6)

Since L is an outer bound of M, and Ftrw is a concave upper bound of the true variational

objective, we can guarantee that Φtrw(θ) is always an upper bound of ΦAB(θ). To our

knowledge, this provides the first known convex relaxation for upper bounding marginal

MAP. One can also optimize the weights {wT : T ∈ TAB} to obtain the tightest upper bound

using methods similar to those used for standard TRW-BP [see Wainwright et al., 2005].

A-B spanning trees. The structural constraints of A-B trees, as illustrated in Proposi-

tion 6.1, makes the edge appearance probabilities of A-B spanning trees more restricted

than those of the spanning trees used in sum-inference TRW-BP. As illustrated in Propo-

sition 6.1, one can construct an A-B spanning tree by first selecting spanning trees in GA

and in GB, respectively, and then joining each connected component of GA with any node

in GB. Due to the constraint that at most one crossing edge is incident to each connected

component of GA, there is a trade-off between incorporating more edges in GA versus in ∂AB;

two simple, extreme cases, as illustrated in Figure 6.3, stand out:

1. GA-maximal A-B spanning trees, which include as many edges as possible in the span-

ning tree of GA; this makes the number of edges that can be included in ∂AB very

small. Assuming GA is a connected graph, then ∂AB can include only one edge; if we

147



use a set of GA-maximal spanning trees for TRW-BP in this case, the edge appearance

probability {ρij} should satisfy

∑
(ij)∈∂AB

ρij = 1, ρij ≥ 0,

that is, the sum of the weights on the crossing edges ∂AB equals one.

2. ∂AB-maximal A-B spanning trees, which include no edges in GA, but a maximum

number of edges in ∂AB – edges that connect each node in GA with a unique node in

GB. Therefore, if we use a set of ∂AB-maximal spanning trees for TRW-BP, we should

have ρij = 0 for ∀(ij) ∈ EA.

Intuitively, GA-maximal spanning trees capture more information about the summation

structures of GA, while ∂AB-maximal spanning trees capture more information about ∂AB,

relating the sum and max parts. Using only GA-maximal spanning trees, for example, will

ensure that if GA is a tree, the summation component is exact (all ρij = 1 for (ij) ∈ EA);

this will make it possible to provide some theoretical guarantees about the solution, such as

discussed in the next section.

6.2.3 Global Optimality Guarantees

In this section, we demonstrate that the preceding approximations exhibit global optimality

guarantees under some circumstances. For the purposes of this section, we assume that GA

is a tree, and hence the objective function is tractable to calculate for a given configuration

xB. However, note that the optimization component typically remains intractable even in

this case, because the marginal distribution over the max variables p(xB) may have high

induced width even when GA is a tree (see, e.g., Figure 3.2). It is thus not obvious whether

or when the Bethe and TRW approximations can provide global optimality guarantees.
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In general, suppose we approximate ΦAB(θ) using the following pairwise approximation,

Φtree(θ) = max
τ∈L

{
〈θ, τ 〉 +

∑
i∈A

Hi(τi)−
∑

(ij)∈EA

Iij(τij)−
∑

(ij)∈∂AB

ρijIij(τij)
}
, (6.7)

where the weights on the sum part, {ρij : (ij) ∈ EA}, have all been fixed to equal one. This

choice ensures that the entropy of the sum part is “intact” in the approximation, while

the weights of the edges that cross between A and B, ρAB = {ρij : (ij) ∈ ∂AB}, can take

arbitrary values, corresponding to different entropy approximation methods. If ρij = 1 for

∀(ij) ∈ ∂AB, the objective (6.7) equals the Bethe approximation Φbethe; alternatively, it

corresponds to a TRW approximation Φtrw if the {ρij} are taken to be edge appearance

probabilities of a set of GA-maximum spanning trees, which in general will have positive

values less than one. In particular, if GA is a connected graph, we should have (as shown

in the last section)
∑

(ij)∈∂AB ρij = 1, ρij ≥ 0. Interestingly, we show in Section 6.5 that if

ρij → +∞ for ∀(ij) ∈ ∂AB, then Equation (6.7) is closely related to an EM algorithm.

Theorem 6.1. Suppose the sum part GA is a tree, and we approximate ΦAB(θ) using Φtree(θ)

defined in (6.7). Assume that (6.7) is globally optimized; then:

1. We have Φtree(θ) ≥ ΦAB(θ). If there exists x∗B such that Q(x∗B;θ) = Φtree(θ), we have

Φtree(θ) = ΦAB(θ), and x∗B is a globally optimal marginal MAP solution.

2. Suppose τ ∗ is a global maximum of (6.7), and {τ ∗i (xi) : i ∈ B} have integer values,

i.e., τ ∗i (xi) = 0 or 1. Then, {x∗i = arg maxxi τ
∗
i (xi) : i ∈ B} is a globally optimal

solution of the marginal MAP problem (6.1).

Proof (sketch). (See Appendix B for the complete proof.) The fact that the sum part GA

is a tree guarantees the marginalization is exact. Showing that (6.7) is a relaxation of the

maximization problem and applying standard relaxation arguments completes the proof.

Remark. Theorem 6.1 does not directly require any condition on the values of ρAB; how-

ever, different values of ρAB can affect whether the conditions of Theorem 6.1 will hold in
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practice, and suggest a fundamental tradeoff that reveals the hardness of the problem:

1. On the one hand, the value of ρAB controls the concavity of the objective function in

(6.7) and hence the difficulty of finding a global optimum; small enough ρAB (such

as the valid tree-appearance probabilities in TRW) can ensure that (6.7) is a convex

optimization, while larger ρAB (as in the Bethe approximation or EM settings) causes

(6.7) to become non-convex, making it difficult to globally optimize the objective to

apply Theorem 6.1.

2. On the other hand, the value of ρAB also controls how likely the solution is to be

integral – larger ρij emphasize the mutual information terms, which force the solution

towards integral points. Thus the solution of the TRW entropy approximation is less

likely to be integral than that of the Bethe entropy approximation, complicating the

application of Theorem 6.1 to TRW solutions as well.

Therefore, the TRW approximation (e.g.,
∑

(ij)∈∂AB ρij = 1) and EM (ρij → +∞; see Sec-

tion 6.5) reflect two extrema of this tradeoff between concavity and integrality, respectively,

while the Bethe approximation (ρij = 1) appears to represent a reasonable compromise that

often gives excellent performance in practice. In Section 6.3.2, we give a different set of local

optimality guarantees that are derived from a reparameterization perspective.

6.3 Message Passing Algorithms for Marginal MAP

We now derive message-passing-style algorithms to optimize the “truncated” Bethe or TRW

approximate objectives in (6.5) and (6.6). Instead of optimizing the exact objectives directly,

we consider their “annealed” versions,

max
τ∈L

{
〈θ, τ 〉+ Ĥ(xA|xB; τ ) + εĤ(xB; τ )

}
,
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where ε is a positive annealing coefficient (or temperature), and the Ĥ(xA|xB; τ ) and

Ĥ(xB; τ ) are the generic pairwise approximations of H(xA|xB; τ ) and H(xB; τ ), respec-

tively. That is,

Ĥ(xA|xB; τ ) =
∑
i∈A

Hi(τi) −
∑

(ij)∈EA∪∂AB

ρijIij(τij), (6.8)

Ĥ(xB; τ ) =
∑
i∈B

Hi(τi) −
∑

(ij)∈EB

ρijIij(τij),

where different values of the pairwise weights {ρij} can correspond to either the Bethe

approximation (ρij = 1) or the TRW approximation (edge appearance probabilities, with

ρij ≤ 1). This yields a generic pairwise variational optimization problem,

max
τ∈L

{
〈θ, τ 〉+

∑
i∈V

wiHi(τi)−
∑

(ij)∈E

wijIij(τij)
}
, (6.9)

where the weights {wi, wij} are determined by the temperature ε and {ρij} via

wi =

 1 ∀i ∈ A

ε ∀i ∈ B,
wij =

 ρij ∀(ij) ∈ EA ∪ ∂AB

ερij ∀(ij) ∈ EB.
(6.10)

The general form represented by (6.9) provides a unified treatment for approximating sum-

inference, max-inference and mixed, marginal MAP problems simply by selecting different

weights. Specifically,

1. If wi = 1 for all i ∈ V , Eq. (6.9) corresponds to the sum-inference problem and the

sum-product BP objectives and algorithms.

2. If wi → 0+ for all i ∈ V (and the corresponding wij → 0+), Eq. (6.9) corresponds

to the max-inference problem and the max-product linear programming objective and

algorithms.

3. If wi = 1 for ∀i ∈ A and wi = 0 for ∀i ∈ B (and the corresponding wij → 0+), Eq. (6.9)
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Algorithm 6.1 Annealed BP for marginal MAP for pairwise models

Input: A marginal MAP problem on a pairwise model p(x) ∝
∏

i∈V ψi
∏

(ij)∈E ψij on

graph G = (V,E); an annealing parameter scheme {λt}.
Output: An approximate marginal MAP solution x∗B.

Define the pairwise weights {ρij : (ij) ∈ E}, e.g., ρij = 1 for Bethe or valid appearance
probabilities for TRW. Initialize the messages {mi→j : (ij) ∈ E}.
for iteration t do

1. Update ε by e.g. ε = 1/t, and correspondingly the weights {wi, wij} by (6.10).
2. Perform the message passing update in (6.11) for all edges (ij) ∈ E.

end for
Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = arg max
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

corresponds to the marginal MAP problem; in the sequel, we derive “mixed-product”

BP algorithms.

Note the different roles of the singleton and pairwise weights: the singleton weights {wi : i ∈

V } define the type of inference problem, while the pairwise weights {wij : (ij) ∈ E} determine

the approximation method (e.g., Bethe vs. TRW).

We now derive a message passing algorithm for solving the generic problem (6.9), using a

Lagrange multiplier method similar to Yedidia et al. [2005] or Wainwright et al. [2005].

Proposition 6.2. Assuming wi and wij are strictly positive, the stationary points of (6.9)

satisfy the fixed point condition of the following message passing update,

Message Update: mi→j(xj)←
[∑

xi

(ψi(xi)m∼i(xi))
1
wi

(ψij(xi, xj)
mj→i(xi)

) 1
wij

]wij
, (6.11)

Marginal Decoding:

τi(xi) ∝
[
ψi(xi)m∼i(xi)

] 1
wi , τij(xi, xj) ∝ τi(xi)τj(xj)

[
ψij(xi, xj)

mi→j(xj)mj→i(xi)

] 1
wij

, (6.12)

where m∼i(xi) :=
∏
k∈∂(i)

mk→i(xi) is the product of messages sent into node i, and ∂(i) is the
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set of neighboring nodes of i.

Proof (sketch). (See Appendix B for the complete proof.) Note that (6.12) is simply the

KKT condition of (6.9), with the log of the message logmi→j being the Lagrange multipliers.

Plugging (6.12) into the local consistency constraint
∑

xi
τij(xi, xj) = τj(xj) gives (6.11).

The message update (6.11) is mostly similar to TRW-BP of Wainwright et al. [2005], except

that it incorporates general singleton weights wi. The marginal MAP problem can be solved

by running (6.11) with {wi, wij} defined by (6.10) and a scheme for choosing the temperature

ε, either directly setting ε to be a small constant, or gradually decreasing (or annealing) ε to

zero across iterations, e.g., by ε = 1/t where t is the iteration. Algorithm 6.1 describes the

details for the annealing method.

6.3.1 Mixed-Product Belief Propagation

Directly taking ε→ 0+ in message update (6.11), we can get an interesting “mixed-product”

BP algorithm that is a hybrid of the max-product and sum-product message updates, with

a novel “argmax-product” message update that is specific to marginal MAP problems. This

algorithm is listed in Algorithm 6.2, and described by the following proposition:

Proposition 6.3. As ε approaches zero from the positive side, that is, ε→ 0+, the message

update (6.11) reduces to the update in (6.13)-(6.15) in Algorithm 6.2.

Proof. For messages from i ∈ A to j ∈ A ∪ B, we have wi = 1, wij = ρij; the result is

obvious.

For messages from i ∈ B to j ∈ B, we have wi = ε, wij = ερij. The result follows from the
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Algorithm 6.2 Mixed-product BP for marginal MAP for pairwise models

Input: A marginal MAP problem on a pairwise model p(x) ∝
∏

i∈V ψi
∏

(ij)∈E ψij on

graph G = (V,E).
Output: An approximate marginal MAP solution x∗B.

Define the pairwise weights {ρij : (ij) ∈ E} and initialize messages {mi→j : (ij) ∈ E} as
in Algorithm 6.1.
for iteration t do

for edge (ij) ∈ E do
Perform different message updates depending on the node type of the source and des-
tination,

A→ A ∪B:
(sum-product)

mi→j(xj)←
[∑

xi

(ψi(xi)m∼i(xi))(
ψij(xi, xj)

mj→i(xi)
)1/ρij

]ρij , (6.13)

B → B:
(max-product)

mi→j(xj)← max
xi

(ψi(xi)m∼i(xi))
ρij(

ψij(xi, xj)

mj→i(xi)
), (6.14)

B → A:
(argmax-product)

mi→j(xj)←
[ ∑
xi∈X ∗i

(ψi(xi)m∼i(xi))(
ψij(xi, xj)

mj→i(xi)
)1/ρij

]ρij , (6.15)

where the set X ∗i = arg max
xi

ψi(xi)m∼i(xi) and m∼i(xi) =
∏
k∈∂(i)

mki(xi).

end for
end for
Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = arg max
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

zero temperature limit formula

lim
ε→0+

[
∑

f(xi)
1/ε]ε = max

xi
f(xi), where f(xi) = (ψi(xi)m∼i(xi))

ρij(
ψij(xi, xj)

mj→i(xi)
).

Finally, for messages from i ∈ B to j ∈ A, we have wi = ε, wij = ρij. One can show that

lim
ε→0+

[ ψi(xi)m∼i(xi)

maxxi ψi(xi)m∼i(xi)

]1/ε

= 1(xi ∈ X ∗i ),

where X ∗i = arg maxxi ψi(xi)m∼i(xi). Plugging this into (6.11) and dropping the constant

term, we obtain the message update in (6.15).

154



Algorithm 6.2 has an intuitive interpretation: the sum-product and max-product messages

in (6.13) and (6.14) correspond to the marginalization and maximization steps, respectively.

The special “argmax-product” messages in (6.15) serve to “coordinate” the sum-product and

max-product messages – they restrict the max nodes to the currently decoded local marginal

MAP solutions X ∗i = arg maxψi(xi)m∼i(xi), and pass the posterior beliefs back to the sum

part. Note that the summation notation in (6.15) can be ignored if X ∗i has only a single

optimal state.

Traditional algorithms for marginal MAP, such as local search or EM, usually have a “double-

loop” form: the inner loop fully solves the marginalization sub-problem with a fixed max

variable configuration xB, and the outer loop takes a maximization or search step to update

the max variable configuration. In contrast, our mixed-product BP reformulates the calcu-

lation into a set of distributed message passing updates, and allows us to take simultaneous

movements on the marginalization (by sum-product) and maximization (by max-product)

sub-problems, and coordinate them (by argmax-product), all in a parallel fashion; this avoids

fully solving the expensive marginalization inner loops, and makes our algorithm much more

computationally efficient. This advantage is inherited from our general variational frame-

work, which by its form, naturally integrates the marginalization and maximization sub-

problems into a joint optimization problem.

Interestingly, Algorithm 6.2 also bears similarity to a recent hybrid message passing method

of Jiang et al. [2011], which differs from Algorithm 6.2 only in replacing the special argmax-

product messages (6.15) with regular max-product messages. We make a detailed comparison

of these two algorithms in Section 6.3.3, and show that it is in fact the argmax-product

messages (6.15) that lends our algorithm several appealing optimality guarantees.
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6.3.2 Reparameterization and Local Optimality Guarantees

An important interpretation of the sum-product and max-product BP is the reparameteriza-

tion viewpoint [Wainwright et al., 2003a, Weiss et al., 2007]: message passing updates can be

viewed as moving probability mass between local pseudo-marginals (or beliefs), in a way that

leaves their product a reparameterization of the original distribution, while ensuring some

consistency conditions at the fixed points. Such viewpoints are theoretically important, as

they are useful for proving optimality guarantees for BP algorithms. In this section, we show

that the mixed-product BP in Algorithm 6.2 has a similar reparameterization interpretation,

based on which we establish a local optimality guarantee for mixed-product BP.

To start, we define a set of “mixed-beliefs” as

bi(xi) ∝ ψi(xi)m∼i(xi), bij(xij) ∝ bi(xi)bj(xj)

[
ψij(xi, xj)

mi→j(xj)mj→i(xi)

]1/ρij

. (6.16)

The marginal MAP solution should be decoded from x∗i ∈ arg maxxi bi(xi),∀i ∈ B, as is typi-

cal in max-product BP. Note that the above mixed-beliefs {bi, bij} are different from the local

marginals {τi, τij} defined in (6.12); they can be seen as softened versions of {τi, τij}.Their

relationship is explicitly clarified in the following proposition.

Proposition 6.4. The {τi, τij} in (6.12) and the {bi, bij} in (6.16) are related via,


bi ∝ τi ∀i ∈ A,

bi ∝ (τi)
ε ∀i ∈ B


bij ∝ bibj(

τij
τiτj

) ∀(ij) ∈ EA ∪ ∂AB

bij ∝ bibj(
τij
τiτj

)ε ∀(ij) ∈ EB.

