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ABSTRACT

Many algorithms and applications involve repeatedly solving a variation of the same statis-

tical inference problem. Adaptive inference is a technique where the previous computations

are leveraged to speed up the computations after modifying the model parameters. This

approach is useful in situations where a slow-to-compute statistical model needs to be re-run

after some minor manual changes or in situations where the model is changing over time

in minor ways; for example while studying the e�ects of mutations on proteins, one often

constructs models that change slowly as mutations are introduced. Another important ap-

plication of adaptive inference is in situations where the model is being used iteratively;

for example in approximate inference we may want to decompose the problem into simpler

inference subproblems that are solved repeatedly and iteratively using adaptive updates.

In this thesis we explore both exact inference and iterative approximate inference ap-

proaches using adaptive updates. We �rst present algorithms for adaptive exact inference on

general graphs that can be used to e�ciently compute marginals and update MAP con�gu-

rations under arbitrary changes to the input factor graph and its associated elimination tree.

We then apply them to approximate inference using a framework called dual decomposition.

The key to our approach is a linear time preprocessing step which builds a data structure

called a cluster tree that can e�ciently be maintained when the underlying model is slightly

modi�ed. We demonstrate how a cluster tree can be used to compute any marginal in

time that is logarithmic in the size of the input model. Moreover, our approach can also

be used to update MAP con�gurations in time that is roughly proportional to the number

of updated entries, rather than the size of the input model. This fact enables us to use our

framework to speed up the convergence of dual-decomposition methods. Our technique is

also amenable to parallelism, and we explore its ability to utilize multi-core parallelism in

the context of dual-decomposition approximation methods.

The work in this thesis represents research performed in collaboration with Umut Acar,

Alexander Ihler, and Ramgopal Mettu.
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CHAPTER 1

INTRODUCTION

Statistical modeling has proven to be useful in numerous application areas in computer sci-

ence such as computational biology, computational learning theory and computer vision.

Since the models used by these applications usually involve many random variables, we use

graphical models to represent the conditional dependency relationships among the variables.

The graphical models enable us to not only represent the model succinctly but also solve

inference tasks more e�ciently than using exhaustive search on the joint probability distri-

bution. A graphical model is represented by a factor graph which is an undirected bipartite

graph connecting variables and factors. The joint probability distribution for the model can

be written as product of factors where each factor represents a local probability distribution

over the variables it is connected to. The two commonly studied inference tasks on graphical

models are computing the marginal probabilities and �nding the maximum a posteriori, or

MAP, con�gurations.

Considerable e�orts have been made to understand and minimize the computational com-

plexity of these inference tasks. However, in many applications we may need to repeatedly

perform inference on variations of essentially the same model. It is therefore desirable to

re-use as much information as we can from the previous computation while repeatedly solv-

ing the inference tasks. Adaptive inference refers to the problem of handling changes to the

model more e�ciently than performing inference from scratch. In this setting, the changes to

the model can be made either to model parameters (factors) or to the dependency structure

(adjacencies in the graph).

Adaptive inference arises in various computational biology applications such as mutage-

nesis. In mutagenesis, it is often desirable to study the e�ects of mutation on functional

or structural properties of a gene or protein. The sequence analysis of a gene is commonly

performed using a hidden Markov model while the analysis of proteins usually require a
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factor graph de�ned by the three-dimensional topology of the protein of interest. For both

of these types of models, each putative mutation gives rise to a new problem that is nearly

identical to the previously solved problem.

Another setting where repeatedly performing inference plays an important role is iterative

approximate inference, in particular dual-decomposition methods. These methods decompose

a complex model into a collection of simpler models (sub-graphs) that are forced to agree

on their intersections. By relaxing these constraints with Lagrange multipliers, one obtains

a bound on the optimal solution that can be iteratively tightened. Adaptive inference can

be used as a subroutine at each iteration which is especially useful if the successive models

di�er only on a small portion of the model.

The changes to the model described above can, of course, be handled by running known

inference algorithms from scratch after incorporating the changes into the model. However,

in general we may wish to assess thousands of potential changes to the model � for example,

the number of possible mutations in a protein structure grows exponentially with the number

of considered sites � and minimize the total amount of work required. It is therefore desirable

to handle these changes more e�ciently than performing inference from scratch. As a simple

example, suppose that we wish to compute the marginal distribution of a leaf node in a

Markov chain model with n variables. Using the standard dynamic programming algorithm,

upon a change to the conditional probability distribution at one end of the chain, we must

perform Ω(n) computation to compute the marginal distribution of the node at the other

end of the chain. In an adaptive setting, however, it might be worth utilizing additional

preprocessing time to restructure the underlying model in such a way that changes to the

model can be handled in time that is logarithmic, rather than linear, in the size of the model.

2



1.1 Problems addressed

This thesis primarily provides a technique to solve exact inference tasks e�ciently in the

adaptive setting. In particular we address the following problems and applications for a

given graphical model G = (X + F,E).

• We initially address the problem of adaptive computation of marginals in a graphical

model. We use a query/update framework for this problem. Each update operation

represents a single modi�cation either to the factors or to the graph structure by

inserting or deleting an edge. A query operation is performing marginalization on a

variable. Therefore, adaptively computing marginals refers to a collection of ` updates

operation followed by a single query operation.

• We then focus on �nding the maximum a posteriori (MAP) con�gurations. In this

setting we again allow multiple changes to be performed before we compute the updated

entries in the MAP con�guration. This problem, however, di�ers from the former

because the output size is no longer bounded and can be as large as the size of the

graph. Therefore, it is essential in this problem to �gure out the changed entries in

the MAP con�guration in a time that is proportional to the output size.

• We �nally focus on the application of adaptivity in exact inference to dual-decomposition

methods. The problem here is however not as simple as applying the adaptive exact

inference methods to solve sub-problems at each iteration. The graph can always be

decomposed into small and independent graphs, such as to independent factors and

solved independently. This decomposition allows trivial implementation of adaptiv-

ity and also provides further advantages such as easy parallelization. The trade-o�,

however is that this decomposition requires more iterations to converge than other

decompositions that use larger sub-graphs. The question here is to investigate if de-

compositions that use large sub-problems can be made adaptive and parallelizable so
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that they run faster than decompositions that use small sub-problems.

We devote one chapter for each of these problems and applications.

1.2 Outline of our approach

Our high-level approach to enabling e�cient updates of the model, and recalculation of

marginals or a MAP con�guration, is to �cluster� parts of the input model by computing

partial eliminations, and construct a balanced-tree data structure with depth O(log n). We

use a process based on factor elimination [16] that we call hierarchical clustering that takes

as input a graph and elimination tree (equivalent to a tree-decomposition of the graphical

model), and produces an alternative, balanced elimination sequence. The su�cient statistics

of the balanced elimination are re-usable in the sense that they will remain largely unchanged

by any small update to the model. In particular, changes to factors and the variables they

depend on can be performed in time that is logarithmic in the size of the input model.

1.3 Thesis Organization

This thesis addresses the question of solving various exact inference tasks in the adaptive

setting and the application of adaptive techniques to dual-decomposition methods. After

putting our contributions into context in the related work chapter, the background chapter

presents the necessary materials on which our approach is based. The next chapter is

devoted to presenting our algorithm in the standard case without taking the adaptive updates

into account. The remaining chapters addresses the three questions described in Section 1.1

one by one and the implementation details.