Proof. The result follows from a simple algebraic transformation between (6.12) and (6.16).

Therefore, as ε → 0+, the τi (= b
1/ε
i ) for i ∈ B will typically concentrate their mass on a

deterministic configuration, but bi may continue to have “soft” (non-deterministic) values.
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We now show that the mixed-beliefs {bi, bij} have a reparameterization interpretation.

Theorem 6.2. At the fixed point of mixed-product BP in Algorithm 6.2 , the mixed-beliefs

defined in (6.16) satisfy

Reparameterization:

p(x) ∝
∏
i∈V

bi(xi)
∏

(ij)∈E

[ bij(xi, xj)
bi(xi)bj(xj)

]ρij
. (6.17)

Mixed-consistency:

(a)
∑
xi

bij(xi, xj) = bj(xj), ∀i ∈ A, j ∈ A ∪B, (6.18)

(b) max
xi

bij(xi, xj) = bj(xj), ∀i ∈ B, j ∈ B, (6.19)

(c)
∑

xi∈arg max bi

bij(xi, xj) = bj(xj), ∀i ∈ B, j ∈ A. (6.20)

Proof. Directly substitute the definition (6.16) into the message update (6.13)-(6.15).

The three mixed-consistency constraints exactly map to the three types of message up-

dates in Algorithm 6.2. Constraints (a) and (b) enforce the regular sum- and max- con-

sistency of the sum- and max- product messages in (6.13) and (6.14), respectively. Con-

straint (c) corresponds to the argmax-product message update in (6.15): it enforces that

the marginals should be consistent after xi is assigned to the currently decoded solution,

xi = arg maxxi bi(xi) = arg maxxi
∑

xj
bij(xi, xj), corresponding to solving a local marginal

MAP problem on bij(xi, xj). It turns out that this special constraint is a crucial ingredient

of mixed-product BP, enabling us to prove guarantees on the strong local optimality of the

solution.
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(a) (b) (c)

Figure 6.4: Examples of semi-A-B subtrees. The shaded nodes represent sum nodes, while
the unshaded are max nodes. In each graph, a semi-A-B subtree is labeled by red bold lines.
Under the conditions of Theorem 6.3, the fixed point of mixed-product BP is locally optimal
up to jointly perturbing all the max nodes in any semi-A-B subtree of G.

Local Optimality Guarantees

We are now ready to give a local optimality guarantee for mixed-product BP. First, some

notation is required. Suppose C is a subset of max nodes in B. Let GC∪A = (C ∪ A,EC∪A)

be the subgraph of G induced by nodes C ∪A, where EC∪A = {(ij) ∈ E : i, j ∈ C ∪A}. We

call GC∪A a semi-A-B subtree of G if the edges in EC∪A\EB form an A-B tree. In other

words, GC∪A is a semi-A-B subtree if it is an A-B tree when ignoring any edges entirely

within the max set B. See Figure 6.4 for examples of semi-A-B subtrees.

Recall that a set of weights {ρij} is said to be provably convex if there exist positive constants

κi→j, such that
∑

i′∈∂(i) κi′→i ≤ 1 and κi→j + κj→i ≤ ρij; if {ρij} is probably convex, then

H(x; τ ) =
∑

iHi(τi) −
∑

ij ρijIij(τij) is a guaranteed to be a concave function of τ . See

Heskes [2006], Weiss et al. [2007] and Section 3.2.4 for an introduction.

Theorem 6.3. Suppose C is a subset of B such that GC∪A is a semi-A-B subtree, and the

weights {ρij} satisfy
1. ρij = 1 for (ij) ∈ EA;

2. 0 ≤ ρij ≤ 1 for (ij) ∈ EC∪A ∩ ∂AB;

3. {ρij : (ij) ∈ EC∪A ∩ EB} is provably convex.

At the fixed point of mixed-product BP in Algorithm 6.2, if the mixed-beliefs on the max

nodes {bi, bij : i, j ∈ B} defined in (6.16) all have unique maxima, then there exists a B-

configuration x∗B satisfying x∗i = arg max bi for ∀i ∈ B and (x∗i , x
∗
j) = arg max bij for
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∀(ij) ∈ EB, and x∗B is locally optimal in the sense that Q(x∗B;θ) is not smaller than any

B-configuration that differs from x∗B only on C, that is, Q(x∗B;θ) = maxxC Q([xC , x
∗
B\C ];θ).

Proof (sketch). (See Appendix B for the complete proof.) The mixed-consistency constraint

(c) in (6.20) and the fact that GC∪A is a semi-A-B subtree enables the summation part to

be eliminated away. The remaining part only involves the max nodes, and the method in

Weiss et al. [2007] for analyzing standard MAP can be applied.

Remark. The proof of Theorem 6.3 relies on transforming the marginal MAP problem

to a standard MAP problem by eliminating the summation part. Therefore, variants of

Theorem 6.3 may be derived using other global optimality conditions of convexified belief

propagation or linear programming algorithms for MAP, such as those in Werner [2007, 2010]

or Wainwright et al. [2003b]. We leave this to future work.

For GC∪A to be a semi-A-B subtree, the sum part GA must be a tree, which Theorem 6.3

assumes implicitly. For the hidden Markov chain in Figure 2.3, Theorem 6.3 implies only local

optimality up to Hamming distance one (or, coordinate-wise optimality), because any semi-

A-B subtree of G in Figure 2.3 can contain at most one max node. However, Theorem 6.3

is in general much stronger, especially when the sum part is not fully connected, or when

the max part has interior regions disconnected from the sum part. See Figure 6.4(b)-(c) for

examples.

6.3.3 The Importance of the Argmax-product Message Updates

Jiang et al. [2011] proposed a similar hybrid message passing algorithm, repeated here as

Algorithm 6.3, which differs from our mixed-product BP only in replacing our argmax-

product message update (6.15) with the standard max-product message update (6.14). We

show in this section that this seemingly minor difference gives Algorithm 6.3 very different
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Algorithm 6.3 Hybrid message passing by Jiang et al. [2011]

Input: A marginal MAP problem on a pairwise model p(x) ∝
∏

i∈V ψi
∏

(ij)∈E ψij on

graph G = (V,E).
Output: An approximate marginal MAP solution x∗B.

1. Message Update:

A→ A ∪B:
(sum-product)

mi→j(xj)←
[∑

xi

(ψi(xi)m∼i(xi))(
ψij(xi, xj)

mj→i(xi)
)1/ρij

]ρij ,
A→ A ∪B:

(max-product)
mi→j(xj)← max

xi
(ψi(xi)m∼i(xi))

ρij(
ψij(xi, xj)

mj→i(xi)
).

2. Decoding: x∗i = arg maxxi bi(xi) for ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

properties, and fewer optimality guarantees, than our mixed-product BP.

Similar to our mixed-product BP, Algorithm 6.3 also satisfies the reparameterization prop-

erty in (6.17) (with beliefs {bi, bij} defined by (6.16)); it also satisfies a set of similar, but

crucially different, consistency conditions at its fixed points,

∑
xi

bij(xi, xj) = bj(xj), ∀i ∈ A, j ∈ A ∪B,

max
xi

bij(xi, xj) = bj(xj), ∀i ∈ B, j ∈ A ∪B,

which exactly map to the max- and sum-product message updates in Algorithm 6.3.

Despite its striking similarity, Algorithm 6.3 has very different properties, and does not share

the appealing variational interpretation and optimality guarantees that we have demon-

strated for mixed-product BP. First, it is unclear whether Algorithm 6.3 can be interpreted

as a fixed point algorithm for maximizing our, or a similar, variational objective function.

Second, it does not inherit the same optimality guarantees stated in Theorem 6.3, despite its

similar reparameterization and consistency conditions. These disadvantages are caused by

the lack of the special argmax-product message update and its associated mixed-consistency

condition in (6.20), which was a critical ingredient of the proof of Theorem 6.3.
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More detailed insights into Algorithm 6.3 and mixed-product BP can be obtained by con-

sidering the special case when the full graph G is an undirected tree. We show that in this

case, Algorithm 6.3 can be viewed as optimizing a set of approximate objective functions,

obtained by rearranging the max and sum operators into orders that require less computa-

tional cost, while mixed-product BP attempts to maximize the exact objective function by

message updates that effectively perform some “asynchronous” coordinate descent steps. In

the sequel, we use an illustrative toy example to explain the main ideas.

Example 6.1. Consider a marginal MAP problem on a four node chain-structured graphical

model, x3 − x1 − x2 − x4, where the sum and max sets are A = {1, 2} and B = {3, 4},

respectively (see Figure 6.1b). We analyze how Algorithm 6.3 and mixed-product BP in

Algorithm 6.2 behave on this toy example, when both taking Bethe weights (ρij = 1 for

(ij) ∈ E).

Algorithm 6.3 (Jiang et al. [2011]). Since G is a tree, one can show that Algorithm 3 (with

Bethe weights) terminates after a full forward and backward iteration (e.g., messages passed

along x3 → x1 → x2 → x4 and then x4 → x2 → x1 → x3). By tracking the messages, one

can write its final decoded solution in a closed form,

x∗3 = arg max
x3

∑
x1

∑
x2

max
x4

[exp(θ(x))], x∗4 = arg max
x4

∑
x2

∑
x1

max
x3

[exp(θ(x))],

On the other hand, the true marginal MAP solution is given by,

x∗3 = arg max
x3

max
x4

∑
x1

∑
x2

[exp(θ(x))], x∗4 = arg max
x4

max
x3

∑
x2

∑
x1

[exp(θ(x))].

Here, Algorithm 6.3 approximates the exact marginal MAP problem by rearranging the max

and sum operators into an elimination order that makes the calculation easier. A simi-

lar property holds for the general case when G is undirected tree: Algorithm 3 (with Bethe

weights) terminates in a finite number of steps, and its output solution x∗i effectively maxi-
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mizes an approximate objective function obtained by reordering the max and sum operators

along a tree-order (see Definition 6.1) that is rooted at node i. The performance of the

algorithm should be related to the error caused by exchanging the order of max and sum

operators. However, exact optimality guarantees are likely difficult to show because it max-

imizes an inexact objective function. In addition, since each component x∗i uses a different

order of elimination, and hence maximizes a different surrogate objective function, it is un-

clear whether the joint B-configuration x∗B = {x∗i : i ∈ B} given by Algorithm 6.3 maximizes

a single consistent objective function.

Algorithm 6.2 (mixed-product). On the other hand, the mixed-product belief propagation

in Algorithm 6.2 may not terminate in a finite number of steps, nor does it necessarily yield

a closed form solution when G is an undirected tree. However, Algorithm 6.2 proceeds in an

attempt to optimize the exact objective function. In this toy example, we can show that the

true solution is guaranteed to be a fixed point of Algorithm 6.2. Let b3(x3) be the mixed-belief

on x3 at the current iteration, and x∗3 = arg maxx3
b3(x3) its unique maxima. After a message

sequence passed from x3 to x4, one can show that b4(x4) and x∗4 update to

x∗4 = arg max
x4

b4(x4), b4(x4) =
∑
x2

∑
x1

exp(θ([x∗3, x¬3])) = exp(Q([x∗3, x4];θ)),

where we maximize the exact objective function Q([x3, x4];θ) with fixed x3 = x∗3. Therefore,

on this toy example, one sweep (x3 → x4 or x4 → x3) of Algorithm 6.2 is effectively per-

forming a coordinate descent step, which monotonically improves the true objective function

towards a local maximum. In more general models, Algorithm 6.2 differs from sequential

coordinate descent, and does not guarantee monotonic convergence. But, it can be viewed

as a “parallel” version of coordinate descent, which ensures the stronger local optimality

guarantees shown in Theorem 6.3.
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6.4 Proximal Point Algorithms

An obvious disadvantage of mixed-product BP is its lack of convergence guarantees, even

when G is an undirected tree. In this section, we apply a proximal point approach [e.g.,

Martinet, 1970, Rockafellar, 1976] to derive convergent algorithms that directly optimize our

variational objectives, which take the form of transforming marginal MAP into a sequence

of pure (or annealed) sum-inference tasks. Similar methods have been applied to standard

sum-inference [Yuille, 2002] and max-inference [Ravikumar et al., 2010].

For the purpose of illustration, we first consider the problem of maximizing the exact

marginal MAP variational objective, Fmix(τ ,θ) = 〈τ ,θ〉 + H(xA|xB; τ ). The proximal

point algorithm works by iteratively optimizing a smoothed problem,

τ t+1 = arg min
τ∈M

{−Fmix(τ ,θ) + λtD(τ ||τ t)},

where τ t is the solution at iteration t, and λt is a positive coefficient. Here, D(·||·) is a

distance, called the proximal function, which forces τ t+1 to be close to τ t; typical choices of

D(·||·) are Euclidean or Bregman distances or ψ-divergences [e.g., Teboulle, 1992, Iusem and

Teboulle, 1993]. Proximal algorithms have nice convergence guarantees: the objective series

{Fmix(τ t , θ)} is guaranteed to be non-increasing at each iteration, and {τ t} converges

to an optimal solution, under some regularity conditions. See, for example, Rockafellar

[1976], Tseng and Bertsekas [1993], Iusem and Teboulle [1993]. The proximal algorithm is

closely related to the majorize-minimize (MM) algorithm [Hunter and Lange, 2004] and the

convex-concave procedure [Yuille, 2002].

For our purpose, we take the proximal distance D(·||·) to be a KL divergence between
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Algorithm 6.4 Proximal point algorithm for marginal MAP (exact)

Input: A marginal MAP problem maxxB
∑
xA

exp(θ(x)).
Output: An (exact) marginal MAP solution x∗B.

Initialize local marginals τ 0.
for iteration t do

θt+1 = θ + λt log τ tB, (6.21)

τ t+1 = arg max
τ∈M
{〈τ ,θt+1〉+H(xA|xB; τ ) + λtH(xB; τ )}, (6.22)

end for
Decoding: x∗i = arg max

xi

τi(xi) for ∀i ∈ B.

Note: we may replace H(xA|xB; τ ) and H(xB; τ ) in (6.22) with their approximations
versions, such as that in (6.8); see Algorithm 6.5.

distributions on the max nodes,

D(τ ||τ t) = KL(τB(xB)||τ tB(xB)) =
∑
xB

τB(xB) log
τB(xB)

τ tB(xB)
.

In this case, the proximal point algorithm reduces to Algorithm 6.4, which iteratively solves

a smoothed variational objective, with natural parameter θt updated at each iteration.

Intuitively, the proximal inner loop (6.21)-(6.22) essentially “adds back” the truncated en-

tropy term HB(τ ), while canceling its effect by adjusting θ in the opposite direction. Typical

choices of λt include λt = 1 (constant) and λt = 1/t (harmonic). Note that the proximal

approach is distinct from an annealing method, which would require that the annealing

coefficient vanish to zero.

Interestingly, if we take λt = 1, then the inner maximization problem (6.22) reduces to the

standard log-partition function duality (4.2), corresponding to a pure marginalization task.

This has the interpretation of transforming the marginal MAP problem into a sequence of

standard sum-inference problems.

In practice we also approximate H(xA|xB; τ ) and H(xB; τ ) by the pairwise entropy decom-

position Ĥ(xA|xB; τ ) and Ĥ(xB; τ ) in (6.8), and solve the inner optimization (6.22) by the
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Algorithm 6.5 Proximal point algorithm for marginal MAP (pairwise approximation)

Input: A marginal MAP problem on a pairwise model p(x) ∝ exp(
∑

i θi +
∑

(ij)∈E θij).
Output: An approximate marginal MAP solution x∗B.

Define proximal parameter {λt} and {ρij : (ij) ∈ E} (for example, λt = 1 and Bethe
weights: ρij = 1).
Initialize local marginals τ 0 = {τi, τij : i ∈ A ∪B, (ij) ∈ E}.
for iteration t do

1. For each i ∈ B and (ij) ∈ EB, update:

θt+1
ij = θij + λt log τ tij, θt+1

i = θi + λt log τ ti,

2. Run message passing in Algorithm 6.1 with fixed ε = λt until convergence. Update
τ t+1 = {τi, τij} by (6.12).

end for
Decoding: x∗i = arg max

xi

τi(xi) for ∀i ∈ B.

weighted message passing in Algorithm 6.1; this gives Algorithm 6.5.

Note that the approximate version in Algorithm 6.5 does not necessarily correspond to a

valid proximal point algorithm. However, if −Ĥ(xB; τ ) is provably convex in the sense of

Definition 3.8, such that it can be reformed into

Ĥ(xB; τ ) =
∑
i∈B

κiH(xi) +
∑

(ij)∈EB

(κi→jH(xi|xj) + κijH(xi, xj)),

where κij, κi→j, κi are all non-negative numbers, then the resulting approximate algorithm

can still be interpreted as a proximal algorithm that maximizes F̂mix(τ ,θ) with a proximal

function defined as

Dpair(τ ||τ t) =
∑
i∈B

κiKL[τi(xi)||τ 0
i (xi)]

+
∑

(ij)∈EB

κi→jKL[(τij(xi|xj)||τ 0
ij(xi|xj)] + κijKL[(τij(xi, xj)||τ 0

ij(xi, xj)].

In this case, Algorithm 6.4 is still a valid proximal algorithm and inherits their convergence

guarantees. In practice, however, one often uses approximations that are not provably con-
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vex. An interesting special case is when both H(xA|xB; τ ) and H(xB; τ ) are approximated

by a Bethe approximation, in which case the optimization (6.22) can be solved using standard

sum-product BP. Although the Bethe form for H(xA|xB; τ ) and H(xB; τ ) is not provably

convex unless G is tree structured (or has some other special properties), we find in practice

that this approximation gives very accurate solutions, even on general loopy graphs where

its convergence is no longer theoretically guaranteed.