Related Work. The related work (Chapter 2) presents previous work that either our

approach is based on or address adaptive inference problems in graphical models. One way

or another, many of the adaptive or parallel algorithms mentioned in this chapter uses a
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tree-balancing approach. Hence, we present several tree-balancing techniques with a focus

on the parallel tree-contraction that we use in our approach. In the remaining two sections,

we �rst present the �rst work on adaptive inference [19] that uses tree-contraction and then

describe how we improve upon their results using the ideas from self-adjusting framework.

Background. We begin with an overview of an exact inference technique on graphical

models called factor elimination and how it is related to another well-known exact inference

technique called tree-decomposition. In this thesis, we use the link between these frame-

works by providing algorithms in one framework, factor elimination, and then establishing

bounds using the other framework, tree-decomposition. In the context of exact inference,

we only review the formulas for marginal computations and leave how these formulas can

be modi�ed to compute MAP con�gurations to Chapter 6. The last section reviews the

dual-decomposition methods and the inherit trade-o�s among existing subproblem choices.

Cluster Tree Data Structure. Chapter 4 is the main chapter where we explain our

method as an extension of factor elimination algorithm. The extensions we make to the

ordinary factor elimination algorithm necessitates constructing an additional data structure

called cluster tree. This data-structure plays a crucial role in making the algorithm adaptive

and parallel which will be explored later. In order to keep the exposition clear and simple,

in this chapter we only focus on the marginalization problem and present how one can use

the cluster tree data structure to compute marginals.

E�cient Updates to Cluster Trees. Having explained how to compute marginals in the

previous chapter, Chapter 5 focuses on how modi�cations to the model can be incorporated

into our data structure so that the marginals can be computed in time logarithmic to the size

of the graph. Naturally the modi�cations to the model fall into two categories, the modi�ca-

tions that keep the underlying cluster tree intact and those that modify the cluster tree. The
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bulk of the chapter focuses on the latter as they turn out to be important and challenging.

The algorithm and proofs we present in this chapter is based on self-adjusting computation

[3]. The reader is encouraged to review Chapter 2 to see the di�erences between our work

and [3]. We also explore the practical performance of our methods with extensive synthetic

experiments. Part of the experiments in this chapter focus on assesing the practical limits

of our techniques, others focus on quantifying the practical performance of our theoretical

bounds.

Maintaining MAP Con�gurations Chapter 6 addresses the second problem in Sec-

tion 1.1, the computation of MAP con�gurations. We modify both the factor elimination

procedure and the data we store on the cluster tree data structure to maintain MAP con�gu-

rations under adaptive updates to the underlying model. The experimental section provides

two important applications: protein secondary structure prediction and side-chain packing.

This chapter also acts as a step-stone to the following chapter because Chapter 7 requires

maintenance of MAP con�gurations as a sub-procedure.

Parallelism for approximate inference. Chapter 7 addresses the �nal question de-

scribed in Section 1.1. Here, in addition to adaptivity, we also describe how computations

on cluster tree can be performed e�ciently in parallel. We apply our adaptive exact inference

framework to dual-decomposition and show its e�ectiveness using experimental data.

Implementation. Chapter 8 provides python code that implements adaptive exact infer-

ence to compute marginals and MAP con�gurations. The implementation closely follows

the exposition of the thesis and provides some explanation to a certain degree for the vari-

ables and functions de�ned in the code. This chapter is mainly intended to provide code

to clarify the algorithms described in Chapters 4, 5 and 6.
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1.4 Contributions

In this thesis, we present a new framework for adaptive exact inference, building upon the

work of [19]. Given a factor graph G with n nodes, and domain size d (each variable can

take d di�erent values), we require the user to specify an elimination tree T on factors. An

elimination tree guides the order in which the factors are eliminated and in general it is

either expected to be speci�ed by the user or estimated by known greedy algorithms. In

our framework, we give the option of supplying elimination tree to the user. The choice of

elimination tree determines the width w which is a graph theoretical concept measuring the

extend the graph resembles a tree.

The remainder of the section lists our contributions under two categories: (i) algorithmic

and theoretical contributions and (ii) experimental contributions. In part (ii), we further dis-

cuss the scope that our theoretical results are applicable. We performed extensive synthetic

experiments to determine the cases where our approach is preferable.

1.4.1 Algorithmic and Theoretical Contributions

For exact inference, our framework for adaptive inference requires a preprocessing step in

which we build a cluster tree � a balanced representation of the input elimination tree �

in O(d3w · n) time where w is the width of the input elimination tree T . For approximate

inference w is always 1, so the preprocessing step takes O(d3 · n) time.

Given a graphical model with n nodes and elimination tree with width w, we show that

• the cluster tree is essentially equivalent to a tree-decomposition,

• for marginal computations, a change to the model can be processed in O(d3w · log n)

time, and the marginal for particular variable can be computed in O(d2w · log n) time,

• for a change to the model that induces ` changes to a MAP con�guration, our approach
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can update the MAP con�guration in O(d3w log n+dw` log(n/`)) time, without know-

ing ` or the changed entries in the con�guration.

• in addition to being adaptive, the cluster tree is also highly parallelizable and can be

used to speed-up dual-decomposition solvers.

1.4.2 Experimental Contributions

As in standard approaches for exact inference in general graphs, our algorithm has an expo-

nential dependence on the width of the input model. The dependence in our case, however

is stronger: if the input elimination tree has width w, our balanced representation is guaran-

teed to have width at most 3w. As a result the running time of our algorithms for building

the cluster tree as well as the updates have a O(d3w) multiplicative factor; updates to the

model and queries however require logarithmic, rather than linear, time in the size of the

graph. Our approach is therefore most suitable for settings in which a single build operation

is followed by a large number of updates and queries.

To evaluate the practical e�ectiveness of our approach, we implement the proposed al-

gorithms and present an experimental evaluation by considering both synthetic data (Sec-

tion 6.3.1) and real data (Sections 6.3.2 and 6.3.3). Our experiments using synthetically

generated factor graphs show that even for modestly-sized graphs (10 − 1000 nodes) our

algorithm provides orders of magnitude speedup over computation from scratch for com-

puting both marginals and MAP con�gurations. Thus, the overhead observed in practice is

negligible compared to the speedup possible using our framework.

In addition, we also show the applicability of our framework to two problems in computa-

tional structural biology (Sections 6.3.2 and 6.3.3). First, we apply our algorithm to protein

secondary structure prediction using an HMM, showing that secondary structure types can

be e�ciently updated as mutations are made to the primary sequence. For this application,

our algorithm is one to two orders of magnitude faster than computation from scratch. We
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also apply our algorithm to protein sidechain packing, in which a (general) factor graph

de�nes energetic interactions in a three-dimensional protein structure and we must �nd a

minimum-energy conformation of the protein. For this problem, our algorithm can be used

to maintain a minimum-energy conformation as changes are being made to the underlying

protein. In our experiments, we show that for a subset of the SCWRL benchmark [12],

our algorithm is nearly 7 times faster than computing minimum-energy conformations from

scratch.

We then apply these �ndings to dual-decomposition methods; we make use of the cluster

tree data structure for adaptive inference and show that it can be used in a way that com-

bines the per-iteration advantages of large subproblems while also enabling a high degree

of parallelism. We demonstrate that a dual-decomposition solver using our cluster tree ap-

proach can improve its time to convergence signi�cantly over other approaches. For random

grid-like graphs, we obtain one to two orders of magnitude speedup. We also use our solver

for a real-world stereo matching problem, and over a number of data sets show a factor of

about 2 improvement over other approaches.
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CHAPTER 2

RELATED WORK

The problem of adaptive inference is studied extensively in the arti�cial intelligence commu-

nity, in particular in the context of graphical models. Our goal in this chapter is to provide

related methods published earlier and put our work in a context. We give special attention

to parallel tree-contraction and self-adjusting computation as they provide the main tools

that we use in our own approach.

2.1 General Results of Adaptivity in Arti�cial Intelligence

There are numerous machine learning and arti�cial intelligence problems, such as path plan-

ning problems in robotics, where new information or observations require changing a pre-

viously computed solution. As an example, problems solved by heuristic search techniques

have bene�ted greatly from incremental search algorithms [43, 21, 31], in which solutions can

be e�ciently updated by reusing previously searched parts of the solution space. Incremen-

tal search algorithms solve dynamic shortest path problems where shortest paths have to be

found repeatedly while the underlying topology of a graph or its edge weights are changing.

A robot, as an example, might have to re-plan its shortest path route when it detects a

previously unknown obstacle.

Because the literature of incremental search shows similarities to our approach it is helpful

to review the approaches previously taken by this community and compare against our

approach.

• Kinds of dynamic changes allowed. Researchers have approached the dynamic

shortest path problems under various assumptions depending on their particular prob-

lem domain. In the most general case where arbitrary sequence of edge insertions,

deletions and weight changes are allowed, the problem is called the �fully dynamic

10



shortest path problem� as addressed in [43, 21, 31]. This formulation is similar to

ours, we also allow arbitrary sequence of changes to the topology of the graphical model

as well as to the factors.

• Analysis. The analysis of incremental algorithms di�er from classical analysis of batch

algorithms because in the worst case, any incremental algorithm requires as much time

as running from scratch when the whole input is changed. In order to meaningfully

compare the incremental algorithms with each other, [43] suggested to measure the

cost of an incremental algorithm as a function of the sum of the size of the �changes� in

the input and the output, rather than expressing solely in terms of the �whole� input

size. Our running costs are similarly expressed; in particular, Chapter 6 describes the

�rst, to our knowledge, algorithm that dynamically maintains the MAP con�gurations

in graphical models and expresses its running costs in terms of the changes in input

and output sizes.

• Methods. Finally, incremental search achieves adaptivity by formulating their al-

gorithms as a distributed algorithm where each node computes a value using the in-

formation on the neighbor nodes only. When a problem is set up in a distributed

manner, both adaptivity and parallelism can be achieved rather trivially. To make it

adaptive, we update the information on the nodes where the modi�cation is performed

and propagate that change to the neighbors until all nodes are updated. Parallelism

can be achieved by assigning a processor to every node and computing the information

on a node as soon as one of its neighbors has a new piece of information. Even though

our adaptivity and parallelism approach follows the same footsteps, our method di�ers

signi�cantly by also balancing the graph, hence making the change propagation step

provably e�cient even in the worst case.
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2.2 Delcher's Work on Adaptive Inference

In the context of graphical models, the problem of performing adaptive inference was �rst

considered by Delcher et al [19]. In their work, they introduced a logarithmic time method

for updating marginals under changes to observed variables in the model. At a high level

their approach is similar to our own, in that they also use a linear time preprocessing step

to transform the input tree-structured model into a balanced tree representation using tree-

contraction. They use query/update model like our model, where a number of update

operations is followed by a query operation. Like ours, their query operation �nds the

marginal distribution for a single variable.

Our work signi�cantly extends their work and explores the method in depth in the fol-

lowing ways.

• While their algorithm relies on the input model being tree-structured, our algorithm

has no such restriction and can work on any graphical model.

• Their algorithm is designed to compute marginals only. In addition to marginals, our

algorithm can also compute and maintain MAP con�gurations.

• Their algorithm can only handle changes to observations which are the factors that

depend on a single variable and cannot update dependencies in the input model. Our

algorithm allows arbitrary changes to any of the factors in the factor graph. Moreover,

we allow modi�cations to the graphical model and to the elimination tree.

• They set up the problem using directed Bayesian networks with conditional probability

tables whereas we use relatively modern factor graphs to represent a graphical model.

While their algorithm can be applied to general graphs by performing a tree decomposition,

it is not clear whether the tree decomposition itself can be easily updated, as is necessary to

remain e�cient when modifying the input model.
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2.3 Parallel Balancing Approaches and Tree-Contraction

The data structures required for adaptive computation has been closely related to those

required for parallel processing. The approach in both cases is to split-up the problem

instance into independent sub-pieces. For parallelism, we exploit the ability of computing

many sub-pieces simultaneously, whereas in adaptivity, a small change usually requires us to

update the information within a single piece, saving signi�cant computation time compared

to computing from scratch. The dynamic programming approaches to solve the exact infer-

ence problems can naturally be divided into independent sub-pieces, making them a good

candidate for parallelization. In fact, both Pearl's original Belief Propagation algorithm [41]

and the junction-tree algorithm of Lauritzen [35] were conceived as distributed algorithms

where each variable or clique could be associated with a separate processor and perform the

elimination on that node as soon as the inputs from neighbor nodes are available. In addi-

tion to the available parallelism in the topology of the graph, [15] and [33] further exploited

the parallelism on a single node during the elimination phase.

None of these early approaches however, attempted to map the unbalanced graphs into

a balanced structure to improve parallelization. E�cient parallel implementations of exact

inference even for unbalanced graphs were proposed by [42, 40, 55]. They use a pointer

jumping technique to balance the computations on the chains. They �rst map each chain

(connected nodes of degree two) in a tree-structured graph into a balanced binary tree,

hence making the whole tree balanced by making its depth logarithmic in the size of the

graph. They then apply dynamic programming in parallel in the balanced graph. The tree-

balancing technique that both Delcher [19] and we use, however is inspired by another method

known as parallel tree contraction, devised by Miller and Reif [39] to evaluate expressions

on parallel architectures. Parallel tree contraction in essence is similar to pointer jumping,

however its formulation is cleaner and more �exible, making it easier to use especially for tree

structured problems. In the original paper of [39], parallel tree contraction is used to evaluate
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a given expression tree, where internal nodes are arithmetic operations and leaves are input

values. Their parallel algorithm works by �contracting� both leaves and internal nodes of

the tree in rounds. At each round, the nodes to eliminate are chosen in a random fashion

and it can be shown that, in expectation, a constant fraction of the nodes are eliminated in

each round. By performing contractions in parallel, the expression tree can be evaluated in

logarithmic time and linear total work. Parallel tree contraction can be applied to any semi-

ring, including sum-product (marginalization) and max-product (maximization) operators,

making it directly applicable to inference problems.

2.4 Self-adjusting Computation

The algorithms and techniques that we use in this thesis builds on previous work on self-

adjusting computation [2, 3, 5]. Self-adjusting computation is a general-purpose technique

for allowing computation to respond automatically to changes to their input data. At a high-

level, the idea behind self-adjusting computation is to construct a trace of a computation

and use a change propagation algorithm to update the trace and the output when the input

data changes. The change-propation algorithm uses the trace to identify the parts of the

computation that are a�ected by a change and rebuilds the a�ected pieces by selectively

re-executing pieces of the computation to update the output. If self-adjusting computation

is applied to algorithms that generate stable traces, where making a small change to the

input a�ects a relatively small (polylogarithmic in general) number of elements of the trace,

then change propagation algorithm can update the trace and the output e�ciently.