The global convergence guarantees of the proximal point algorithm may also fail if the

inner update (6.22) is not solved exactly. It should also be possible to develop globally

convergent algorithms without inner loops using the techniques that have been developed

for full marginalization or MAP problems [e.g., Meltzer et al., 2009, Hazan and Shashua,

2010, Jojic et al., 2010, Savchynskyy et al., 2010], but we leave this to future work.

6.5 Connections to EM

A natural algorithm for solving the marginal MAP problem is to use the expectation-

maximization (EM) algorithm, by treating xA as the hidden variables and xB as the “pa-

rameters” to be maximized. In this section, we show that the EM algorithm can be seen as

a coordinate ascent algorithm on a mean field variant of our framework.

We start by introducing a “non-convex” generalization of the variational form (6.3).

Corollary 6.1. Let Mo be the subset of the marginal polytope M corresponding to the dis-

tributions in which xB are clamped to some deterministic values, that is,

Mo = {τ ∈M : ∃x∗B ∈ XB, such that τ(xB) = 1(xB = x∗B)}.

Then the variational form (6.3) remains exact if the marginal polytope M is replaced by any
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N satisfying Mo ⊆ N ⊆M, that is,

ΦAB = max
τ∈N
{〈θ, τ 〉+H(xA|xB; τ )}.

Proof. For an arbitrary marginal MAP solution x∗B, the τ ∗ with τ ∗(x) = p(x|xB = x∗B;θ)

is an optimum of (6.3) and satisfies τ ∗ ∈Mo. Therefore, restricting the optimization on Mo

(or any N) does not change the maximum value of the objective function.

Remark. Among all N satisfying Mo ⊆ N ⊆ M, the marginal polytope M is the smallest

(and the unique) convex set that includes Mo, i.e., it is the convex hull of Mo.

To connect to EM, we define M×, the set of distributions in which xA and xB are inde-

pendent, that is, M× = {τ ∈ M : τ(x) = τ(xA)τ(xB)}. Since Mo ⊂ M× ⊂ M, the dual

optimization (6.3) remains exact when restricted to M×, that is,

ΦAB(θ) = max
τ∈M×

{〈θ, τ 〉+H(xA|xB; τ )} = max
τ∈M×

{〈θ, τ 〉+H(xA; τ )},

where the second equality holds because H(xA|xB; τ ) = H(xA; τ ) for τ ∈M×.

Although M× is no longer a convex set, it is natural to consider a coordinate update that

alternately optimizes τ(xA) and τ(xB),

Updating sum part : τ t+1
A ← argmax

τA∈MA

{〈Eτ tB(θ), τA〉+H(xA; τA)},

Updating max part : τ t+1
B ← argmax

τB∈MB

〈Eτ t+1
A

(θ), τB〉,
(6.23)

where MA and MB are the marginal polytopes over xA and xB, respectively. Note that

the sum and max step each happen to be the dual of a sum-inference and max-inference

problem, respectively. If we go back to the primal, and update the primal configuration xB

167



instead of τB, (6.23) can be rewritten into

E step : τ t+1
A (xA)← p(xA|xtB;θ),

M step : xt+1
B ← arg max

xB
Eτ t+1

A
(θ),

which is exactly the EM update, viewing xB as parameters and xA as hidden variables.

Similar connections between EM and the coordinate ascent method on variational objectives

have been discussed in Neal and Hinton [1998] and Wainwright and Jordan [2008].

When the E-step or M-step are intractable, one can insert various approximations. In par-

ticular, approximating MA by a mean-field inner bound Mmf
A leads to variational EM. An

interesting result is obtained by using the Bethe approximation to solve the E-step and a

linear relaxation to solve the M-step; in this case, the EM-like update is equivalent to solving

max
τ∈L×

{
〈θ, τ 〉+

∑
i∈A

Hi(τi) −
∑

(ij)∈EA

Iij(τij)
}
, (6.24)

where L× is the subset of L in which τij(xi, xj) = τi(xi)τj(xj) for (ij) ∈ ∂AB. Equivalently,

L× is the subset of L in which Iij(τij) = 0 for (ij) ∈ ∂AB. Therefore, (6.24) can be treated

as a special case of the pairwise entropy approximation in (6.7) by taking ρij → +∞, forcing

the solution τ ∗ to fall into L×. As we discussed in Section 6.2.3, EM represents an extreme

of the tradeoff between convexity and integrality implied by Theorem 6.1, which strongly

encourages vertex solutions by sacrificing convexity, and hence is likely to become stuck in

local optima.

6.6 Factor Graph BP for Marginal MAP

In the preceding sections, we have restricted our discussion to pairwise models and pairwise

entropy approximations, mainly for the purpose of clarity. It is straightforward to extend
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our methodology and derive similar algorithms on more general models with higher order

factors. In this section, we discuss the extension to factor graphs, and derive a mixed-product

factor graph BP. We will also discuss the case of junction graph in Section 6.7. Other higher

order methods, like generalized BP [Yedidia et al., 2005] or their convex variants [Wainwright

et al., 2005, Wiegerinck, 2005], can be derived similarly, but are left for future work.

Given a factorized distribution p(x) ∝
∏

α∈I ψα(xα), its factor graph is a bipartite graph

G = (V, I, E) consists of variable nodes V = {i}, factor nodes I = {α}, and edges between

factors and their associated variables E = {(i, α) ∈ V × I : i ∈ α}. We denote by ∂(i) the

set of factors that includes node i, that is, ∂(i) = {α ∈ I : i ∈ α}. For factor graphs, the

following entropy decomposition derives classical sum-product BP,

H(x; τ ) ≈
∑
α∈I

H(xα; τα)−
∑
i∈V

(|∂(i)| − 1)H(xi; τi) =
∑
i∈V

H(xi, ; τi)−
∑
α∈I

Ĩ(xα; τα),

where Ĩ(xα; τα) is a “mutual information” defined by

Ĩ(xα; τα) =
∑
i∈α

H(xi; τi)−H(xα; τα).

For our marginal MAP problem, denote by αA and αB the sum and max variables included

in factor α, that is, αA = α ∩ A, αB = α ∩ B and αA ∪ αB = α. We can approximate

H(xA|xB; τ ) and H(xB; τ ), respectively, via

H̃(xA|xB; τ ) =
∑
i∈A

H(xi; τi)−
∑
α∈I

Ĩ(xαA|xαB ; τα),

H̃(xB; τ ) =
∑
i∈B

H(xi; τi)−
∑
α∈I

Ĩ(xβ; τα).
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Algorithm 6.6 Mixed-product factor graph BP for marginal MAP

Input: Graphical model p(x) ∝
∏

i∈V ψi(xi)
∏

α∈I ψα(xα); Sum nodes A and max nodes
B = V \ A. For each factor α, let αA = α ∩ A and σB = α ∩B.
Output: an approximate marginal MAP solution x∗B.
1. Passing messages between the factors and variables until convergence:

All Variables to Factors: mi→α(xi) ∝
∏

α′∈∂(i)\{α}

mα′→i(xi)

Factors to Max Variables: mα→i(xi) ∝ max
xαB\{i}

∑
xαA

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′)

Factors to Sum Variables: mα→i(xi) ∝
∑
xα\{i}

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′)× 1[xαB ∈ X ∗αB ]

where X ∗αB = arg max
xαB

{
bα(xαB) ≡

∑
xαA

ψα(xα)
∏
i∈α

mi→α(xi)
}

.

2. Decoding solution: x∗i = arg max
x

{
bi(xi) ≡

∏
α∈∂(i)

mα→i(xi)
}
, ∀i ∈ B.

where

Ĩ(xαA|xαB ; τα) =
∑
i∈αA

H(xi; τα)−H(xαA|xαB ; τα).

We then approximate the marginal MAP variational optimization via

max
τ

∑
i

θi(xi)τi(xi) +
∑
α

θα(xα)τα(xα) + H̃(xA|xB; τ ) + εH̃(xB; τ ) (6.25)

s.t.
∑
xα\{i}

τα(xα) = τi(xi), τα(xα) ≥ 0,
∑
xi

τi(xi) = 1, ∀i ∈ V, α ∈ I,x ∈ X .

where ε is an annealing parameter. Using the Lagrangian multiplier method similar to that

used in Algorithm 6.2 for pairwise models, and setting ε → 0+, we get the factor graph

mixed-product BP shown in Algorithm 6.6. See Appendix B.4 for detailed derivation.

Similar to the pairwise mixed-product BP in Algorithm 6.2 , Algorithm 6.6 also admits a
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Figure 6.5: (a) An example marginal MAP problem, where d, c, e are sum nodes (shaded)
and a, b, f are max nodes. (b) A junction graph of (a) with the sum clusters (shaded), where
max node a is assigned to max cluster {abc} and f to {bef}; the node b can be assigned to
either {abc} or {bef}.

similar intuitive interpretation: the messages from factor α to max variables (i ∈ B) simply

eliminate the variables in α by a hybrid of sum-product (on αA) and max-product (on αB);

while the messages from factor to sum variables perform a argmax-product update similar

to that of the pairwise case. Similar reparameterization and optimality properties can be

established analogously to the pairwise case.

6.7 Junction Graph BP for Marginal MAP

In this section, we derive a mixed-product BP algorithm on junction graphs [Mateescu

et al., 2010, Koller and Friedman, 2009]. Consider a general factorized distribution p(x) ∝∏
α∈C Φα(xα). Let G = (V , E) be a junction graph of p(x), with clusters C = {ck : k ∈ V}

and separators S = {skl : (kl) ∈ E}. To represent the marginal MAP problem under the

junction graph, we associate each max variable (i ∈ B) with a unique cluster ck (called a its

max-clusters) which include i (i.e., i ∈ ck). Let B be the set of max clusters; correspondingly,

call A = V \ B the sum-clusters. See Figure 6.5 for an illustration.

Let πk be the set of max variables assigned to cluster ck; note that {πk : k ∈ B} forms a

non-overlapping partition over the variable nodes B, that is, ∪k∈Vπk = B and πk ∩ πl =
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∅,∀k, l ∈ V . We can approximate the joint entropy H(x; τ ) and marginal entropy H(xB; τ ),

respectively, by

H(x; τ ) ≈
∑
k∈V

H(xck ; τ )−
∑

(kl)∈E

H(xskl ; τ ), H(xB; τ ) ≈
∑
k∈B

Hπk(τ ),

where H(xck ; τ ), H(xskl ; τ ) and Hπk(τ ) are the entropy of the local marginals τck , τskl and

τπk , respectively.

We then replace M with the locally consistent polytope L(C), which is the set of local

marginals τ = {τck , τskl : k ∈ V , (kl) ∈ E} that are consistent on the intersections of the

clusters and separators, that is,

L(C) = {τ :
∑
xck\skl

τck(xck) = τ(xskl), τck(xck) ≥ 0, for ∀ k ∈ V , (kl) ∈ E}.

Clearly, we have M ⊆ L(C) and that L(C) is tighter than the pairwise polytope L we used

previously.

Overall, the marginal MAP dual form in (6.3) is approximated by

max
τ∈L(C)

{
〈θ, τ 〉+

∑
k∈A

H(xck ; τ ) +
∑
k∈B

Hε(xck |xπk ; τ )−
∑

(kl)∈E

H(xskl ; τ )
}

(6.26)

where Hε(xck |xπk ; τ ) = H(xck ; τ ) − (1 − ε)H(xπk ; τ ), and ε is a small annealing param-

eter. Optimizing (6.26) using a method similar to the derivation of mixed-product BP in

Algorithm 6.2, and taking ε→ 0+, we obtain a “mixed-product” junction graph belief prop-

agation, given in Algorithm 6.7.

Remarks. (1) The mixed-product junction graph BP in Algorithm 6.7 differs in several

key ways from the mixed BP algorithms for pairwise models and factor graphs presented

earlier. In particular, Algorithm 6.7 requires a special step that assigns each max node to
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Algorithm 6.7 Mixed-product junction graph BP for marginal MAP

Input: A marginal MAP problem on a graphical model p(x) ∝
∏

ck∈C ψck(xck) and its
junction graph G = (V , E) with clusters C = {ck} and separators S = {skl}.
Output: An approximate marginal MAP solution x∗B.

1. Define an max/sum partition on the clusters: Assign each max node i ∈ B to a unique
max cluster ck ∈ B that includes i. Let A = V \B be the (remaining) sum clusters. Denote
by πk, k ∈ B the set of max nodes assigned to cluster ck.
2. Passing messages between clusters on the junction graph until convergence:

A → A∪ B:
(sum-product)

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)m∼k\l(xck),

B → A∪ B:
(argmax-product)

mk→l(xskl) ∝
∑
xck\skl

(ψck(xck)m∼k\l(xck)) · 1[xπk ∈ X ∗πk ],

where X ∗πk = arg max
xπk

∑
xck\πk

bk(xck),

bk(xck) = ψck(xck)
∏

k′∈∂(k)

mk′→k(xsk′k) and m∼k\l(xck) =
∏

k′∈∂(k)\{l}

mk′→k(xsk′k).

3. Decoding: x∗πk = arg max
xπk

∑
xck\πk

bk(xck) for ∀k ∈ B.

a unique cluster to form the max- / sum- cluster partition in the junction graph, and does

not reduce to the other mixed-product BP algorithms (for example, it consists of only two

types of message, rather than three). These differences can be viewed as a consequence of

the “simpler” entropy approximation to H(xB; τ ) selected for join graphs, which simplifies

the derivation.

(2) On the other hand, Algorithm 6.7 also admits an intuitive reparameterization interpre-

tation and a strong local optimality guarantee similar to the pairwise mixed-product BP in

Algorithm 6.2. In fact, Algorithm 6.7 is a special case of Algorithm 7.1 for solving maximum

expected utility tasks in decision networks, which we develop and study in detail in Chap-

ter 7. For this reason, we defer a more in-depth study of the algorithm to the next chapter;

see Chapter 7 for more details.
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6.8 Related Work

Expectation-maximization (EM) or variational EM provide one straightforward approach

for marginal MAP, by viewing the sum nodes as hidden variables and the max nodes as

parameters to be estimated; however, EM is prone to getting stuck at sub-optimal configu-

rations. We show that EM can be treated as a special case of our framework when a mean

field-like approximation is applied. Other classical state-of-the-art approaches include local

search methods [e.g., Park and Darwiche, 2004], Markov chain Monte Carlo methods [e.g.,

Doucet et al., 2002, Yuan et al., 2004], and variable elimination-based methods [e.g., Dechter

and Rish, 2003, Mauá and de Campos, 2012]. Jiang et al. [2011] proposed a hybrid message

passing algorithm that has a similar form to our mixed-product BP algorithm, but without

theoretical guarantees; we show in Section 6.3.3 that Jiang et al. [2011] can be viewed in

some sense as an approximation of the marginal MAP problem that exchanges the order of

sum and max operators. Another message-passing-style algorithm was proposed in Altarelli

et al. [2011] for general multi-stage stochastic optimization problems based on survey prop-

agation; compared to our approach, this algorithm has a relatively complex form (making

it more difficult to interpret) and also does not provide any known optimality guarantees.

Finally, Ibrahimi et al. [2011] introduces a robust max-product belief propagation for solving

a related worst-case robust optimization problem, in which the hidden variables are mini-

mized instead of marginalized. To the best of our knowledge, our work is the first general

variational framework for marginal MAP, and provides the first strong optimality guarantees.

6.9 Experiments

We illustrate our algorithms’ performance on both simulated models and more realistic

diagnostic Bayesian network models taken from the UAI’08 inference challenge. We show

that our Bethe approximation algorithms perform best among all the tested algorithms,
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including Jiang et al. [2011]’s hybrid message passing and a state-of-the-art local search

algorithm [Park and Darwiche, 2004].

6.9.1 Experiment Settings

We implement our mixed-product BP in Algorithm 6.2 with Bethe weights (mix-product

(Bethe)), the regular sum-product BP (sum-product), max-product BP (max-product) and

Jiang et al. [2011]’s hybrid message passing (with Bethe weights) in Algorithm 6.3 (Jiang’s

method), where the solutions are all extracted by maximizing the singleton marginals of

the max nodes. For all these algorithms, we run a maximum of 50 iterations; if they fail

to converge, we run 100 additional iterations with a damping coefficient of β = 0.1 (see

equation (3.19)). We initialize all these algorithms with 5 random initializations and pick

the best solution; for mix-product (Bethe) and Jiang’s method, we run an additional trial

initialized using the sum-product messages, which was reported to perform well in Park and

Darwiche [2004] and Jiang et al. [2011]. We also run the proximal point algorithm with both

H(xA|xB; τ ) and H(xB; τ ) approximated by Bethe approximations (Proximal (Bethe)),

which is Algorithm 6.5 with ρij = 1, ∀(ij) ∈ E and λt = 1, ∀t.

We also implement the TRW approximation, but only using the convergent proximal point

algorithm, because the TRW upper bounds are valid only when the algorithms converge.