In previous work, Acar et al [3] showed that the tree-contraction algorithm for computing

various properties of trees is stable and thus properties of dynamically changing tree can be

computed e�ciently via self-adjusting computation. Acar et al [5] also show that the trace

of the execution of a tree-contraction algorithm can be concretely represented by a rake-and-

compress tree (RC-tree) data structure, which can be viewed as a balanced decomposition of
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the tree itself. Acar et al shows that the approach can be used to solve a number of problems

on trees.

Our approach to performing adaptive inference builds on these ideas on computing prop-

erties of dynamic trees via self-adjusting computation. Speci�cally, our cluster trees are

similar to RC-trees. However, none of the previous work on self-adjusting computation

considers statistical inference. Similarly, there is no work on showing how self-adjusting

computation can be used to compute and update inferences e�ciently on graphs (as we need

for inference on loopy graphical models). In addition to these di�erences, there are also

several more technical di�erences, which we describe below.

• The RC-Tree data structure is built and maintained by a randomized algorithm where

our cluster-tree data structure uses a deterministic algorithm. Therefore, our algorithm

creates a balanced cluster-tree with depth deterministically logarithmic in the size of

the graph whereas the RC-Tree data structure has logarithmic depth only in expecta-

tion. Besides having theoretical value, our deterministic algorithm also has a practical

advantage of producing lower depth data structures than the randomized procedure

used by the self-adjusting framework. This feature enables us to establish determinis-

tic worst-case bounds for our algorithms and makes sure that they have competitive

practical running times.

• The randomized procedure used by the self-adjusting computation framework ensures

that the RC-Tree data structure is history independent whereas our deterministic pro-

cedure has no such property. History independence - the ability to dynamically

maintain a data structure so that it does not reveal the history of insertions and dele-

tions to the factor graph - is important in certain problem domains where privacy is

a concern. Even though our algorithm is not theoretically history independent, it is

a very di�cult task for an adversary to recover even a small portion of the history of

insertions and deletions from our representation.
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• While describing the change propagation algorithm in the context of the tree-contraction,

[3] coins a new term �a�ected nodes� for the nodes that have di�erent information from

one run to the next run after the input changes. These nodes are the ones where the

information on them has to be re-computed in order to maintain the RC-Tree data

structure, hence the proof of the theoretical correctness and e�ciency of the update

algorithm depends on how these a�ected nodes are de�ned and analyzed. The descrip-

tion given in [3] for this set is de�ned more as an abstract mathematical object rather

than an implementable algorithmic concept. In this thesis, we give a new de�nition

of �a�ected set of nodes� that can be e�ciently implemented. However, our concept of

a�ected nodes is not as tight as the a�ectedness de�ned in self-adjusting computation

framework, hence our de�nition of a�ectedness can possibly yield inferior theoretical

bounds. Despite this disadvantage, we prove the same e�ciency bound on the size of

the a�ected nodes after a modi�cation is made to the input. Moreover, due to the de-

terministic nature of our approach, our theoretical bounds have better constant terms

than their bounds have.

In recent years, there has been a lot of progress on developing a language-based appraoch

to self-adjusting computation and applying to problems from a several domains. Ley-Wild

et al [37] extended Standard ML language and Hammer et al [24] extended the C language to

enable writing self-adjusting programs. The technique has also been applied to problems in

geometry, speci�cally in motion simulation [4], and in meshing [6, 7], as well as to large-scale

processing of data [11].
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CHAPTER 3

BACKGROUND

3.1 Factor Graphs

Factor graphs [34] describe the factorization structure of the function g(X) using a bipartite

graph consisting of variable nodes and factor nodes. Speci�cally, suppose such a graph

G = (X,F ) consists of variable nodes X = {x1, . . . , xn} and factor nodes F = {f1, . . . , fm}

(see Figure 3.1a). Let Xfj =
{
xi ∈ X : xi is adjacent to fj in G

}
be the set of variables

that the factor fj depends on. For example, in Figure 3.1a, Xf5 = {x, v}. G is said to be

consistent with a function g(·) if and only if

g(x1, . . . , xn) =
∏

j

fj

for some functions fj whose arguments are the variable sets Xfj . We omit the arguments

Xfj of each factor fj from our formulas. In a common abuse of notation, we use the same

symbol to denote a variable (resp., factor) node and its associated variable xi (resp., factor

fj). We assume that each variable xi takes on a �nite set of values.

In this thesis we �rst study the problem of marginalization of the function g(X). Specif-

ically, for any xi we are interested in computing the marginal function

gi(xi) =
∑

X\xi
g(X).

Once we establish the basic results for performing adaptive inference, we will also show how

our methods can be applied to another commonly studied inference problem, that of �nding
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Figure 3.1: Factor elimination. Factor elimination takes a factor graph G1 and an
elimination tree T1 as input and sequentially eliminates the leaf factors in the elimination
tree. As an example, to eliminate f1 in iteration t, we �rst marginalize out any variables
that are only adjacent to the eliminated factor, and then propagate this information to the
unique neighbor in Tt, i.e. f ′2 = f2

∑
z f1.

the con�guration of the variables that maximizes g, that is,

X∗ = arg max
X

g(X)

In this thesis, we call the vector X∗ the maximum a posteriori (MAP) con�guration of X.

3.2 Exact inference

It is well-known that both marginalization and �nding MAP con�gurations is NP-hard if

no assumptions are made about the structure of the underlying graphical model [14]. It

is however possible to solve it exactly in certain important speacial cases such as for tree-

structured graphs. Many essentially equivalent algorithms are proposed for solving tree-

structured, including belief propagation [41] or sum-product [34], and for general graphs,

bucket elimination [18], recursive conditioning [17], junction-trees [35] and factor elimination

[16].

The basic structure of these algorithms is iterative; in each iteration partial marginaliza-

tions are computed by eliminating variables and factors from the graph. The set of variables

18



and factors that are eliminated at each iteration is typically guided by some sort of auxiliary

structure on either variables or factors. For example, the sum-product algorithm simply

eliminates variables starting at leaves of the input factor graph. In contrast, factor elimina-

tion uses an elimination tree T on the factors and eliminates factors starting at leaves of T ;

an example elimination tree is shown in Figure 3.1b.

3.2.1 Factor Elimination

For a particular factor fj , the basic operation of factor elimination eliminates fj in the

given model and then propagates information associated with fj to neighboring factors. At

iteration t, we pick a leaf factor fj in Tt and eliminate it from the elimination tree forming

Tt+1. We also remove fj along with all the variables Vj ⊆ X that appear only in factor fj

from Gt forming Gt+1. Let fk be fj 's unique neighbor in Tt. We then partially marginalize

fj , and update the value of fk in Gt+1 and Tt+1 with

λj =
∑

Vj
fj f ′k = fkλj . (3.1)

For reasons that will be explained in Section 4.1, we use the notation λi to represent the

partially marginalized functions; for standard factor elimination these operations are typi-

cally combined into a single update to fk. Finally, since multiplying by λj may make f ′k

depend on additional variables, we expand the argument set of f ′k by making the arguments

of λj adjacent to f
′
k in Gt+1, i.e. Xf ′k

:= Xfk ∪Xfj \ Vj . Figure 3.1 gives an example where

we apply factor elimination to a leaf factor f1 in the elimination tree. We marginalize out

the variables that are only adjacent to f1 (i.e., V1 = {z}) and update f1's neighbor f2 in

the elimination tree with f ′2 = f2
∑
V1 f1. Finally, we add an edge between the remaining

variables Xf1 \ V1 = {x} and the updated factor f ′2.