The TRW weights of ĤA|B are constructed by first (randomly) selecting spanning trees of

GA, and then augmenting each spanning tree with one uniformly selected edge in ∂AB. The

TRW weights of ĤB(τ ) are constructed to be provably convex, by constructing monotonic

chains using a greedy method in Kolmogorov [2006, Section 4]: in short, we select a chain-

structured spanning tree of GB along a predefined node ordering such that it is not possible to

further extend the chain, after which we remove the edges of the given chain from the graph

and repeat the procedure until no edges are left; this constructs a set of chains that cover

the graph. We then assign each chain a uniform probability and calculate the corresponding
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edge appearance probability. We run all the proximal point algorithms for a maximum of 100

iterations, with a maximum of 5 iterations of weighted message passing updates (6.11)-(6.12)

for the inner loops (with 5 additional damped updates with 0.1 damping coefficient).

In addition, we compare our algorithms with SamIam, which is a state-of-the-art implemen-

tation of the local search algorithm for marginal MAP [Park and Darwiche, 2004]; we use

its default Taboo search method with a maximum of 500 searching steps, and report the

best results among 5 trials with random initializations, and one additional trial initialized

by its default method (which sequentially initializes xi by maximizing p(xi|xpai) along some

predefined order).

We also implement an EM algorithm, whose expectation and maximization steps are ap-

proximated by sum-product and max-product BP, respectively. We run EM with 5 random

initializations and one initialization by sum-product marginals, and pick the best solution.

6.9.2 Simulated Models

We consider pairwise models over discrete random variables taking values in {−1, 0,+1}n,

p(x) ∝ exp
[∑

i

θi(xi) +
∑

(ij)∈E

θij(xi, xj)
]
.

The value tables of θi and θij are randomly generated from normal distribution, θi(k) ∼

Normal(0, 0.01), θij(k, l) ∼ Normal(0, σ2), where σ controls the strength of coupling. Our

results are averaged on 1000 randomly generated sets of parameters.

We consider different choices of graph structures and max / sum node patterns:

1. Hidden Markov chains with 20 nodes (see Figure 6.6(a)), whose intractability was

illustrated in Figure 3.2.

2. Latent tree models. We generate random trees of size 50, by finding the minimum span-

176



ning trees of random symmetric matrices with elements drawn from Uniform([0, 1]).

We take the leaf nodes to be max nodes, and the non-leaf nodes to be sum nodes. See

Figure 6.7(a) for a typical example.

3. 10×10 Grid with max and sum nodes distributed in two opposite chess board patterns

shown in Figure 6.8(a) and Figure 6.9(a), respectively. In Figure 6.8(a), the sum part

is a loopy graph, and the max part is a (fully disconnected) tree; in Figure 6.9(a), the

max and sum parts are flipped.

The results on the hidden Markov chain are shown in Figure 6.6, where we plot in panel

(b) their relative energy errors defined by Q(x̂B;θ) − Q(x∗B;θ), where x̂B is the solution

returned by the algorithms, and x∗B is the true optimum, and in panel (c) different algorithms’

percentages of obtaining the globally optimal solutions among 1000 random trials.

The results of the latent tree models and the two types of 2D grids are shown in Figure 6.7,

Figure 6.8 and Figure 6.9, respectively. On these problems, although it is tractable to

evaluate Q(x̂B;θ) for fixed x̂B (since G is a tree), it is intractable to calculate the globally

optimal solution x∗B due to the large A-B constrained induced width. Therefore, we report

the approximate relative error defined by Q(x̂B;θ)−Q(x̃B;θ), where x̃B is the best solution

we found across all algorithms.

6.9.3 Diagnostic Bayesian Networks

We also test our algorithms on two diagnostic Bayesian networks taken from the UAI08

Inference Challenge, where we construct marginal MAP problems by randomly selecting

varying percentages of nodes to be max nodes. Since these models are not pairwise, we

implement the junction graph versions of mix-product (Bethe) and proximal (Bethe)

shown in Section 6.7. Figure 6.10 shows the approximate relative errors of our algorithms

and local search (SamIam) as the percentage of the max nodes varies.
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Figure 6.6: (a) A marginal MAP problem defined on a hidden Markov chain with 20 nodes,
similar to Figure 3.2. (b) The relative energy errors of the different algorithms, and the
upper bounds obtained by Proximal (TRW) as a function of coupling strength σ. (c) Differ-
ent algorithms’ probabilities of obtaining the globally optimal solution among 1000 random
trials. Mix-product (Bethe), Proximal (Bethe) and Local Search (SamIam) almost al-
ways (with probability ≥ 99%) found the optimal solution. (Figure best viewed in color.)

6.9.4 Insights

Across all the experiments, we find that mix-product (Bethe), proximal (Bethe) and

local search (SamIam) significantly outperform all the other algorithms, while proximal

(Bethe) outperforms the two others in some circumstances. In the hidden Markov chain

example in Figure 6.6, these three algorithms almost always (with probability ≥ 99%) find

the globally optimal solutions. However, the performance of SamIam tends to degrade when
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Figure 6.7: (a) A typical latent tree model, whose leaf nodes are taken to be max nodes
(white) and non-leaf nodes to be sum nodes (shaded). (b) The approximate relative en-
ergy errors of different algorithms, and the upper bound obtained by Proximal (TRW) as a
function of coupling strength σ.

the max part has loopy dependence structures (see Figure 6.9), or when the number of

max nodes is large (see Figure 6.10), both of which make it difficult to explore the solution

space by local search. On the other hand, mix-product (Bethe) tends to deteriorate as the

coupling strength σ increases (see Figure 6.9), probably because its convergence behavior

gets worse as σ increases.

We note that our TRW approximation gives much less accurate solutions than the other

algorithms, but is able to provide an upper bound on the optimal energy. Similar phenomena

have been observed for TRW-BP in standard max- and sum- inference.

The hybrid message passing of Jiang et al. [2011] is significantly worse than mix-product

(Bethe), proximal (Bethe) and local search (SamIam), but is otherwise the best among

the remaining algorithms. EM performs similarly to (or sometimes worse than) Jiang’s

method.

The regular max-product BP and sum-product BP are among the worst of the tested al-

gorithms, indicating the danger of approximating mixed-inference by pure max- or sum-

inference. Interestingly, the performances of max-product BP and sum-product BP have
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Figure 6.8: (a) A marginal MAP problem defined on a 10× 10 Ising grid, with shaded sum
nodes and unshaded max nodes; note that the sum part is a loopy graph, while max part
is fully disconnected. (b) The approximate relative errors of different algorithms and the
upper bound obtained by Proximal (TRW) as a function of coupling strength σ.
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Figure 6.9: (a) A marginal MAP problem defined on a 10 × 10 Ising grid, but with max /
sum part exactly opposite to that in Figure 6.8; note that the max part is loopy, while the
sum part is fully disconnected in this case. (b) The approximate relative errors of different
algorithms and the upper bound obtained by Proximal (TRW) as a function of coupling
strength σ.

opposite trends: In Figure 6.6, Figure 6.7 and Figure 6.8, where the max parts are fully

disconnected and the sum parts are connected and loopy, max-product BP usually performs

worse than sum-product BP, but gets better as the coupling strength σ increases; sum-

product BP, on the other hand, tends to degrade as σ increases. In Figure 6.9, where the

max / sum pattern is reversed (resulting in a larger, loopier max subgraph), max-product

BP performs better than sum-product BP.
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Figure 6.10: The results on two diagnostic Bayesian networks (BNs) in the UAI08 inference
challenge. Top: The network structures of Diagnostic BN-1 and BN-2, each with 50%
randomly selected sum nodes shaded. Bottom: The performances of algorithms on the two
BNs as a function of the percentage of max nodes. The local search method tends to degrade
when the number of max nodes is large, making it difficult to search over the solution space.
Results are averaged over 100 random trials.

6.10 Conclusions and Future Directions

We leverage the variational representation of marginal MAP to develop a series of efficient

message passing algorithms for marginal MAP. In particular, we show that our proposed

“mixed-product” BP admits appealing theoretical properties and performs well in practice.

Our general methodology makes it possible to extend most or all existing variational approx-

imation and optimization techniques to marginal MAP, opening new doors to develop even

more efficient algorithms.
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Future Directions. This work opens many potential directions, in terms of both improving

marginal MAP algorithms and applying them to real world problems with uncertain hid-

den variables. For example, mixed-product BP tends to have poor convergence properties,

perhaps due to its special argmax update; advanced scheduling strategies, such residual BP,

may be applicable to improve the convergence. Example 6.1 showed that mixed-product BP

is equivalent to a coordinate descent method on a simple chain model. It is a straightfor-

ward exercise to extend this result to general trees, and this may also shed light on how to

improve the convergence of mixed-product BP. To this end, it may also be worthwhile to

explore connections to the sequential tree reweighted BP algorithm [Kolmogorov, 2006]. On

the application side, models and problems with hidden variables or missing information are

increasingly common, and marginal MAP provides a general tool for dealing with the un-

certainty in these cases; for example, our work in Ping et al. [2014] leveraged mixed product

BP to improve structured prediction with hidden variables and partially labelled data. In

addition, one view of recently popular “deep networks” is to treat them as graphical models

with large numbers of hidden variables; it would be interesting to see if the marginal MAP

perspective can be applied in these cases, e.g., by explicitly training (approximate) marginal

MAP predictors to minimize the empirical loss function.
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Chapter 7

Variational Message Passing For

Structured Decision Making

Chapter 6 has demonstrated some of the significant advantages of using variational ap-

proaches to derive novel, efficient algorithms for marginal MAP. In this chapter, we adopt a

similar framework to solve the even more general and challenging decision making problem

for influence diagrams (IDs), based on the variational representation in Theorem 4.3. As in

Chapter 6, we develop an array of algorithms, including standard message passing and con-

vergent proximal point versions, and analyze their optimality properties theoretically. We

demonstrate that our approach is surprisingly powerful for solving decision making problems,

even for decision networks with imperfect recall, in which the variational optimization can

be shown to be non-convex in general. In particular, we find that our MEU-BP algorithms

are superior to the standard single policy update method, both empirically and theoretically.

The chapter is organized as follows. Section 7.1 reviews some necessary background and sets

up notation. We then develop an MEU-BP algorithm in Section 7.2, and then a proximal

point algorithm in Section 7.3. Section 7.5 discusses some related work. Finally, we present

numerical experiments in Section 7.6 and conclude the chapter in Section 7.7. Proofs and

additional details can be found in Appendix C.
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7.1 Background

We briefly review some background on decision networks, the MEU task, and its variational

representation; see also Section 2.3 and Chapter 4 for more comprehensive introductions.

An influence diagram (ID), also known as a decision network, includes a set of decision

variables xD and random variables xR, on which we define a conditional probability p(xR|xD)

and a utility function u(xR,xD); the product qu(x) := p(xR|xD)u(xR,xD) is called the

utility-augmented distribution. Each decision variable xi, i ∈ D has a parent set pa(i), which

indicates the set of observable variables when making decisions on xi; therefore, the decision

policy on xi can be written as a conditional table δi(xi|xpa(i)). The maximum expected utility

(MEU) task is to find an optimal decision strategy δ = {δi(xi|xpa(i)) : i ∈ D} to maximize

the expectation of the utility functions; letting θ(x) = log qu(x), the MEU can be written

MEU(θ) = max
δ∈∆

∑
x

exp(θ(x))
∏
i∈D

δ(xi|xpa(i)), (7.1)

Theorem 4.3 showed an equivalent variational representation for the MEU task,

log MEU(θ) = max
τ∈M

{
〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )
}
. (7.2)

This is in general a non-convex optimization on τ for IDs with imperfect recall (LIMIDs),

but is guaranteed to be convex for IDs with perfect recall. The subsequent sections focus on

developing BP type algorithms by approximating and optimizing this variational form.

For the purpose of developing variational algorithms, we assume qu(x) has a factorized form,

i.e., qu(x) =
∏

α∈C ψα(xα) = exp(
∑

α∈I θα(xα)), where C is a set of cliques on x. This

assumption is naturally satisfied by multiplicative utility functions, but may be problematic

for additive utilities and requires additional treatment; we discuss this issue in Section 7.4.
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7.2 A Belief Propagation Algorithm for MEU

We start by extending the junction graph framework for representing decision making prob-

lems; this is done by introducing special “decision clusters” that represent the decision com-

ponent. Let (G, C,S) be a junction graph for the augmented distribution qu(x) ∝ exp(θ(x)).

For each decision node i ∈ D, we associate it with exactly one cluster k ∈ C satisfying

{i, pa(i)} ⊆ ck; we call such a cluster a decision cluster. The clusters C are thus partitioned

into decision clusters D and the other (normal) clusters R = C \ D. We will assume each

decision cluster k ∈ D is associated with exactly one decision node, denoted by dk, and hence

there is an one-to-one mapping from the decision clusters D to the decision nodes D; this is

easy to ensure during the junction graph construction.

For convenience in deriving message passing type algorithms, we consider the annealed ver-

sion of the MEU variational form

log MEU(θ) = max
τ∈M

{
〈θ, τ 〉+H(x; τ )− (1− ε)

∑
i∈D

H(xi|xpa(i); τ )
}
, (7.8)

where ε is a small positive temperature parameter. Following the junction graph framework

in Section 3.2.3, we approximate the annealed variational form (7.8) by

max
τ∈L(G)

{〈θ, τ 〉+
∑
k∈R

H(xck ; τ ) +
∑
k∈D

Hε(xck ; τ )−
∑

(kl)∈E

H(xskl ; τ )}, (7.9)

where Hε(xck ; τ ) = H(xck ; τ )− (1− ε)H(xdk |xpa(dk); τ ), ∀k ∈ D.

Note that (7.9) is similar to the objective of the regular sum-product junction graph BP

in (3.37), except that the regular entropy term H(xck ; τ ) is replaced by Hε(xck ; τ ) on the

decision clusters. Using a Lagrange multiplier method similar to Yedidia et al. [2005], one can

derive a belief propagation algorithm for maximizing (7.9), which we call MEU-BP, shown
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Algorithm 7.1 Belief propagation for MEU (at temperature ε)

Input: An influence diagram with a junction graph; an annealing parameter ε.
Output: An optimal solution τ of variational form (7.9).

1. Until convergence, pass messages between clusters on the junction graph:

Sum-product messages (from normal clusters k ∈ R):

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)m∼k\l(xck), (7.3)

MEU-product messages (from decision clusters k ∈ D):

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)m∼k\l(xck) · δε(xdk |xpa(ck))
1−ε, (7.4)

where ψck(xck) = exp(θck(xck)), and m∼k\l(xck) =
∏

k′∈N (k)\{l}mk′→k(xsk′k) is the product

of messages sent into cluster k not including that from cluster l. The δε(xdk |xpa(dk)) is an
“annealed” optimal policy defined based on the current messages:

δε(xdk |xpa(dk)) =
bck(xdk∪pa(dk))

1/ε∑
xdk

bck(xdk∪pa(dk))1/ε
, bck(xdk∪pa(dk)) =

∑
xck\{dk∪pa(dk)}

ψck(xck)m∼k(xck),

where m∼k(xck) =
∏

k′∈N (k) mk′→k(xsk′k), the product of all the messages into cluster k.

2. Decode the optimal solution τ :

τck(xck) ∝ ψck(xck)m∼k(xck), for normal clusters (k ∈ C); (7.5)

τck(xck) ∝ ψck(xck)m∼k(xck) · δε(xdk |xpa(ck))
1−ε, for decision clusters (k ∈ D); (7.6)

τskl(xskl) ∝ mk→l(xskl)ml→k(xskl), for all the separators ((kl) ∈ E). (7.7)

in Algorithm 7.1 (see Appendix C for the detailed derivation). Algorithm 7.1 includes a

temperature parameter ε: one can either adopt a deterministic annealing approach [Rose,

1998] by gradually decreasing ε, e.g., taking εt = 1/t at iteration t, or directly take the limit

ε→ 0+, leading to the simpler message updates shown in Algorithm 7.2.

Our MEU-BP algorithm consists of a hybrid of two types of message updates: a regular sum-

product message in (7.3), and a special MEU-related message in (7.4). Both message updates

admit an intuitive interpretation: the sum-product message (7.3) corresponds to calculating

the expected utility given fixed policies by marginalizing over the chance nodes, while the
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Algorithm 7.2 Mixed belief propagation for MEU (at zero temperature)

Input: An influence diagram with a junction graph.
Output: An approximately optimal decision policy δ∗.

1. Until convergence, pass messages between clusters on the junction graph:

Sum messages (from normal clusters k ∈ C):

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)m∼k\l(xck),

MEU messages (from decision clusters k ∈ C):

mk→l(xskl) ∝
∑
xck\skl

ψck(xck)m∼k\l(xck) · 1[xdk ∈ arg max bck(xdk |xpa(dk))],

where m∼k\l(xck) =
∏

k′∈N (k)\{l}mk′→k(xsk′k), the product of messages sent into cluster k

not including that from cluster l, and bck(xdk |xpa(dk)) is the conditional distribution as per
the current local belief bck(xck) ∝ ψck(xck)

∏
k′∈N (k) mk′→k(xsk′k).

2. Decode the strategy: δ∗ = {arg maxxdk
bck(xdk |xpa(dk)) : k ∈ D}.

Note: in case the results of arg max are not unique, the policies are soft decision rules that
chooses the local maxima with equal probabilities.

MEU-product message (7.4) calculates an (“annealed”) optimal policy δε(xdk |xpa(ck)) based

on the incoming messages, and then passes a message in order to evaluate the resulting

expected utility.