Suppose we wish to compute a particular marginal gi(xi). We root the elimination tree
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Figure 3.2: Factor trees and tree decompositions. A tree-decomposition (right) that
is equivalent to a given elimination tree (left) can be obtained by �rst replacing each factor
with a hyper-node that contains the variables adjacent to that factor node and then adding
variables to the hyper-nodes so that the running intersection property is satis�ed.

at a factor fj such that xi is adjacent to fj in G, then eliminate leaves of the elimination

tree one at a time, until only one factor remains. By de�nition the remaining factor f ′j

corresponds to fj multiplied by the results of the elimination steps. Then, we have that

gi(xi) =
∑
X\xi f

′
j . All of the marginals in the factor graph can be e�ciently computed by

re-rooting the tree and reusing the values propagated during the previous eliminations.

Factor elimination is equivalent to bucket (or variable) elimination [30, 16] in the sense

that we can identify a correspondence between the computations performed in each algo-

rithm. In particular, the factor elimination algorithm marginalizes out a variable xi when

there is no factor left in the factor graph that is adjacent to xi. Therefore, if we consider the

operations from the variables' point of view, this sequence is also a valid bucket (variable)

elimination procedure. With a similar argument, one can also interpret any bucket elimina-

tion procedure as a factor elimination sequence. In all of these algorithms, while marginal

calculations are guaranteed to be correct, the particular auxiliary structure or ordering de-

termines the worst-case running time. In the following section, we analyze the performance

consequences of imposing a particular elimination tree.
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3.2.2 Viewing elimination trees as tree-decompositions

For tree-structured factor graphs, the typical choice for the elimination tree is based on the

factor graph itself. However, when the input factor graph is not tree-structured, we must

choose an elimination ordering that ensures that the propagation of variables over the course

of elimination is not too costly. In this section, we outline how a particular elimination tree

can be related to a tree decomposition on the input graph (e.g., as in [17, 30]), thereby

allowing us to use the quality of the associated tree decomposition as a measure of quality

for elimination trees. In subsequent sections, this relationship will enable us to compare the

constant-factor overhead associated with our algorithm against that of the original input

elimination tree.

Let G = (X,F ) be a factor graph. A tree-decomposition for G is a triplet (χ, ψ,D) where

χ = {χ1, χ2, . . . , χm} is a family of subsets of X and ψ = {ψ1, ψ2, . . . , ψm} is a family of

subsets of F such that ∪f∈ψiXf ⊆ χi for all i = 1, 2, . . . ,m and D is a tree whose nodes are

the subsets χi satisfying the following properties:

1. Cover property: Each variable xi is contained in some subset belonging to χ and each

factor fj ∈ F is contained in exactly one subset belonging to ψ.

2. Running Intersection property: If χs, χt ∈ χ both contain a variable xi, then all nodes

χu of the tree in the (unique) path between χs and χt contain xi as well. That is, the

nodes associated with vertex xi form a connected sub-tree of D.

Any factor elimination algorithm can be viewed in terms of a message-passing algorithm

in a tree-decomposition. For a factor graph G, we can construct a tree decomposition

(χ, ψ,D) that corresponds to an elimination tree T = (F,E) on G. First, we set ψi = {fi}

and D = (χ,E′) where (χi, χj) ∈ E′ is an edge in the tree-decomposition if and only if

(fi, fj) ∈ E is an edge in the elimination tree T . We then initialize χ =
{
Xf1 , Xf2 , . . . , Xfm

}

and add the minimal number of variables to each set χj so that the running intersection

property is satis�ed. By construction, the �nal triplet (χ, ψ,D) satis�es all the conditions of
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a tree-decomposition. This procedure is illustrated in Figure 3.2. The factor graph (light blue

edges) and its elimination tree (bold edges) on the left is equivalent to the tree-decomposition

on the right. We �rst initialize χj = Xfj for each j = 1, . . . , 6 and add necessary variables

to sets χj to satisfy the running intersection property: x is added to χ2, χ3 and χ4. Finally,

we set ψj =
{
fj
}
for each j = 1, . . . , 6.

Using a similar procedure, it is also possible to obtain an elimination tree equivalent

to the messages passed on a given tree-decomposition. We de�ne two messages for each

edge (χi, χj) in the tree decomposition: the message µχi→χj from χi to χj is the partial

marginalization of the factors on the χi side of D, and the message µχj→χi from χj to χi is

the partial marginalization of the factors on the χj side of D. The outgoing message µχi→χj
from χi can be computed recursively using the incoming messages µχk→χi except for k = j,

that is,

µχi→χj =
∑

χj\χi
fi

∏

(χk,χi)∈E′\{(χj ,χi)}
µχk→χi . (3.2)

The factor elimination process can then be interpreted as passing messages from leaves to

parents in the corresponding tree-decomposition. The partial marginalization function λi

computed during the elimination of fi is identical to the message µχi→χj where fj is the

parent of fi in the elimination tree. This equivalence is illustrated in Figure 3.2 where each

partial marginalization function λj is equal to a sum-product message µχj→χk for some k.

This example assumes that f3 is eliminated last.

For an elimination tree T , suppose that the corresponding tree decomposition is (χ, ψ,D).

For the remainder of this thesis, we will de�ne the width of T to be the size of the largest

set contained in χ minus 1. Inference performed using T incurs a constant-factor overhead

that is exponential in its width; for example, computing marginals using an elimination tree

T of width w takes O(dw+1 · n) time and space where n is the number of variables and d is

the domain size. The width of a graph G without any reference to an elimination tree is

the smallest width among all elimination trees.
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Figure 3.3: Dual-decomposition. The factor graph G is decomposed into two subgraphs
G1 and G2 by creating copies of each variable for each subgraph. The factor copies must
agree with the original factor: f1(x, y, z) = f11 (x, y, z)f21 (y) and f3(v, y) = f13 (v)f23 (v, y).
Similarly, the multiplication of the unary functions that belong to the same variable copy
must be 1: ψ1v(v)ψ2v(v) = 1 and ψ1y(y)ψ2y(y) = 1.

3.3 Approximate Inference

For some graphical models with high tree-width, exact inference is intractable and often

the marginals or the MAP con�gurations need to be approximated. In the context of

approximate inference, we focus only on the MAP estimation problem and use the technique

of dual-decomposition, based on Lagrangian relaxation, to solve these inference problems by

decomposing them into simpler components that are repeatedly solved and combined into a

global solution.

3.3.1 Dual-decomposition

For notational simplicity of the formulas related to dual-decomposition methods, we assume

that there is a unary factor ψi(xi) = 1 for every variable xi. Therefore, the g(X) function

can be rewritten as

g(X) =
∏

xi∈X
ψi(xi) ·

∏

fj∈F
fj .