Compared to traditional algorithms such as SPU or local search methods, which treat the

utility evaluation (marginalization) steps as inner loops of the strategy improving (MEU)

steps, our algorithm simultaneously takes steps both on the marginalization and MEU sub-

problems. This has three important advantages. First, it avoids the potentially wasteful high

cost of the inner loops, allowing policies to be optimized as the messages needed to compute

expectations are still being propagated. Second, and perhaps more importantly, it becomes

trapped at local optima much less often than SPU: the “soft” message updates allow the

algorithm to see how changes in one policy may affect others, leading to better local optima

in practice (see discussion in Section 7.3 and experiments in Section 7.6). Finally, the explicit
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message-passing form of BP methods is well-suited to creating distributed implementations,

empowering large-scale computation.

7.2.1 Reparameterization Properties and Optimality Certi�cates

Both sum-product BP and max-product BP can usefully be interpreted as reparameteriza-

tion operators, with fixed points satisfying some consistency property yet leaving the joint

distribution unchanged [e.g., Wainwright et al., 2003a, Weiss et al., 2007, Liu and Ihler,

2013]. In this section, we study the reparameterization properties of our MEU-BP, based on

which some optimality guarantees will be presented.

We start by defining a set of beliefs b = {bck(xck), bskl(xskl) : k ∈ C, (kl) ∈ S} as functions of

the messages (in the same way as regular sum-product BP),

bck(xck) ∝ ψck(xck)
∏

l∈N (k)

ml→k(xskl), for all clusters k ∈ C,

bskl(xskl) ∝ mk→l(xskl)ml→k(xskl), for all separators (kl) ∈ E ,

(7.10)

Note that the “beliefs” b are different from the “marginals” τ defined in (7.5)-(7.7).

Lemma 7.1. (1). At each iteration of MEU-BP in Algorithm 7.1, the MEU-beliefs b as

defined in (7.10) satisfy

Reparameterization: qu(x) ∝
∏

k∈V bck(xck)∏
(kl)∈E bskl(xskl)

, (7.11)

where qu(x) is the augmented distribution of the influence diagram.
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(2). At any fixed point of the MEU-BP in Algorithm 7.1, we have

Sum-consistency :

bskl(xskl) =
∑
xck\skl

bck(xck), ∀ normal clusters k ∈ R, (7.12)

MEU-consistency :

bskl(xskl) =
∑
xck\skl

bck(xck)δε(xdk |xpa(dk))
1−ε, ∀ decision clusters k ∈ D. (7.13)

Proof. (1). By simple algebraic substitution,

∏
k∈V b(xck)∏

(kl)∈E b(xskl)
∝
∏

k∈V ψck(xck)
∏

l∈N (k) ml→k(xskl)∏
(kl)∈E mk→l(xskl)ml→k(xskl)

=
∏
ck∈C

ψck(xck) ∝ qu(x).

(2). Simply substitute the definition (7.10) of b into the message updates in (7.3)-(7.4).

The reparameterization property can be used to derive optimality certificates for MEU-BP.

To this end, we need some notation. A partial ordering on the cluster nodes V is called a

tree-order of the junction tree if we have that k � l iff the unique path from a special cluster

(called root) to l passes through k. For any cluster k ∈ V , its unique neighbor on the path to

the root is called its parent, denoted by π(k). Given a subset of decision nodes D′ ⊆ D in the

influence diagram, a junction tree is said to be consistent on D′ if there exists a tree-order

satisfying sk,π(k) ⊆ pa(dk) for any dk ∈ D′, where dk is the decision node associated with

(decision) cluster k.

Theorem 7.1. Let (G, C,S) be a junction tree consistent on a subset of decision nodes D′.

If Algorithm 7.2 (MEU-BP with ε→ 0+) converges, then the decoded δ∗ is a locally optimal

strategy in the sense that EU({δD′ , δ∗D\D′}) ≤ EU(δ∗) for any δD′.

Proof. See the appendix.
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A junction tree is said to be globally consistent if it is consistent for the whole set D of

decision nodes, in which case Theorem 7.1 ensures a globally optimal strategy; this notion

of global consistency is similar to strong junction trees in Jensen et al. [1994]. For IDs with

perfect recall, a globally consistent junction tree can be constructed by a standard procedure

which triangulates the DAG of the ID along reverse temporal order. For IDs without perfect

recall, it is usually not possible to construct a globally consistent junction tree.

However, the following theorem shows that for general IDs with arbitrary junction trees,

Theorem 7.1 implies regular policy-by-policy optimality, indicating that MEU-BP is at least

as “optimal” as SPU.

Theorem 7.2. Let (G, C,S) be an arbitrary junction tree, and δ∗ the strategy given by MEU-

BP in Algorithm 7.2 at its convergence. Then δ∗ is a policy-by-policy optimal strategy in the

sense that EU({δi, δ∗D\i}) ≤ EU(δ∗) for any i ∈ D and δi.

Proof. This follows since any junction tree is consistent for any single decision node i ∈ D,

by taking a tree-ordering rooted at i’s decision cluster.

7.3 Proximal Point Algorithms for MEU

One disadvantage of MEU-BP is that it has no guarantees on convergence. In this section,

we present a class of convergent algorithms based on the proximal point approach [e.g.,

Martinet, 1970, Rockafellar, 1976]. This section is an direct generalization of the proximal

point techniques for marginal MAP in Section 6.4.

To review briefly, the proximal point algorithm solves an optimization minτ∈M f(τ ), where

f(τ ) is our variational objective function, by iteratively solving a sequence of “proximal”
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Algorithm 7.3 Proximal point algorithm for MEU

Input: An influence diagram.
Output: An optimal decision policy δ∗.

Define the proximal coefficients {λt}, e.g., wt = 1, or λt = 1/t.
Initialize the local marginals τ 0.
for iteration t do

θt(x) = θ(x) + λt
∑
i∈D

log τ t(xi|xpa(i)), (7.15)

τ t+1 = arg max
τ∈M

{〈θt, τ 〉+H(x ; τ )− (1− λt)H(xi|xpa(i) ; τ )}, (7.16)

end for
Decode the strategy: δ∗ = {τ t(xi|xpa(i)) : i ∈ D}.

problems whose solutions converge to the solution of the target problem,

τ t+1 = arg min
τ∈M

{f(τ ) + λtD(τ ||τ t)}, (7.14)

where τ t is the solution at iteration t and λt is a positive number called the proximal

coefficient; D(·||·) is the proximal function. See Section 6.4 for more details on the proximal

point method.

As in Chapter 6, we use an entropic proximal function that naturally fits the MEU problem:

D(τ ||τ ′) =
∑
i∈D

∑
x

τ(x) log

[
τ(xi|xpa(i))

τ ′(xi|xpa(i))

]
,

which is a sum of conditional KL-divergences between the policies over the decision nodes.

Algorithm 7.3 shows the corresponding proximal point algorithm when applied to the MEU

dual (7.2). Note that the inner proximal update (7.16) has the same form as the annealed

approximation in (7.9), and hence can be readily solved by MEU-BP in Algorithm 7.1.

However, unlike the annealing scheme, the proximal algorithm updates use different natural

parameter values θt at each iteration, and it does not require λt to approach zero.

We use two choices of proximal coefficients {λt}: (1) wt = 1 (constant), and (2) λt = 1/t
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(harmonic). The choice λt = 1 is especially interesting because the proximal update reduces

to a standard marginalization dual form τ t+1 = arg maxτ∈M{〈θt, τ 〉+H(x; τ )}, with solution

τ t+1(x) ∝ exp(θt+1); one can simply perform marginalization on τ (x) to get its marginals

{τ(xi, xpa(i))} by standard tools such as sum-product BP or bucket elimination, without

considering the MEU’s temporal elimination order restrictions. Concretely, one can show

that the proximal update in this case reduces to

τ t+1
i (xi|xpa(i)) ∝ τ ti (xi|xpa(i))E(u(x)|x{i}∪pa(i) ; δn¬i),

with E(u(x)|x{i}∪pa(i) ; δn¬i) as defined in (2.5). This proximal update has an elegant intuition

as a “soft” and “parallel” version of the greedy SPU update (2.5). However, it is worth noting

that convergence with λt = 1 may be slow; using λt = 1/t takes larger steps but the proximal

update (7.16) is no longer a standard marginalization.

Remark. We can gain some intuition about the advantages of our approach by considering

the difference between the proximal update with λt = 1 and the greedy SPU update. SPU

updates a single decision node, selecting a new, deterministic policy (a “hard threshold”) to

optimize the expected utility. The proximal update, on the other hand, updates all policies

simultaneously; multiplying by the expectation (instead of selecting its largest entry) has the

effect of moving the policies towards, but not all the way to, what that expectation currently

indicates as their best deterministic policy. Intuitively, the soft update makes it possible

for the effects of the updated policies to be measured at the other decision nodes, before

becoming “locked in”, allowing them to correct for early mistakes and make cooperative

movements. The hard update, on the other hand, can quickly become stuck at local optima;

this is analogous to the behavior of EM discussed in Section 6.5, which ensures deterministic

solutions at the risk of becoming stuck easily.
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7.4 Dealing with Additively Decomposable Utilities

The algorithms we described require the augmented distribution qu(x) to be multiplica-

tively factored, or have low (constrained) tree-width. However, this can easily fail to be the

case if using a direct representation of additively decomposable utilities. To explain, recall

that the augmented distribution is of the form qu(x) ∝ p(xR|xD)u(x), where p(xR|xD) =∏
i∈C p(xi|xpa(i)) is the probability of the chance nodes, and u(x) =

∑
j∈U uj(xβj) is the

additive utility. In this case, the utility u(x) creates a large factor with variable scope ∪jβj,

and can easily destroy the multiplicative factorization structure of qu(x). Unfortunately, the

näıve method of calculating the expectation node by node, or the commonly used general

variable elimination procedures [e.g., Jensen et al., 1994] do not appear suitable for our varia-

tional framework. To address this problem, we introduce an artificial multiplicative structure

into the utility function by augmenting the model with a latent “selector” variable, similar

to that used for the “complete likelihood” in mixture models. Let y0 be an auxiliary random

variable taking values in the utility index set U , so that the joint (unormalized) distribution

of {x, y0} is

q̃u(x, y0) = p(xR|xD)
∏
j

ũj(xβj , y0), (7.17)

where ũj(xβj , y0) =


uj(xβj), if y0 = j,

1, if y0 6= j.

It is easy to verify that the marginal distribution of q̃u(x, y0) on x is qu(x), that is, qu(x) =∑
y0∈U q̃u(x, y0). The tree-width of q̃u(x, y0) is no larger than one plus the tree-width of

the DAG (with utility nodes included) of the ID, which is typically much smaller than that

of qu(x) when the additive utility u(x) is included directly. A derivation similar to that

in Theorem 4.3 shows that we can replace θ(x) = log qu(x) with θ̃(x) = log q̃u(x) in (7.2)
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without changing the results:

Corollary 7.1. Let q̃u(x, y0) be defined in (7.17), and θ̃(x, y0) = log q̃u(x, y0) its natural

parameter. Then for the log MEU of the original ID, we have

log MEU = max
τ∈M̃
{〈θ̃, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )},

where M̃ is the marginal polytope over x ∪ y0. If τ ∗ is an optimal solution, then

δ∗ = {τ ∗(xi|xpa(i)) : i ∈ D}

is an optimal strategy of the original ID.

Proof. We can directly apply Theorem 4.3, but with the utility-augmented distribution

p(xR|xD)u(x) replaced by q̃u(x, y0).

Therefore, we can apply the algorithms we developed on q̃u(x, y0), instead of qu(x). The

complexity of this method may be further improved by exploiting the context-specific inde-

pendence of q̃u(x, y0), i.e., that q̃u(x|y0) has a different dependency structure for different

values of y0, but this is left for future work.

7.5 Related Work

There exists a large body of work on solving influence diagrams, mostly considering exact

algorithms for IDs with perfect recall; see Koller and Friedman [2009] for a recent review.

The exact version of our algorithm in the case of perfect recall is most closely connected to the

early work of Jensen et al. [1994], who compile an ID into a junction tree structure on which a

special message passing algorithm is performed; their notion of strong junction trees is related
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to the notion of global consistency we develop in Section 7.2.1. However, their framework

requires the perfect recall assumption and it is unclear how to extend it to approximate

inference. A somewhat different approach transforms the decision problem into a sequence of

standard Bayesian network inference problems [e.g., Cooper, 1988, Shachter and Peot, 1992,

Zhang, 1998], where each subroutine is a standard inference problem, and can be solved using

standard inference algorithms, either exactly or approximately; again, however, their method

only works within the perfect recall assumption. Several other approximation algorithms are

also based on separately approximating individual components of exact algorithms, e.g.,

Sabbadin et al. [2011] and Sallans [2003] approximate policy update methods by mean field

methods; Nath and Domingos [2010] use adaptive belief propagation to approximate the

inner loop of greedy search algorithms. Dechter [2000a,b] apply bucket elimination and

mini-bucket approximation algorithms to IDs with perfect recall. Watthayu [2008] proposes

a loopy BP algorithm, but without theoretical justification. To the best of our knoweldge,

our method is the first to “directly” approximate both the evaluation of the expectations

and the policy optimization in a single, joint framework.

For IDs without perfect recall (LIMID), backward induction based methods do not apply.

Most existing algorithms work by optimizing the decision rules node-by-node or group-by-

group [e.g., Lauritzen and Nilsson, 2001, Madsen and Nilsson, 2001, Koller and Milch, 2003];

these methods reduce to exact backward induction (hence guaranteeing global optimality)

when applied to IDs with perfect recall and updated backwards along the temporal ordering.

However, they only guarantee local person-by-person optimality (or Nash equilibrium if

treating the team decision problem as a cooperative game) for general LIMIDs, which can be

weaker than the optimality guaranteed by our BP-like methods. Other styles of approaches,

such as Monte Carlo methods [e.g., Bielza et al., 1999, Cano et al., 2006, Charnes and Shenoy,

2004, Garcia-Sanchez and Druzdzel, 2004] and search-based methods [e.g., Luque et al., 2008,

Qi and Poole, 1995, Yuan and Wu, 2010, Marinescu, 2010] have also been proposed. Recently,
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Maua and de Campos [2011] proposed a method for finding the globally optimal strategies

of LIMIDs by iteratively pruning non-maximal policies. Finally, some variational inference

ideas have been applied to the related problems of reinforcement learning or solving Markov

decision processes [e.g., Sallans and Hinton, 2001, Furmston and Barber, 2010, Yoshimoto

and Ishii, 2004].

7.6 Experiments

We demonstrate our algorithms on several influence diagrams, including randomly generated

IDs, large scale IDs constructed from problems in the UAI08 inference challenge, and finally

practically motivated IDs for decentralized detection in wireless sensor networks. We find

that our algorithms typically find better solutions than SPU with comparable or better time

complexity; for large scale problems with many decision nodes, our algorithms are usually

more computationally efficient than SPU because one step of SPU requires re-computing

(2.5) (a global expectation) for each decision node’s update.

In all experiments, we test single policy updating (SPU), our MEU-BP running directly at

zero temperature (BP-0+), annealed BP with temperature εt = 1/t (Anneal-BP-1/t), and

the proximal versions with λt = 1 (Prox-BP-one) and λt = 1/t (Prox-BP-1/t). For the BP-

based algorithms, we use two constructions of junction graphs: a standard junction tree by

triangulating the DAG in backwards topological order, and a loopy junction graph following

[Mateescu et al., 2010] that corresponds to Pearl’s loopy BP; for SPU, we use the same

junction graphs to calculate the inner update (2.5). The junction trees ensure the inner

updates of SPU and Prox-BP-one are performed exactly, and have the optimality guarantees

given in Theorem 7.1, but may be computationally more expensive than using loopy junction

graphs with smaller cliques. For the proximal versions, we set a maximum of 5 iterations

in the inner loop; changing this value did not seem to lead to significantly different results.
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Figure 7.1: Results on random IDs of size 20. The y-axes show the log MEU of each algorithm
compared to SPU on a junction tree. The left panels correspond to running the algorithms
on junction trees, and right panels on loopy junction graphs. (a) & (b) show MEUs as the
percentage of decision nodes changes. (c) & (d) show MEUs vs. the Dirichlet parameter α.
The results are averaged on 20 random models.

The BP-based algorithms may return non-deterministic strategies; we round to deterministic

strategies by taking the largest values.

7.6.1 Random Bayesian Networks

We test our algorithms on randomly constructed IDs with additive utilities. We first generate

a set of random DAGs of size n = 20 with maximum parent size of ω = 3, by sequentially

assigning each node a randomly chosen parent set of size ω′, with ω′ drawn uniformly in

[1 : ω], along a predefined node ordering. To create IDs, we take the leaf nodes to be utility
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Figure 7.2: A typical trajectory of MEU (of the rounded deterministic strategies) vs. iter-
ations for the random IDs in Figure 7.1. One iteration of the BP-like methods denotes a
forward-backward induction on the junction graph; one step of SPU requires |D| (number of
decision nodes) inductions. SPU and BP-0+ are stuck at a local mode after the 2nd iteration.

nodes, and among non-leaf nodes we randomly select a fixed percentage to be decision nodes,

with the others being chance nodes. We assume the chance and decision variables are discrete

with 4 states. The conditional probability tables of the chance nodes are randomly drawn

from a symmetric Dirichlet distribution Dir(α), and the entries of the utility function from

Gamma distribution Γ(α, 1).

The relative improvement in log MEU compared to SPU with a junction tree are reported in

Figure 7.1. We find that when using junction trees, all our BP-based methods dominate SPU;

for loopy junction graphs, BP-0+ occasionally performs worse than SPU, but all the annealed

and proximal algorithms outperform SPU with the same loopy junction graph, and often even

SPU with a junction tree. As the percentage of decision nodes increases, the improvement of

the BP-based methods on SPU generally increases. Figure 7.2 shows a typical trajectory of

the algorithms across iterations, in which we can see that both SPU and BP-0+ become stuck

at a local optimum after the second iteration, while the annealed and proximal algorithms

continue to improve, providing better solutions at convergence. Here the algorithms were

initialized uniformly; random initializations behaved similarly and have been omitted.
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Figure 7.3: Results on IDs constructed from two diagnostic Bayes nets (BNs) from the
UAI08 challenge. Here all the algorithms used the loopy junction graph and are initialized
uniformly. (a)-(b) the logMEU of algorithms normalized to that of SPU. Averaged on 10
random trails.

7.6.2 Diagnostic Bayesian Networks

We construct larger scale IDs based on two diagnostic Bayes nets taken from the UAI08

inference challenge, with 200-300 nodes and 300-600 edges, respectively. To create influence

diagrams, we took the leaf nodes to be utility nodes, and define the utility functions by the

conditional probabilities when clamped to a randomly chosen state, and total utility as the

product of the local utility functions (multiplicatively decomposable). The set of decision

nodes is again randomly selected among the non-leaf nodes with a fixed percentage. Since

the network sizes are large, we only run the algorithms on the loopy junction graphs. Again,

our algorithms significantly improve on SPU; see Figure 7.3.

7.6.3 Decentralized Sensor Network

In this section, we test an influence diagram constructed for decentralized detection in wire-

less sensor networks [e.g., Viswanathan and Varshney, 1997, Kreidl and Willsky, 2006]. The

task is to detect the states of a hidden process p(h) (specified as a pairwise MRF) using a

set of distributed sensors; each sensor provides a noisy measurement vi of the local state hi,
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and overall performance is boosted by allowing the sensor to transmit small (1-bit) signals si

along an directional path, to help the predictions of their downstream neighboring sensors.

The utility function includes rewards for correct prediction and a cost for sending signals.

This MEU problem here is a highly challenging team decision problem, which requires sig-

nificant cooperation between the sensors: for example, a sensor should only send a signal

to another sensor if the receiver can decode and leverage the signal properly. We construct

an ID as sketched in Figure 7.5(a) for addressing the offline policy design task of finding

optimal policies for how to predict the states based on the local measurement and received

signals, and policies for whether and how to pass signals to downstream nodes.

Setting. In detail, we assume that the distribution p(h) of the hidden variables is an

attractive pairwise MRF on a graph Gh = (Vh, Eh),

p(h) =
1

Z
exp

[ ∑
(ij)∈Gh

θij(hi, hj)
]
, (7.18)

where the hi are discrete variables with ph states (we take ph = 5); we set θij(k, k) = 0 and

randomly draw θij(k, l) (k 6= l) from the negative absolute values of a standard Gaussian

variable N (0, 1). Each sensor gives a noisy measurement vi of the local variable hi with

probability of error ei, that is, p(vi|hi) = 1 − ei for vi = hi and p(vi|hi) = ei/(ph − 1)

(uniformly) for vi 6= hi.

Let Gs be a DAG that defines the path on which the sensors are allowed to broadcast signals;

all the downstream sensors receive the same signal, and we assume the channels are noise

free. Each sensor is associated with two decision variables: si ∈ {0,±1} represents the

signal sent from sensor i, where ±1 represents a one-bit signal with cost η and 0 represents

“off” with no cost; and di represents the prediction of hi based on vi and the signals spas(i)

received from i’s upperstream sensors; a correct prediction (di = hi) yields a reward γ (we set

γ = ln 2). Hence, two types of utility functions are involved, the signal cost utilities uη, with
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uη(si = ±1) = −η and uη(si = 0) = 0; the prediction reward utilities uγ with uγ(di, hi) = γ if

di = hi and uγ(di, hi) = 0 otherwise. The total utility function is constructed multiplicatively

via u = exp[
∑

i uγ(di, hi) + uη(si)].

We also create two qualities of sensors: “good” sensors for whose error rate ei is drawn from

U([0, .1]) and “bad” sensors (ei ∼ U([.7, .8])), where U is the uniform distribution. Generally

speaking, the optimal strategies should pass signals from the good sensors to bad sensors to

improve their predictive power. See Figure 7.4 for the actual influence diagram.

Note that the definition of the ID here is not a standard one, since p(h) is not specified as a

Bayesian network; one could convert p(h) to an equivalent Bayesian network by the standard

triangulation procedure, with some loss in representational efficiency. The normalization

constant Z in (7.18) only changes the expected utility function by a constant and so does

not need to be calculated for the purpose of the MEU task.

Specifying Junction Graphs. For our experiments, when computationally feasible we use

an exact junction tree constructed by standard triangulation, backwards along ordering o,

o = [h1, v1, d1, s1 ; . . . ; hnh , vnh , dnh , snh ],

which is consistent with the signal path Gh. We also use a loopy junction graph, which can

be made computationally tractable by definition. A fully automated construction of a loopy

junction graph is non-trivial; we show in Figure 7.4(c) the one we use in our experiments.

It is constructed such that the decision structure inside each sensor node is preserved ex-

actly, while at a higher level (among sensors), a standard loopy junction graph similar to

that introduced in Mateescu et al. [2010] (corresponding to Pearl’s loopy BP) captures the

correlation between the sensor nodes. One can shown that this junction graph reduces to a

junction tree when the MRF Gh is a tree and the signal path Gs is an oriented tree.
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(b) The influence diagram constructed for the sensor network in (a). (c) A junction graph for the ID
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parent set in terms of the hidden process p(h) (when p(h) is transformed into a Bayesian network
by triangulating reversely along order o). The decision clusters (black rectangles) are labeled with
their corresponding decision variables on their top.
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Results. We first test on a sensor network defined on a small, 3 × 3 grid, where the algo-

rithms are run on both the exact junction tree and the loopy junction graph in Figure 7.4.

To escape the “all-zero” fixed point that sends no signals at all, we initialize the proximal

algorithms and SPU with 5 random policies, and BP-0+ and Anneal-BP-1/t with 5 random

messages. Figure 7.5(b)-(c) show the performance of the different algorithms as the signal

unit cost is varied; we observe two different trends as the signal unit cost changes:

1. When the signal cost is high (e.g., > 0.2), the optimal strategy is to send no signals and

simply make independent local decisions; the problem is relatively easy in this case,

and all the algorithms returns the same communication-free strategy and perform the

same.

2. The much more interesting region is when the signal cost is low (e.g., < 0.2), and

communication becomes beneficial. In this case, the optimal strategy should cause the

sensors to send the “right” number of signals, which depends on their own confidence

and their neighbors’ needs, and to correctly decode and combine the signals from the

other sensors. This makes the problem a very challenging collaborative decision prob-

lem, and the various algorithms tend to behave very differently. In particular, the two

proximal BPs and BP-0+ perform significantly better than the other algorithms, indi-

cating that they are able to find better strategies and enable the sensors to collaborate

efficiently.

Interestingly, Anneal-BP-1/t performs relatively poorly here, with no significant improve-

ment over the baseline SPU. This is because annealed BP always starts by solving a sum-

product BP (since λt = 1 for t = 1), whose result is relatively insensitive to the initialization,

making it unable to benefit significantly from multiple random initializations. This problem

can be fixed by a “perturbed” annealed method that injects a random perturbation into

the model, and gradually decreases the perturbation level across iterations (Anneal-BP-1/t

(Perturbed)); to explain briefly, we take a randomly drawn policy δ0 = {δ0(xi|xpa(xi)) : i ∈
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Figure 7.5: Experiments on sensor network detection (3×3 grid). (a) A toy sensor network
on 3 × 3 grid; green lines denote the MRF edges of the hidden process p(h), on some of
which (red arrows) signals are allowed to pass; each sensor may be accurate (blue) or noisy
(black). Optimal strategies should pass signals from accurate sensors to noisy ones but
not the reverse. (b)-(c) The log MEU of algorithms running on (b) a exact junction tree
and (c) the loopy junction graph shown in Fig. 7.4(c). As the signal cost increases, all
algorithms converge to the communication-free strategy; for lower signal costs, our proposed
BP algorithms perform best. Results averaged on 10 random trials.
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Figure 7.6: Experiments on sensor network detection (random graph). (a) A larger sensor
network, defined on a random graph with 30 nodes; the MRF edges overlap with the signal
paths. (b) The log MEU of the various algorithms (best of 5 initializations), run on the loopy
junction graph shown in Fig. 7.4(c). Again, as the signal cost increases, all algorithms con-
verge to the communication-free strategy; for lower signal costs, the proposed BP algorithms
significantly dominate SPU. Results averaged over 5 random trials.
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D}, and replace the factor of each decision cluster ψck(xck), ∀k ∈ D in MEU-message update

(7.4) with ψ̂ck(xck) = ψck(xck)δ
0(xi|xpa(xi))

1/t at iteration t of annealed BP, so that ψ̂ck is

perturbed from the true ψck initially, but gradually reduces back to ψck as the iteration

number t increases. We repeat (Anneal-BP-1/t (Perturbed)) with 5 random δ0, so the δ0

play a role similar to the random initial policies in the proximal point methods.

A similar experiment, but with only the loopy junction graph, is performed on a larger

randomly generated graph in Figure 7.6; the algorithm performances follow a trend similar

to that of Figure 7.5. SPU performs even worse in this case (much worse, even, than

Anneal-BP-1/t). Investigating, we find that this is mostly because it appears to over-send

signals when multiple “good” sensors connect to one “bad” sensor.

7.7 Conclusions and Future Directions

In this chapter we derive a general variational framework for influence diagrams, for both the

“convex” centralized decisions with perfect recall and “non-convex” decentralized decisions.

We derive several BP-type algorithms, but equally importantly open the door for many

others that can be applied within our framework. Since our algorithms decompose the global

problems into local ones, they also open the possibility of efficient, distributed algorithms.

Future Directions. Structured decision problems will only become more important in the

future, as data, systems, and models become increasingly complex. Our general framework

opens many new opportunities for future research, including developing even more efficient

algorithms by using more advanced (distributed) optimization techniques, as well as exten-

sions to related problems such as infinite horizon decision problems and multiplayer games

(e.g., graphical games). See Cheng et al. [2013] for a recent example where we adapted our

techniques to solve graph-based Markov decision problems (MDPs).
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Chapter 8

Conclusions and Future Directions

In this thesis, we derived a set of general variational representations for various inference and

decision making problems, based on which we developed a spectrum of novel and efficient

approximation algorithms, including weighted mini-bucket elimination and a set of efficient

mixed-product belief propagation algorithms for marginal MAP estimation and MEU policy

optimization in decision networks.

Viewed at a high level, our contributions include:

• We derive a unified perspective and variational forms for hybrid inference problems, al-

lowing variational approximation techniques to be applied to many new and important

problem domains, and resulting in several powerful new algorithms for these problems.

• Our weighted mini-bucket technique highlights the connections between elimination-

based and variational approximation algorithms, allowing the advantages of each to be

flexibly balanced and resulting in significant improvements over either in practice.

• By allowing positive or negative weights, weighted mini-bucket also includes upper

bounds, related to convex variational methods such as tree-reweighted BP, and lower

bounds, related to structured mean field, demonstrating additional connections be-

tween these methods.

Our work opens many potential directions for future research, both in terms of improving
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our current algorithms, and applying our results and techniques to solve other challenging

problems such as learning with intractable likelihoods or hidden variables, graph-based games

and partially observable Markov decision processes. While each chapter discusses some open

questions and future directions for that component of the thesis, here we discuss some of the

larger open directions for research.

Improvements to Our Methods

There are several potential directions to improve our algorithms to give even tighter bounds,

or more efficient algorithms.

Improving Weighted Mini-bucket. The quality of weighted mini-bucket can be greatly

influenced by the mini-bucket partition policy, which decides the variable scopes of the

mini-buckets and the Markov structure of the augmented model. We used the simple scope-

based heuristic in our algorithm, but it is worth to study the possibility of developing more

efficient partition heuristics, perhaps based on our moment and entropy matching conditions,

as well as the potential for iterative “re-partitioning” of the buckets (in addition to the factor

reallocation). Additional research in this direction could provide significant improvements

in the resulting bounds.

Another interesting problem relates to the increased difficulty in tightening the lower bounds.

Although tightening the upper bounds reduces to a convex optimization, optimizing the

lower bounds results in a significantly more challenging problem, including searching over

an exponential number of disconnected subdomains and non-convex local search inside each

subdomain. Although we derived a local optimization algorithm within subdomains, we

still lack an efficient algorithm or heuristic to “jump” between the subdomains, which could

achieve significantly better results. One possibility would be to extend the heuristic used in

negative TRBP, where a similar problem arises; see Liu and Ihler [2010] for further discussion.
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Improving Marginal MAP. Related to marginal MAP, one problem of mixed-product BP

is that it can (and often does) fail to converge in practice. Although we proposed proxi-

mal point algorithms with convergence guarantees, they are relatively slow when the inner

loops are expensive, and do not fully exploit the advantage of our variational framework.

An important direction would be to derive efficient, single-loop algorithms, with better or

guaranteed convergence. Various convergence techniques that have been developed for max-

and sum- inference may be applied to address this problem, including convergent convex

sum-product/max-product BPs [e.g., Meltzer et al., 2009, Hazan and Shashua, 2010], dual

decomposition methods [e.g., Sontag et al., 2011, Komodakis et al., 2011], and and more

recent augmented Lagrangian methods [e.g., Meshi and Globerson, 2011, Aguiar et al., 2011,

Forouzan and Ihler, 2013].

Improving Decision Making. One critical issue in using our variational framework for

MEU in influence diagrams is its difficulty when applied on additive utility functions. Al-

though we gave a method to address this problem, additive utilities are so common and

important in practice that further improvement, or alterative approaches may be useful to

develop.

Learning Graphical Models From Data

Although this thesis focuses on the inference and decision making problems of given graphical

models, the problem of constructing, or learning graphical models from empirical data is also

an important research area. Our techniques and results open several promising directions

on improving or deriving new learning algorithms.

Learning with Weighted Mini-bucket. First, the likelihood-based learning methods for

graphical models are generally intractable due to the difficulty of calculating the log partition

function. Variational approximation methods such as loopy BP and TRBP have been widely
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applied to approximate the intractable likelihood, yielding surrogate likelihood methods. Our

weighted MBE bound can be readily applied for this purpose, and can produce an efficient

algorithm due to its simple, closed form representation. In addition, by increasing the ibound,

weighted MBE provides a sequence of increasingly accurate bounds at the cost of increasing

computational effort, providing a flexible way to trade off between model correctness and

computational cost, or alternatively, between bias and variance in learning. An interesting

recent study is performed in Gelfand et al. [2013], where they demonstrate a “free lunch”

scenario, where a cheaper but less accurate approximate inference (weighted MBE with lower

ibound) performs better than the more expensive and accurate approximation when used for

learning in small datasets, as the former exhibits smaller variance and is more robust to

model mis-specification.

Marginal MAP and Learning with Hidden Variables. Our results on marginal MAP also

imply an array of possibilities for improving learning associated with hidden variables or

missing information. An example of this is exploited in our recent work [Ping et al., 2014],

where we use mixed-product BP to derive a novel marginal structured SVM algorithm for

predicting structured objectives with hidden variables. Many additional directions are also

possible. For example, the marginal MAP problem itself can be treated as a learning prob-

lem that finds the optimal “parameter” (the max nodes), maximizing a likelihood objective

that marginalizes the hidden variables (the sum nodes). The superiority of our algorithm

compared to EM and variational EM that we demonstrated in Section 6.5 suggests a possi-

bility of deriving mixed-product BP analogues for learning with hidden variables that find

better local optima than EM. A key challenge to address is that most model parameters

are continuous variables, and hence require new versions of mixed-product BP that work for

continuous-valued max variables.

In addition, the recently popular deep networks, such as the deep Boltzmann machine, can be

treated as graphical models with large numbers of hidden variables. Currently, marginaliza-
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tion over these hidden variables is mostly performed approximately by Markov chain Monte

Carlo (MCMC) or mean field type methods [Salakhutdinov and Hinton, 2012]. It would be

interesting to see if the marginal MAP perspective can be applied in these cases, e.g., by

explicitly training (approximate) marginal MAP predictors to minimize the empirical loss.

Graph-based Games and Markov Decision Processes

While this thesis studied several decision-making systems, there is substantial room to extend

our methods to non-cooperative multi-agent settings and infinite-horizon planning.

Graph-based Games and Adversarial Learning. The hybrid tasks we considered in the

thesis involve combinations of sum and max operators, both of which correspond to powered

sums with positive weights (w = 1, and w → 0+, respectively). However, many impor-

tant practical problems, especially these associated with games or adversarial learning, also

involve min operators, corresponding to a negative weight (w → 0−). For example, an im-

portant extension of influence diagrams is the multi-agent influence diagram representation

[Koller and Milch, 2003], which, in the zero-sum, two-players setting, involves both min

and max for the two players’ decisions, and sum for averaging over random variables. Other

related examples are in robust or adversarial learning, which require us to maximize a worse-

case objective against an adversary that wishes to degrade (min) the results [e.g., Ibrahimi

et al., 2011]. Our Theorem 4.2 derived a general variational representation for both positive

and negative weights, providing an opportunity to develop new and efficient algorithms in

these settings.