Dual-decomposition methods further split the function g(X) into a multiplicative set of
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�subproblems�

gDD(∪tXt) =
∏

t


 ∏

xi∈X
ψti(x

t
i) ·

∏

fj∈F
f tj(Xf tj

)




where each subproblem indexed by t depends on a new set of copied variables Xt =
{
xt1, . . . , x

t
n

}
and the decomposition satis�es

ψi(xi) =
∏

t

ψti(xi) and fj =
∏

t

f tj(Xfj ) for all xi ∈ X and fj ∈ F. (3.3)

The new factors f tj depend on Xf tj
=
{
xti : xi ∈ Xfj

}
and are chosen to be non-unit on

a strictly simpler graph than G (for example, a tree), so that each subproblem t can be

solved easily by exact inference. For example, Figure 3.3 illustrates the decomposition of

the factor graph G into two tree-structured subgraphs G1 and G2 where the conditions of

Equation (3.3) are satis�ed. For stability of arithmetic operations, the computations are

usually carried out by taking the negative logarithm of the factors. We de�ne �dual energy�

of a decomposition as − log(gDD(∪tXt)).

If all copies xti of each variable xi are forced to be equal, both problems are equivalent.

However, by relaxing this constraint and enforcing it with Lagrange multipliers, we obtain

a collection of simpler problems that when solved individually, upper bounds the original

function g(X). Typical dual-decomposition solvers minimize this dual upper bound (or

maximize the dual energy) using a projected subgradient update. Suppose that {xti} are the

copies of variable xi, with optimal assignments {ati} for t = 1 . . . T . Then we modify ψti as

ψti(xi) = ψti(xi)




eδ(xi=a
t
i)

(∏T
u=1 e

δ(xi=a
u
i )
) 1
T




γ

(3.4)

where δ(·) is the Kronecker delta function and γ is a step-size constant. It is easy to see that

this update maintains the constraints on the ψti . If at any point a solution is found in which
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Figure 3.4: Independent Factors vs. Cover Tree. Decomposing graph into indepen-
dent factors (a) leads to a relaxation that is amenable to parallelization and can be easily
made adaptive. Even though the cover tree (b) is not easily parallelizable and does not
naturally support adaptivity, it is better at improving the dual bound at each iteration.

all variable copies share the same value, this con�guration must be the MAP con�guration.

Dual decomposition solvers are closely related to LP-based loopy message passing algo-

rithms [52, 23], which solve the same dual using a coordinate ascent �xed point update.

However, these algorithms can have sub-optimal �xed points, so gradient and �acceler-

ated� gradient methods [26, 27] are often preferred. In this thesis we focus on the standard

projected subgradient method.

3.3.2 Subproblem choice: Independent Factors vs. Cover Tree

Dual-decomposition methods leave the choice of subproblems to the user. All problem collec-

tions that include equivalent sets of cliques (for example, any collection of trees that covers

all factors of G) can be shown to have the same dual-optimal bound, but the actual choice

of problems can signi�cantly a�ect convergence speed. For example, one simple option is

to include one subproblem per factor in the original graph; this leads to a large number

of simple problems, which can then be easily parallelized. However, as observed in [32],

choosing larger subproblems can often improve the convergence rate (i.e., the decrease in

the upper bound per iteration) at the possible expense of parallelization. For example,
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single-subproblem models [26, 57] create a single �covering� tree over several copies of each

variable. This approach provides good convergence properties but is not easily amenable to

parallelization. This trade-o� can be observed in Figure 3.4. When individual factors are

chosen as subproblems, they can be solved independently in parallel as shown in Figure 3.4a.

However, because there are high number of variable copies, the copies are less likely to agree

after a single iteration, which in turn slows down the overall convergence rate. The cover

tree in Figure 3.4b on the other hand, has only a single variable x with multiple copies x1

and x2. They are much more likely to agree after a single iteration compared to independent

factors, which speeds up the convergence.

Another advantage we propose for small subproblems is their ability to be adaptive,

or more speci�cally to re-use previous iteration's solution. The subgradient update Equa-

tion (3.4) depends only on the solution at of each subproblem t; if all parameters of a

subproblem are unchanged, its solution remains valid and we need not re-solve it. We show

in Sections 7.1 and 7.4 that this can lead to considerable computational advantages. How-

ever, although this is common in very small subproblems (such as individual factors), for

larger problems with better convergence rates it becomes less likely that the problem will

not be modi�ed. For example, in Figure 3.4a, if x1 and x5 are the only variable copies that

disagree when the MAP con�guration is computed independently for each subproblem. In

the next round, we only need to re-solve the subproblems corresponding to factors f1 and

f5. For cover tree in Figure 3.4b, as long as there is disagreement among copies, the MAP

con�guration for the whole tree has to be re-computed in the next round.

Thus, collections of small problems have signi�cant speed (time per iteration) advantages,

but larger problems have typically better convergence rates, or fewer iterations required. The

focus of Chapter 7 is to present a new framework that captures both the convergence prop-

erties of single-subproblem approaches, and the update speed of many, small subproblems.
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CHAPTER 4

CLUSTER TREE DATA STRUCTURE

When performing inference with factor elimination, one typically attempts to select an elim-

ination tree to minimize its associated width. However, such an elimination ordering may

not be optimal for repeated inference tasks. For example, an HMM typically used for se-

quence analysis yields a chain-structured factor graph as shown in Figure 4.1a. The obvious

elimination tree for this graph is also chain-structured (Figure 4.1b). While this elimination

tree is optimal for a single computation, suppose that we now modify the leaf factor f1.

Then, recomputing the marginal for the leaf factor f7 requires time that is linear in the size

in the model, even though only a single factor has changed. However, if we use the balanced

elimination tree shown in Figure 4.1c, we can compute the marginalization for f7 in time

that is logarithmic in the size of the model. While the latter elimination tree increases the

width by one (increasing the dependence on d), for �xed d and as n grows large we can

achieve a signi�cant speedup over the unbalanced ordering if we wish to make changes to

the model.

In this section we present an algorithm that generates a logarithmic-depth representation

of a given elimination tree. Our primary technique, which we call deferred factor elimina-

tion, generalizes factor elimination so that it can be applied to non-leaf nodes in the input

elimination tree. Deferred factor elimination introduces ambiguity, however, since we cannot

determine the �direction� that a factor should be propagated until one of its neighbors is also

eliminated. We refer to the local information resulting from each deferred factor elimination

as a cluster function (or, more succinctly, as a cluster), and store this information along with

the balanced elimination tree. We use the resulting data structure, which we call a cluster

tree, to perform marginalization and e�ciently manage structural and parameter updates.

For our algorithm, we assume that the user provides both an input factor graph G and

an associated elimination tree T . While the elimination tree is traditionally computed from
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Figure 4.1: Balanced and unbalanced elimination trees. For the chain factor graph in
(a), the elimination tree in (b) has width 1 but requires O(n) steps to propagate information
from leaves to the root. The balanced elimination tree in (c), for the same factor graph,
has width 2 but takes only O(log n) steps to propagate information from a leaf to the root,
since f3 and f5 are eliminated earlier. If f1 is modi�ed, then using a balanced elimination
tree, we only need to update O(log n) elimination steps, while an unbalanced tree requires
potentially O(n) updates.

an input model, in an adaptive setting it may be desirable to change the elimination tree to

take advantage of changes made to the factors (see Figure 5.1 for an example). Furthermore,

domain-speci�c knowledge of the changes being made to the model may also inform how

the elimination tree should be chosen and updated. Thus, in the remainder of the paper we

separate the discussion of updates applied to the input model from updates that are applied

to the input elimination tree. As we will see in Chapter 5, the former prove to be relatively

easy to deal with, while the latter require a reorganization of the cluster tree data structure.