Graph-based Markov Decision Processes. An influence diagram provides a general rep-

resentation for partially observable Markov decision processes with finite, discrete time

horizons. But many practical control and planing problems are defined on infinite, some-

times continuous time horizons. Another, largely open direction is to extend our variational
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methodology to these more general problems. An initial approach is presented in our recent

work [Cheng et al., 2013], but more theoretical and algorithmic developments along these

directions could be greatly in demand.
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G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1988.

C. Sutton and A. McCallum. Machine Learning, 77(2-3):165–194, 2009.

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. Information Theory, IEEE
Transactions on, 49(5):1120–1146, 2003a.

J. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

M. Schmidt. UGM matlab toolbox, 2007. URL http://people.cs.ubc.ca/~schmidtm/

Software/UGM.html.

A. Gelfand, R. Dechter, and A. Ihler. Does better inference mean better learning? In NIPS
Workshop on Perturbations, Optimization, and Statistics (POS), Dec 2013.

T. Werner. A linear programming approach to max-sum problem: A review. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29(7):1165–1179, 2007.

T. Werner. Revisiting the linear programming relaxation approach to Gibbs energy mini-
mization and weighted constraint satisfaction. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(8):1474–1488, 2010.

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. MAP estimation via agreement on (hyper)
trees: Message-passing and linear programming approaches. IEEE Trans. Info. Theory,
51(11):3697 – 3717, Nov 2003b.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives.
Revue Française dInformatique et de Recherche Opérationelle, 4:154–158, 1970.

R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 14(5):877, 1976.

216

http://people.cs.ubc.ca/~schmidtm/Software/UGM.html
http://people.cs.ubc.ca/~schmidtm/Software/UGM.html


P. Ravikumar, A. Agarwal, and M.J. Wainwright. Message-passing for graph-structured
linear programs: Proximal projections, convergence, and rounding schemes. Journal of
Machine Learning Research, 11:1043–1080, Mar 2010.

M. Teboulle. Entropic proximal mappings with applications to nonlinear programming.
Mathematics of Operations Research, 17(3):pp. 670–690, 1992.

A. Iusem and M. Teboulle. On the convergence rate of entropic proximal optimization
methods. Computational and Applied Mathematics, 12:153–168, 1993.

P. Tseng and D.P. Bertsekas. On the convergence of the exponential multiplier method for
convex programming. Mathematical Programming, 60(1):1–19, 1993.

D.R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 1
(58), February 2004.

T. Meltzer, A. Globerson, and Y. Weiss. Convergent message passing algorithms: a unifying
view. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI),
2009.

T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-passing
for approximate inference. Information Theory, IEEE Transactions on, 56(12):6294–6316,
2010.

V. Jojic, S. Gould, and D. Koller. Accelerated dual decomposition for MAP inference. In
Proceedings of the 27th International Conference on Machine Learning (ICML), 2010.

B. Savchynskyy, S. Schmidt, J.H. Kappes, and C. Schnörr. Efficient MRF energy mini-
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Appendix A

Derivations and Proofs

for Weighted Mini-bucket

A.1 Derivation of the Entropy Matching Condition

We derive the entropy matching condition (5.20) as a necessary condition for optimal weight

values in weighted mini-bucket, both when minimizing the upper bound or maximizing the

lower bound:

Upper bound: min
w̄

Φ̄w(θ̄, w̄) s.t. w̄ ∈ W+
, (A.1)

Lower bound: max
w̄

Φ̄w(θ̄, w̄) s.t. w̄ ∈ W− := ∪W−[κ1···κn]. (A.2)

To represent the optimization in W+
and W− in a unified way, we denote by s̄ir the sign

of w̄ir enforced by W+
or each W−[κ1···κn]. That is, we set s̄ir = 1 for all ir for optimization

over W+, and s̄iκi = 1, s̄ir = −1 for all r 6= κi for optimization over W−[κ1···κn]. Then, the

optimization of weights in W+
and each W−[κ1···κn] can be both written as

min
{w̄ir}

Φ̄w(θ̄, w̄) s.t.
∑
r

w̄ir = 1, s̄irw̄ir ≥ 0, ∀ir. (A.3)
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Using the derivative result in Theorem 5.1, the KKT condition of {w̄ir} in (A.3) gives

−Hir|≺ = −µir s̄ir + λi (Stationarity) , (A.4)

µir(−s̄irw̄ir) = 0 (Complementary Slackness) , (A.5)∑
r

w̄ir = 1 (Primal Feasibility), (A.6)

µir ≥ 0 (Dual Feasibility), (A.7)

where µir and λi are the KKT multipliers. Then, by multiplying (A.4) by w̄ir and summing

over r, we get

−
∑
r

w̄irHir|≺ = −
∑
r

µir s̄irw̄ir + λi(
∑
r

w̄ir).

Plugging (A.5) and (A.6) into the above gives

−
∑
r

w̄irHir|≺ = λi,

and hence

µir s̄ir = Hir|≺ −
∑
r

w̄irHir|≺.

Plugging this into (A.5), we get the entropy matching condition,

w̄ir [Hir|≺ −Hi|≺] = 0,

where Hi|≺ =
∑

r w̄irHir|≺ is the average entropy over the replicates. Therefore, the condi-

tional entropies Hir|≺ of the replicates should be matched to each other, unless the weight

w̄ir equals zero.
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A.2 Proof of Theorem 5.2(2)

Theorem 5.2. (2). For fixed w̄ > 0, we have

min
θ̄∈Θ

Φ̄w(θ̄, w̄) = max
τ∈L(G)

{
〈τ, θ〉+

n̄∑
k=1

w̄kH(xΓ(k)|x̄Γ(ck\{k}), τ)
}
. (A.8)

i.e., the optimal choice of θ̄ has a dual form representable in terms of the polytope, marginals,

and conditional entropies defined on the cliques of the junction graph G.

Proof. Using the the result of Theorem 5.2(2), we have

min
θ̄∈Θ

Φ̄w(θ̄, w̄) = min
θ̄∈Θ

max
τ̄∈L(Ḡ)

{
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄)
}

= max
τ̄∈L(Ḡ)

min
θ̄∈Θ

{
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄)
}

= max
τ̄∈L(Ḡ)

{
min
θ̄∈Θ
〈τ̄ , θ̄〉+

n̄∑
k=1

w̄kHw(x̄k|x̄ck\{k}, τ̄)
}
. (A.9)

For ∀α ∈ I, let {αr} be the collection of replicates of α included in the augmented cliques

Ī. Given an initial θ̄
0 ∈ Θ, we write an arbitrary θ̄ ∈ Θ as θ̄ = θ̄

0
+
∑

α

∑
r ϑαr , where

ϑ ∈ {ϑ :
∑

r ϑαr(xα) = 0,∀α ∈ I, xα ∈ Xα}. Here, ϑαr can be considered as a reallocation of

factors among the replicates. Noting that the inner min of θ̄ in (A.9) involves only a linear

form, we have

min
θ̄∈Θ
〈τ̄ , θ̄〉 = 〈τ̄ , θ̄0〉+ min

ϑ

∑
α

∑
r

〈ταr , ϑαr〉

where ταr are the marginals of τ̄ over xαr . The minimum of the linear form is negative

infinity unless the ταr are equal for all the replicates of α, that is, τ̄ should be in a set

Dτ = {τ̄ : ∀α ∈ I, ∃ some τα, s.t. ταr = τα for all r}. Therefore, the optimization in (A.9)
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is equivalent to

max
τ̄∈L(Ḡ)∩Dτ

〈τ̄ , θ̄〉+
n̄∑
k=1

w̄kH(x̄k|x̄ck\{k}; τ̄)

Equivalently, this optimization can be collapsed to an optimization over the original model,

max
τ∈L(G)

〈τ, θ〉+
n̄∑
k=1

w̄kH(x̄k|x̄c0k , τ)

Note that τ is now defined in the space of the marginals on the original model p(x).
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Appendix B

Derivations and Proofs

for Marginal MAP

B.1 Proof of Proposition 6.2

Proposition 6.2. Assuming wi and wij are strictly positive, the stationary points of (6.9)

satisfy the fixed point condition of the following message passing update,

Message Update: mi→j(xj)←
[∑

xi

(ψi(xi)m∼i(xi))
1
wi

(ψij(xi, xj)
mj→i(xi)

) 1
wij

]wij
, (B.1)

Marginal Decoding:

τi(xi) ∝
[
ψi(xi)m∼i(xi)

] 1
wi , τij(xi, xj) ∝ τi(xi)τj(xj)

[
ψij(xi, xj)

mi→j(xj)mj→i(xi)

] 1
wij

, (B.2)

where m∼i(xi) :=
∏
k∈∂i

mk→i(xi) is the product of messages sent into node i, and ∂i is the set

of neighboring nodes of i.

Proof. The proof parallels the proof of Theorem 3.1. The Lagrangian of (6.9) w.r.t. the local

224



consistency constraint
∑

xi
τij(xi, xj) = τj(xj) is

〈θ, τ 〉+
∑
i∈V

[wiHi(τ ) +λ0
i

∑
xi

τi(xi)]−
∑

(ij)∈E

[wijIij(τ ) +
∑
xj

λi→j(xj)(
∑
xi

τij(xi, xj)− τj(xj))],

where {λ0
i : i ∈ V } and {λj→i(xi) : (ij) ∈ E, xi ∈ Xi} are the Lagrange multipliers. Then,

recall that

〈θ, τ 〉 =
∑
i∈V

θi(xi)τi(xi) +
∑

(ij)∈E

θij(xi, xj)τij(xi, xj),

Hi(τ ) = −
∑
xi

τi(xi) log τi(xi),

Iij(τ ) =
∑
xi,xj

τij(xi, xj) log
τij(xi, xj)∑

xi
τij(xi, xj)

∑
xj
τij(xi, xj)

.

Taking the derivative of the Lagrangian w.r.t. τi(xi) and τij(xi, xj), we have

θi(xi)− wi log τi(xi) +
∑
j∈∂i

λj→i(xi) = const, (B.3)

θij(xi, xj)− wij log
τij(xi, xj)

τi(xi)τj(xj)
− λi→j(xj)− λj→i(xi) = const, (B.4)

where we used the local consistency condition that
∑

xj
τij(xi, xj) = τi(xi). By defining

mi→j(xj) = exp(λi→j(xj)), we obtain (B.2) directly from (B.3)-(B.4).

Plugging (B.2) into the constraint that
∑

xj
τij(xi, xj) = τi(xi) gives (B.1).

B.2 Proof of Theorem 6.1

Theorem 6.1. Suppose the sum part GA is a tree, and we approximate ΦAB(θ) using

Φtree(θ) as defined in (6.7). Assume that (6.7) is globally optimized; then:

1. We have Φtree(θ) ≥ ΦAB(θ). If there exists x∗B such that Q(x∗B;θ) = Φtree(θ), we have
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Φtree(θ) = ΦAB(θ), and x∗B is a globally optimal marginal MAP solution.

2. Suppose τ ∗ is a global maximum of (6.7), and {τ ∗i (xi) : i ∈ B} have integer values,

i.e., τ ∗i (xi) = 0 or 1. Then, {x∗i = arg maxxi τ
∗
i (xi) : i ∈ B} is a globally optimal

solution of the marginal MAP problem (6.1).

Proof. (1). For τ ∈Mo (as defined in Corollary 6.1), the objective function in (6.7) equals

Ftree(τ ,θ) = 〈θ, τ 〉 +
∑
i∈V

Hi(τi)−
∑

(ij)∈EA

Iij(τij)−
∑

(ij)∈∂AB

ρijIij(τij)

= 〈θ, τ 〉 +
∑
i∈V

Hi(τi)−
∑

(ij)∈EA

Iij(τij) (B.5)

= 〈θ, τ 〉 +HA|B(τ ) (B.6)

= Fmix(τ ,θ),

where the equality in (B.5) is because Iij(τij) = 0 if ∀(ij) ∈ ∂AB, and the equality in

(B.6) is because the sum part GA is a tree and we have the tree decomposition HA|B =∑
i∈V Hi(τi)−

∑
(ij)∈EA Iij(τij). Therefore we have

Φtree(θ) = max
τ∈L

Ftree(τ ,θ) ≥ max
τ∈Mo

Ftree(τ ,θ) = max
τ∈Mo

Fmix(τ ,θ) = ΦAB(θ), (B.7)

where the inequality is because Mo ⊂M ⊂ L.

If there exists x∗B such that Q(x∗B;θ) = Φtree(θ), then we have

Q(x∗B;θ) = Φtree(θ) ≥ ΦAB(θ) = max
xB

Q(xB;θ).

This proves that x∗B is a globally optimal marginal MAP solution.

(2). Because τ ∗i (xi) for ∀i ∈ B are deterministic, and the sum part GA is a tree, we have

that τ ∗ ∈ Mo. Therefore the inequality in (B.7) is tight, and we can conclude the proof by
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using Corollary 6.1.

B.3 Proof of Theorem 6.3

Theorem 6.3. Suppose C is a subset of B such that GC∪A is a semi-A-B subtree, and the

weights {ρij} satisfy
1. ρij = 1 for (ij) ∈ EA;

2. 0 ≤ ρij ≤ 1 for (ij) ∈ EC∪A ∩ ∂AB;

3. {ρij : (ij) ∈ EC∪A ∩ EB} is provably convex.

At the fixed point of mixed-product BP in Algorithm 6.2, if the mixed-beliefs on the max

nodes {bi, bij : i, j ∈ B} defined in (6.16) all have unique maxima, then there exists a B-

configuration x∗B satisfying x∗i = arg max bi(xi) for ∀i ∈ B and (x∗i , x
∗
j) = arg max bij(xi, xj)

for ∀(ij) ∈ EB, and x∗B is locally optimal in the sense that Q(x∗B;θ) is not smaller than any

B-configuration that differs from x∗B only on C, that is, Q(x∗B;θ) = maxxC Q([xC , x
∗
B\C ];θ).

Proof. By Theorem 6.2, the beliefs {bi, bij} should satisfy the reparameterization property in

(6.17) and the consistency conditions in (6.18)-(6.20). Without loss of generality, we assume

{bi, bij} are normalized such that
∑

xi
bi(xi) = 1 for i ∈ A and maxxi bi(xi) = 1 for i ∈ B.

I) For simplicity, we first prove the case of C = B, when G = GC∪A itself is a semi A-B tree,

and the theorem implies that x∗B is a global optimum. By the reparameterization condition,

we have that

p(x) = p̂B(xB)p̂A|B(x),
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where

p̂B(xB) =
∏
i∈B

bi(xi)
∏

(ij)∈EB

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij
, (B.8)

p̂A|B(x) =
∏
i∈A

bi(xi)
∏

(ij)∈EA

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij ∏
(ij)∈∂AB

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij
. (B.9)

Note we have

p(xB) =
∑
xA

p(x) =
∑
xA

p̂B(xB)p̂A|B(x) = p̂B(xB)
∑
xA

p̂A|B(x).

We just need to show that x∗B maximizes p̂B(xB) and
∑
xA
p̂A|B(x), respectively.

First, since p̂B(xB) involves only the max nodes, a standard MAP analysis applies. Be-

cause the max part of the beliefs, {bi, bij : (ij) ∈ EB}, satisfy the standard max-consistency

conditions, and the corresponding TRW weights {ρij : (ij) ∈ EB} are provably convex by

assumption, we establish that x∗B is the MAP solution of p̂B(xB) by Theorem 1 of Weiss

et al. [2007].

Secondly, to show that x∗B also maximizes p̂A|B(x) requires the combination of the mixed-

consistency and sum-consistency conditions. Since G is a semi A-B tree, we denote by

πi the unique parent node of i (πi = ∅ if i is a root). In addition, let ∂A be the subset of

A whose parent nodes are in B, that is, ∂A = {i ∈ A : πi ∈ B}. Equation (B.9) can be

rewritten as

p̂A|B(x) =
∏

i∈A\∂A

bi,πi(xi, xπi)

bπi(xπi)

∏
i∈∂A

[
bi,πi(xi, xπi)

bπi(xπi)

]ρi,πi[
bi(xi)

]1−ρi,πi
,
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where we use the fact that ρij = 1 for (ij) ∈ EA. Therefore, we have for any xB ∈ XB,

∑
xA

p̂A|B(x) =
∑
xA

{ ∏
i∈A\∂A

bi,πi(xi, xπi)

bπi(xπi)

∏
i∈∂A

[
bi,πi(xi, xπi)

bπi(xπi)

]ρi,πi[
bi(xi)

]1−ρi,πi
}

=
∏
i∈∂A

∑
xi

[
bi,πi(xi, xπi)

bπi(xπi)

]ρi,πi[
bi(xi)

]1−ρi,πi
(B.10)

≤
∏
i∈∂A

[∑
xi

bi,πi(xi, xπi)

bπi(xπi)

]ρi,πi[∑
xi

bi(xi)

]1−ρi,πi
(B.11)

= 1, (B.12)

where the equality in (B.10) eliminates (by summation) all the interior nodes in A. The

inequality in (B.11) follows from Hölder’s inequality. Finally, the equality in (B.12) holds

because the sum part of beliefs {bi, bij : (ij) ∈ EA} satisfies the sum-consistency (6.18).

On the other hand, for any (i, πi) ∈ ∂AB, because x∗πi = arg maxxπi bπi(xπi), we have

bi,πi(xi, x
∗
πi

) = bi(xi) by the mixed-consistency condition (6.20). Therefore,

∑
xA

p̂A|B([xA,x
∗
B]) =

∏
i∈∂A

∑
xi

[
bi,πi(xi, x

∗
πi

)

bπi(x
∗
πi

)

]ρi,πi[
bi(xi)

]1−ρi,πi

=
∏
i∈∂A

[
1

bπi(x
∗
πi

)

]ρi,πi∑
xi

bi(xi)

= 1. (B.13)

Combining (B.12) and (B.13), we have
∑
xA
p̂A|B(x) ≤

∑
xA
p̂A|B([xA,x

∗
B]) = 1 for any

xB ∈ XB, that is, x∗B maximizes
∑
xA
p̂A|B(x). This finishes the proof for the case C = B.