4.1 Deferred factor elimination and cluster functions

Consider the elimination of a degree-two factor fj , with neighbors fi and fk in the given

elimination tree. We can perform a partial marginalization for fj to obtain λk, but cannot

yet choose whether to update fi or fk � whichever is eliminated �rst will need λk for its

computation. To address this, we de�ne deferred factor elimination, which removes the

factor fj and saves the partial marginalization λj as a cluster, leaving the propagation step
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DeferredFactorElimination(G, T, fj)

Compute cluster λj using Equation (3)
if fj is a leaf in elimination tree T

Let fk be fj’s unique neighbor in T
Attach λj to fk in T

end if
if fj is a degree-2 node in T

Let fi and fk be fj’s neighbors in T
Create a new edge (fi, fk) in T
Attach λj to the newly created edge (fi, fk)

endif
Remove factor fj from factor graph G and T
for each variable xi that is connected to only fj in G

Remove xi from G
endfor

Figure 4.2: Deferred factor elimination. In addition to eliminating leaves, deferred
factor elimination also eliminates degree-two nodes. This operation can be simultaneously
applied to an independent set of leaves and degree two nodes.

to be decided at a later time. In this section, we show how deferred factor elimination can

be performed on the elimination tree, and how the intermediate cluster information can be

saved and also used to e�ciently compute marginals.

For convenience, we will segregate the process of deferred factor elimination on the input

model into rounds. In a particular round t (1 ≤ t ≤ n), we begin with a factor graph Gt

and an elimination tree Tt, and after performing some set of deferred factor eliminations, we

obtain a resulting factor graph Gt+1 and elimination tree Tt+1 for the next round. For the

�rst round, we let G1 = G and T1 = T . Note that since each factor is eliminated exactly

once, the number of total rounds depends on the number of the factors eliminated in each

round.

To construct Tt+1 from Tt, we modify the elimination tree as follows. When we eliminate

a degree-1 (leaf) factor fj , we attach λj to the neighbor vertex fk. When a degree-2 factor fj

is removed, we attach λj to a newly created edge (fi, fk) where fi and fk are fj 's neighbors in

elimination tree T . We de�ne CT (fj) to be the set of clusters that are attached either directly

to fj or to an edge incident to fj . In the factor graph Gt+1, we remove all λk ∈ CTt(fj) and
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Figure 4.3: Deferred factor elimination. (a) An elimination tree T1 (in black), with
variable dependencies shown in blue for reference. To eliminate a leaf node f1, we sum out
variables that are not attached to any other factors (shaded), resulting in the cluster function
λ1 and new elimination tree T2 in (b).To eliminate a degree-2 node f3, we replace it with λ3
attached to the edge (f2, f4), giving tree T3 shown in (c).

variables Vj ⊂ X that do not depend on any factors other than fj or λk ∈ CTt(fj). Finally,

we replace fj with λj , given by

λj =
∑

Vj
fj

∏

λk∈CTt(fj)
λk. (4.1)

The cluster λj is referred to as a root cluster if degTt(fj) = 0, a degree-1 cluster if degTt(fj) =

1, and a degree-2 cluster if degTt(fj) = 2. Figure 4.3 illustrates the creation of degree-1

and degree-2 clusters, and the associated changes to the elimination tree and factor graph.

We �rst eliminate f1 by replacing it with degree-1 cluster λ1(x) =
∑
z f1(x). Cluster λ1

is attached to factor f2 and the set of clusters around f2 is CT2(f2) = {λ1, λ3}. We then

eliminate a degree-2 factor f3 by replacing it with degree-2 cluster λ3(y, v) = f3(y, v). This

connects f2 to f4 in the elimination tree, and places λ3 on the newly created edge.

We note that the correctness of deferred factor elimination follows from the correctness

of standard factor elimination. To perform marginalization for any particular variable, we

can simply instantiate a series of propagations, at each step using a cluster function that has

already been computed in one of the aforementioned rounds.

To establish the overall running time of deferred factor elimination we �rst explain how

the clusters we compute can be interpreted in the tree-decomposition framework. Recall
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that in Section 3.2.2, we established an equivalence between clusters and messages in the

tree-decomposition in the case where only leaf factors in the elimination tree are eliminated.

We can generalize this relationship to the case where degree-2 factors are also eliminated.

As discussed earlier in Section 3.2.2, the equivalent tree-decomposition (χ, ψ,D) of an elimi-

nation tree T = (F,E) consists of a tree D on hyper-nodes χ = {χ1, . . . , χm} with the same

adjacency relationship with the factors {f1, . . . , fm} in T .

A degree-1 cluster λj produced after eliminating a leaf fj factor in T is a partial marginal-

ization of the factors on a sub-tree of T . Let fk be fj 's unique neighbor in the elimination

tree when it is eliminated. This implies λj = µχt→χk for some t as previously discussed in

Section 3.2.2. Note that the index t may not equal j, since there may be a cluster attached

to the edge (fj , fk) (for example in Figure 4.3, λ1(x) = µχ1→χ2(x)).

A degree-2 cluster λj produced after eliminating a degree-2 factor fj in T is a partial

marginalization of the factors in a connected subgraph S ⊂ T such that S and T \ S are

connected by exactly two edges. Let (fi, fc) and (fd, fk) be these edges, where fc and fd

belong to S and fi and fk are outside of S (we will show how these �boundary� edges can

be e�ciently computed in Section 4.2). We interpret λj as an intermediary function that

enables us to compute an outgoing message µχd→χk by using only λj and the incoming

message µχj→χc , i.e. µχd→χk =
∑
χk\χj λiµχj→χc . These intermediate functions are in

fact the mechanism that allows us avoid long sequences of message passing. For example

in Figure 4.3, λ3 can be used to compute the message µχ3→χ4 using only µχ2→χ3 , i.e.

µχ3→χ4(x, v) =
∑
y µχ2→χ3(x, y)λ3(y, v).

Finally, we note that we have a single root cluster that is just a marginalization of all

of the factors in the factor graph. Using the relationships established above between cluster

functions and messages in a tree decomposition, we give the running time of deferred factor

elimination on a given elimination tree and input factor graph.

Lemma 4.1.1 For an elimination tree with width w, the elimination of leaf factors takes
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Θ(d2w) time and produces a cluster of size Θ(dw), where d is the domain size of the vari-

ables in the input factor graph. The elimination of degree-2 vertices takes Θ(d3w) time and

produces a cluster of size Θ(d2w).

Proof: Each degree-1 cluster has size O(dw) because it is equal to a sum-product message in

the equivalent tree-decomposition. For a degree-2 vertex fj , the cluster λj can be interpreted

as an intermediary function that enables us to compute the outgoing messages µχc→χi and

µχd→χk using the incoming messages µχk→χd and µχi→χc for some χc, χd, χi and χk where fi

and fk are neighbors of fj in the elimination tree during its elimination. The set of variables

involved in these computations is (χi ∩ χc)∪ (χk ∩ χd) which is bounded by 2w. Hence, the

cluster fi that computes the partial marginalization of the factors that are between (fd, fk)

and (fi, fc) has size O(d2w). Moreover, these bounds are achieved if χi ∩χc and χk ∩χk are

disjoint and each has w variables.

We now establish the running times of calculating cluster functions, by bounding the

number of variables involved in computing a cluster. We �rst show that when a leaf node

fj is eliminated, the set of variables involved in the computation is χj ∪ χk where fk is fj 's

neighbor. For all the degree-1 clusters of fj , their argument set is a subset of χj , so the

product in Equation (4.1) can be computed in O(dw) time. There can be a cluster λc on the

edge (fj , fk) whose argument set has to be subset of χj ∪ χk. If there is such a cluster, the

cost of computing the product in Equation (4.1) becomes O(d2w). This bound is achieved

when there is a degree-2 cluster and χj and χk are disjoint.