II) In the case of C 6= B, let D = B \ C. We decompose p(x) into

p(x) = p̂B([xC ,xD])p̂A|C([xA,xC ])r̂AD([xA,xD])
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where p̂B(xB) and p̂A|B(x) are defined similarly to (B.8) and (B.9),

p̂B(xB) =
∏
i∈B

bi(xi)
∏

(ij)∈EB

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij
,

p̂A|C([xA,xC ]) =
∏
i∈A

bi(xi)
∏

(ij)∈EA

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij ∏
(ij)∈∂AC

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij
,

where πi is the parent node of i in the semi A-B tree GA∪C and ∂AC is set of edges across A

and C, that is, ∂AC = {(ij) ∈ E : i ∈ A, j ∈ C}. The term r̂AD(x) is defined as

r̂AD([xA,xD]) =
∏

(ij)∈∂AD

[
bij(xi, xj)

bi(xi)bj(xj)

]ρij
,

where similarly ∂AD is the set of edges across A and D.

Because x∗j = arg maxxj bj(xj) for j ∈ D, we have bij(xi, x
∗
j) = bi(xi) for (ij) ∈ ∂AD, j ∈ D by

the mixed-consistency condition in (6.20). Therefore, one can show that r̂AD([xA,x
∗
D]) = 1,

and hence

p([xA,xC ,x
∗
D]) = p̂B([xC ,x

∗
D])p̂A|C([xA,xC ]).

The remainder of the proof is similar to that for the case C = B: by the analysis in Weiss

et al. [2007], it follows that x∗C ∈ arg maxxC p([xC ,x
∗
D]), and we have previously shown that

x∗C ∈ arg maxxC
∑
xA
p̂A|C([xA,xC ]). This establishes that x∗C maximizes

∑
xA

p([xA,xC ,x
∗
D]) = p([xC ,x

∗
D])
∑
xA

p̂A|C([xA,xC ]),

which concludes the proof.
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B.4 Factor Graph BP for Marginal MAP

In this section, we derive the factor graph mixed-product belief propagation given in Algo-

rithm 6.6, Section 6.6.

Define εi = 1 for i ∈ A and εi = ε for i ∈ B. Using the KKT condition, one can show that

the optima of (6.25) satisfy

τi(xi) ∝ (ψi(xi)
∏
α∈∂i

mα→i(xi))
1/εi , ∀i ∈ A (B.14)

τα(xαA|xαB)τα(xαB)ε ∝ ψα(xα)
∏
i∈α

τi(xi)
εi

mα→i(xi)
, ∀α ∈ I, (B.15)

where ψi(xi) = exp(θi(xi)), ψα = exp(θα(xα)) and the factor-to-variable messages mα→i(xi)

are the exponential of the Lagrangian multipliers (via derivations similar to that of Algo-

rithm 6.2 for pairwise models). Let us define the variable-to-factor messages mi→α via

mi→α(xi) ∝
∏
i

ψi(xi)
∏

α′∈∂i\{α}

mα′→i(xi).

Combining this with (B.14) and (B.15) gives

τi(xi)
εi ∝ mα→i(xi)mi→α(xi), ∀i ∈ A (B.16)

τα(xαA|xαB)τα(xαB)ε ∝ ψα(xα)
∏
i∈α

mi→α(xi), ∀α ∈ I, (B.17)

Summing over xαA in (B.17) gives

τα(xαB)ε =
∑
xαA

ψα(xα)
∏
i∈α

mi→α(xi)
def
= bα(xαB)
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and hence

τα(xα) = τα(xαA|xαB)τα(xαB) = τα(xαA|xαB)τα(xαB)ε × τα(xαB)1−ε

∝ ψα(xα)
∏
i∈α

mi→α(xi) × bα(xαB)1/ε−1 (B.18)

Plugging (B.18) and (B.16) into the consistency constraint
∑
xα\{i}

τα(xα) = τi(xi), we get

(mα→i(xi)mi→α(xi))
1/εi ∝

∑
xα\{i}

ψα(xα)
∏
i′∈α

mi′→α(xi′)× bα(xαB)1/ε−1

This reduces to

for i ∈ A: mα→i(xi) ∝
∑
xα\{i}

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′)× bα(xαB)1/ε−1, (B.19)

for i ∈ B: mα→i(xi) ∝
[ ∑
xα\{i}

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′)×
bα(xαB)1/ε−1

mi→α(xi)1/ε−1

]ε
, (B.20)

Letting ε→ 0+, we get the message updates in Algorithm 6.6 (via derivations similar to that

of pairwise messages):

for i ∈ A: mα→i(xi) ∝
∑
xα\{i}

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′)× 1[xαB ∈ arg max
xαB

bα(xαB)], (B.21)

for i ∈ B: mα→i(xi) ∝ max
xαB\{i}

∑
xαA

ψα(xα)
∏

i′∈α\{i}

mi′→α(xi′), (B.22)

where (B.21) uses the fact that

lim
ε→0+

1

C1/ε

∑
x

g(x)f(x)1/ε =
∑
x

g(x)1[x ∈ arg max f(x)], where C = max
x

f(x),
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and (B.22) uses the fact that

lim
ε→0+

[∑
x

g(x)f(x)1/ε
]ε

= max
x

f(x),

for any finite positive functions f(x) and g(x).
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Appendix C

Derivations and Proofs

for Decision Making

C.1 Randomized vs. Deterministic Strategies

It is a well-known fact in decision theory that no randomized strategy can improve on the

utility of the best deterministic strategy, so that:

Lemma C.1. For any ID, maxδ∈∆ EU(δ) = maxδ∈∆o EU(δ).

Proof. Since ∆o ⊂ ∆, we need to show that for any randomized strategy δ ∈ ∆, there exists

a deterministic strategy δ′ ∈ ∆o such that EU(δ) ≤ EU(δ′). Note that

EU(δ) =
∑
x

q(x)
∏
i∈D

δi(xi|xpa(i)),

where q(x) is the augmented distribution. Thus, EU(δ) is linear on δi(xi|xpa(i)) for any

i ∈ D, with all the other policies fixed; therefore, one can always replace δi(xi|xpa(i)) with

some deterministic δ′i(xi|xpa(i)) without decreasing EU(δ). Doing so sequentially for all i ∈ D

yields to a deterministic rule δ′ with EU(δ) ≤ EU(δ′).
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One can further show that any (globally) optimal randomized strategy can be represented

as a convex combination of a set of optimal deterministic strategies.

C.2 Variational Representation of MEU

The following lemma is the “dual” version of Lemma C.1; it will be helpful for proving

Corollary 4.2 and Corollary 4.3.

Lemma C.2. Let Mo be the set of distributions τ(x) in which τ(xi|xpa(i)),∀i ∈ D are

deterministic (that is, τ(xi|xpa(i)) = 1 or 0). Then the optimization domain M in (4.19) of

Theorem 4.3 can be replaced by Mo without changing the result, that is,

log MEU(θ) = max
τ∈Mo
{〈θ, τ 〉+H(x; τ )−

∑
i∈D

H(xi|xpa(i); τ )}. (C.1)

Proof. Note that Mo corresponds to the set of deterministic strategies ∆o. The proof of

Lemma C.1 shows that there always exists at least one optimal deterministic strategy. This

implies that at least one optimal solution of (4.19) falls in Mo. The result follows.

Corollary 4.2. For an influence diagram with natural parameter θ, we have

log MEU(θ) = max
τ∈I
{〈θ, τ 〉+

∑
i∈C

H(xoi |xo1:i−1
; τ )},

where I = {τ ∈ M : xoi ⊥ xo1:i−1\pa(oi)|xpa(oi)}, corresponding to the distributions respecting

the imperfect recall structures (i.e., the decision variables only condition on their parent sets);

“x ⊥ y | z” means that x and y are conditionally independent given z.

Proof. For any τ ∈ I, we have H(xi|xpa(i); τ ) = H(xi|xo1:i−1
; τ ), hence by the entropic chain

rule, the objective function in (4.23) is the same as that in (4.19).
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Then, for any τ ∈ Mo, because τ(xoi |xpa(oi)),∀oi ∈ D is deterministic, we have 0 ≤

H(xoi |xo1:i−1
) ≤ H(xoi |xpa(oi)) = 0, which implies

I(xoi ;xo1:i\pa(oi)|xpa(oi)) = H(xoi |xpa(oi))−H(xoi |xo1:i−1
) = 0.

Therefore, we have Mo ⊆ I ⊆ M. We thus have that the LHS of (4.23) is no larger than

(4.19), while no smaller than (C.1). The result follows since (4.19) and (C.1) equal by

Lemma C.2.

Corollary 4.3. For any ε, let τ ∗ be an optimum of

max
τ∈M
{〈θ, τ 〉+H(x)− (1− ε)

∑
i∈D

H(xi|xpa(i))}.

If δ∗ = {τ ∗(xi|xpa(i))|i ∈ D} is a deterministic strategy, then it is an optimal strategy of the

influence diagram.

Proof. First, we have H(xi|xpa(i); τ ) = 0 for τ ∈ Mo and i ∈ D, since such τ(xi|xpa(i)) are

deterministic. Therefore, the objective functions in (4.24) and (C.1) are equivalent when the

maximization domains are restricted to Mo. The result follows by applying Lemma C.2.

C.3 Belief Propagation for MEU

We provide the derivation of MEU-BP in Algorithm 7.1 and Algorithm 7.2, and prove the

reparameterization property in Theorem 7.1 and the optimality guarantee in Theorem 7.1.
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C.3.1 Derivation of MEU-BP

We now derive the MEU-BP in Algorithm 7.1 for solving (7.9) using a Lagrange multiplier

method similar to Yedidia et al. [2005]. Consider the Lagrange function of (4.24),

∑
k∈R∪D

∑
xck

θck(xck)τck(xck) +
∑
k∈R

H(xck ; τ ) +
∑
k∈D

Hε(xck ; τ )−
∑

(kl)∈E

H(xskl ; τ ) +

∑
(kl)∈E

∑
xskl

λsk→l(xskl)[
∑
xck\skl

τck(xck)− τskl(xskl)],
(C.2)

where λsk→l(xskl) are the Lagrange multipliers for the local consistency constraints,

∑
xskl

τck(xck) = τskl(xskl), ∀k ∈ C, (kl) ∈ E , xskl ∈ Xskl , (C.3)

while the nonnegative and normalization constraints of τ are not included and are enforced

directly. Taking the gradient of (C.2) w.r.t. τck and τskl , one can show that

τck(xck) ∝ ψck(xck)m∼k(xck), for normal clusters (k ∈ C); (C.4)

τck(xck) ∝ ψck(xck)m∼k(xck) · δε(xdk |xpa(ck))
1−ε, for decision clusters (k ∈ D); (C.5)

τskl(xskl) ∝ mk→l(xskl)ml→k(xskl), for all the separators ((kl) ∈ E). (C.6)

where ψck(xck) = exp(θck(xck)), mk→l(xskl) = exp(λk→l(xskl)), and m∼k(xck) is the product

of messages sent into cluster ck from its neighboring clusters N (k) := {l ∈ C : (kl) ∈ E}, that

is, m∼k(xck) =
∏

l∈N (k) ml→k(xskl). Substituting the local consistency constraints in (C.3)

into (7.5)-(7.7) leads to the fixed point updates in (7.3)-(7.4).

It only remains to prove (C.4)-(C.6). The proofs of (C.4) for the normal clusters and (C.6)

for the separators are relatively straightforward: taking the gradient of (C.2) w.r.t. τck(xck)
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for ∀k ∈ R, and τskl(xskl) for ∀(kl) ∈ E , we have

θck(xck)− log τck(xck) +
∑
l∈N (k)

λl→k(xskl) + const = 0, ∀k ∈ R, xck ∈ Xck ,

log τskl(xskl)− λl→k(xskl)− λk→l(xskl) + const = 0, ∀(kl) ∈ E , xskl ∈ Xskl ,

which immediately leads to (C.4) and (C.6), respectively.

The proof of (C.5) for the decision clusters is more involved. Recall that

Hε(xck ; τ ) = H(xck ; τ )− (1− ε)H(xdk |xpa(dk); τ ),

Taking the gradient of (C.2) w.r.t. τck(xck) for ∀k ∈ D, we have

θck(xck)− log τck(xck) + (1− ε)τck(xdk |xpa(dk)) +
∑
l∈N (k)

λl→k(xskl) + const = 0, (C.7)

where here and in what follows τck(xck) and τck(xpa(dk)) are the conditional and marginalized

probabilities induced by τck(xck), respectively. Observe from (C.7) that

τck(xck) ∝ ψck(xck)m∼k(xck) · τck(xdk |xpa(dk))
1−ε. (C.8)

Therefore, we only need to prove that τck(xdk |xpa(dk)) = δε(xdk |xpa(ck)). Summing over

xck\{dk,pa(dk)} on both side of (C.8), we have

bck(xdk ,xpa(dk)) =
∑

xck\{dk,pa(dk)}

ψck(xck)m∼k(xck)

∝ τck(xdk ,xpa(dk))τck(xdk |xpa(dk))
ε−1

= τck(xpa(dk))τck(xdk |xpa(dk))
ε.

(C.9)
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Raising both sides of (C.9) to the power 1/ε and then summing over xdk , we have

[τck(xpa(dk))]
1/ε ∝

∑
xdk

[bck(xdk ,xpa(dk))]
1/ε. (C.10)

Combining (C.10) with (C.8), we obtain

τck(xdk |xpa(dk)) ∝
bck(xdk ,xpa(dk))

1/ε

[τck(xpa(dk))]1/ε

=
bck(xdk ,xpa(dk))

1/ε∑
xdk

bck(xdk ,xpa(dk))1/ε
= δε(xdk |xpa(dk)).

This concludes the proof of (C.5).

C.3.2 Correctness Guarantees

Theorem 7.1. Let (G, C,S) be a junction tree consistent on a subset of decision nodes D′.

If the MEU-BP (with zero temperature) in Algorithm 7.2 converges, then the decoded δ∗ is

a locally optimal strategy in the sense that EU({δD′ , δ∗D\D′}) ≤ EU(δ∗) for any δD′.

Proof. On a junction tree, the reparameterization in (6.17) can be rewritten as

q(x) = b0

∏
k∈V

bck(xck)

bsk(xsk)
,

where sk = sk,π(k) (sk = ∅ for the root node) and b0 is the normalization constant.

For notational convenience, we only prove the case when D′ = D, i.e., the junction tree is

globally consistent. More general cases follow similarly, by noting that any decision node

that is assigned a fixed decision rule can be simply treated as a chance node.
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First, we can rewrite EU(δ∗) as

EU(δ∗) =
∑
x

q(x)
∏
i∈D

δ∗i (xi|xpa(i))

= b0

∑
x

∏
k∈V

bck(xck)

bsk(xsk)

∏
i∈D

δ∗i (xi|xpa(i))

= b0

∑
x

{∏
k∈C

bck(xck)

bsk(xsk)

}
·
{∏
k∈D

bck(xck)δ
∗
i (xdk |xpa(dk))

bsk(xsk)

}
= b0,

where the last equality follows by sequentially (along the reverse of the tree-order of the junc-

tion tree) applying the sum- and MEU- consistency condition (with ε→ 0+) in Lemma 7.1.

To complete the proof, we just need to show that EU(δ) ≤ b0 for any δ ∈ ∆. Note that

EU(δ)/b0 =
∑
x

{∏
k∈C

bck(xck)

bsk(xsk)

}
·
{∏
k∈D

bck(xck)δdk(xdk |xpa(dk))

bsk(xsk)

}
≤
∏
k∈D

max
xsk

∑
xck\sk

bck(xck)δdk(xdk |xpa(dk))

bsk(xsk)
(C.11)

=
∏
k∈D

max
xsk

∑
x{dk,pa(dk)}\sk

bck(xdk ,xpa(dk))δdk(xdk |xpa(dk))

bsk(xsk)
(C.12)

≤
∏
k∈D

max
xsk

∑
x{dk,pa(dk)}\sk

bck(xdk ,xpa(dk))1[xdk ∈ arg max bck(xdk |xpa(dk))]

bsk(xsk)
(C.13)

= 1, (C.14)

where the inequality (C.11) is obtained by sequentially applying the sum-consistency con-

dition in Lemma 7.1, and the equality (C.12) holds because sk ⊆ pa(dk). The inequality

in (C.13) can be verified by simple algebra. Finally, the equality in (C.14) follows from the

MEU-consistency condition. This completes the proof.

Based to Theorem 7.1, we can easily establish person-by-person optimality of BP on an

arbitrary junction tree.
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Theorem 7.2. Let (G, C,S) be an arbitrary junction tree, and δ∗ the strategy given by

MEU-BP in Algorithm 7.2 at its convergence. Then δ∗ is a policy-by-policy optimal strategy

in the sense that EU({δi, δ∗D\i}) ≤ EU(δ∗) for any i ∈ D and δi.

Proof. Following Theorem 7.1, one need only show that any junction tree is consistent for

any single decision node i ∈ D; this is easily done by choosing a tree-ordering rooted at i’s

decision cluster.
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