When a degree-2 factor fj is eliminated, the set of variables involved in the computation

is χi ∪ χj ∪ χk where fi and fk are neighbors of fj . As shown above, the argument set of

degree-1 clusters is a subset of χj . This cluster can have degree-2 clusters on edges (fi, fj)

and (fj , fk), and in this case, computation of a degree-2 cluster takes O(d3w) time. This

upper bound is achieved when the sets χi, χj and χk are disjoint.

We note that in the above discussion we assumed that the number of operands in Equa-
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BuildClusterTree(G, T )

G0 := G, T0 := T
Initialize H as an empty rooted tree
for round t = 1 up to k

Gt := Gt−1, Tt := Tt−1
S := A maximal independent set of leaves and degree two nodes in Tt
for each factor fj in S

call DeferredFactorElimination(Gt, Tt, fj)
for each cluster λi that is used to compute λj

Add edge (λi, λj) in H where λj is the parent.
endfor
for each variable xi eliminated along with fj

Add edge (xi, λj) in H where λj is the parent
endfor

endfor
endfor
return H as the cluster tree

Figure 4.4: Hierarchical clustering. Using deferred factor elimination, we can construct
a balanced cluster tree data structure that can be used for subsequent marginal queries.

tion (4.1) is bounded, that is, for any factor f , |CT (f)| = O(1). This assumption is valid

because for any given elimination tree, we can construct an equivalent elimination tree with

degree 3 by adding dummy factors. For example, suppose the input elimination tree has de-

gree n− 1 (i.e., it is star-shaped); then Equation (4.1) has n multiplication operands hence

requires O(ndw) time to compute. By adding dummy factors in the shape of a complete

binary tree between the center factor and the leaf factors, we can bring the complexity of

computing Equation (4.1) down to O(dw) for each factor. �

4.2 Constructing a balanced cluster tree

In this section, we show how performing deferred factor elimination in rounds can be used to

create a data structure we call a cluster tree. As variables and factors are eliminated through

deferred factor elimination, we build the cluster tree using the dependency relationships

among clusters (see Figure 4.4). The cluster tree can then be used to compute marginals
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e�ciently, and as we will see, it can also be used to e�ciently update the original factor

graph or elimination tree.

For a factor graph G = (X,F ) and an elimination tree T , a cluster tree H = (X ∪C,E)

is a rooted tree on variables and clusters X ∪ C where C is the set of clusters. The edges

E represent the dependency relationships among the quantities computed while perform-

ing deferred factor elimination. When a factor fj is eliminated, cluster λj is produced by

Equation (4.1). All the variables Vj and clusters C(fj) removed in this computation become

λj 's children. For a cluster λj , the boundary ∂j is the set of edges in T that separates the

collection of factors that is contracted into λj from the rest of the factors.

In Equation (4.1), we gave a recursive formula to compute λj in terms of its children in

the cluster tree. In order to use the cluster tree in our computations, we need to derive a

similar recursive formula for the boundary ∂j for each cluster λj . Let clusters λ1, λ2, . . . , λk

and variables x1, x2, . . . , xt be λj 's children in the cluster tree. Let E(fj) be the set of edges

incident to fj in T . Then the boundary of λj can be computed by

∂j = E(fj)4∂14∂24 . . .4∂k

where ∂i is the boundary of cluster λi and 4 is the symmetric set di�erence operator. An

example cluster tree, along with explicitly computed boundaries, is given in Figure 4.5b.

For example the boundary of the cluster λ4 is computed by ∂4 = E(f4)4∂34∂54∂6 where

E(f4) = {(f2, f4), (f4, f5), (f4, f6)}.

Theorem 4.2.1 Let G = (X,F ) be a factor graph with n nodes and T be an elimination

tree on G with width w. Constructing a cluster tree takes Θ(d3w · n) time.

Proof: During the construction of the cluster tree, every factor is eliminated once. By

Lemma 4.1.1, each such elimination takes O(d3w) time. �
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Figure 4.5: Cluster Tree Construction. To obtain the cluster tree in (b), eliminations
are performed in the factor graph G (a) in the following order: f1, f3, f5 and f6 in round
1, f4 in round 2 and f2 in round 3. The cluster-tree (b) representing this elimination is
annotated by boundaries.

For our purposes it is desirable to perform deferred factor elimination so that we obtain

a cluster tree with logarithmic depth. We call this process hierarchical clustering and de�ne

it as follows. We start with T1 = T and at each round i we identify a set K of degree-1

or -2 factors in Ti and apply deferred factor elimination to this independent set of factors

to construct Ti+1. This procedure ends once we eliminate the last factor, say fr. We make

λr the root of the cluster tree. At each round, the set K ⊂ F is chosen to be a maximal

independent set, that is, for fi, fj ∈ K, fi 6∼fj in T , and no other factor fk can be added

to K without violating independence. The sequence of elimination trees created during the

hiearchical clustering process will prove to be useful in Chapter 5, when we show how to

perform structural updates to the elimination tree. As an example, a factor graph G, along

with its associated elimination tree T = T1, is given in Figure 4.5a. In round 1, we eliminate

a maximal independent set {f1, f3, f5, f6} and obtain T2. In round 2 we eliminate f4, and

�nally in round 3 we eliminate f2. This gives us the cluster tree shown in Figure 4.5b.

As we show with the following lemma, the cluster tree that results from hiearchical

clustering has logarithmic depth. We will make use of this property throughout the remainder

of the paper to establish the running times for updating and computing marginals and MAP

con�gurations.
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QueryMarginal(H, xi)
Let xi, λ1, . . . , λk be the path from xi to the root λk of cluster tree H
for j = k down to 1

Let fj be the factor associated with cluster λj
Compute downward marginalization function Mfj using Equation (4)

endfor
Compute the marginal at xi using Equation (5)

Figure 4.6: Performing Marginalization with a Cluster Tree. Computing any par-
ticular marginal in the input factor graph corresponds to a root-to-leaf path in the cluster
tree.

Lemma 4.2.2 For any factor graph G = (X,F ) with n nodes and any elimination tree T ,

the cluster tree obtained by hierarchical clustering has depth O(log n).

Proof: Let the elimination tree T = (F,E) have a leaves, b degree-2 nodes and c degree-3

or more nodes, i.e. m = a+ b+ c where m is the number of factors. Using the fact that the

sum of the degrees of the vertices is twice the number of edges, we get 2 |E| ≥ a + 2b + 3c.

Since a tree with m vertices have m − 1 edges, we get 2a + b − 2 ≥ m. On the other

hand, a maximal independent set of degree-1 and degree-2 vertices must have size at least

a − 1 + (b − a)/3 ≥ m/3, since we can eliminate at least a third of the degree-2 vertices

that are not adjacent to leaves. Therefore at each round, we eliminate at least a third of the

vertices, which in turn guarantees that the depth of the cluster tree is O(log n). �

4.3 Computing marginals

Once a balanced cluster tree H has been constructed from the input factor graph and elim-

ination tree, as in standard approaches we can compute the marginal distribution of any

variable xi by propagating information (i.e., partial marginalizations) through the cluster

tree. For any �xed variable xi, let λ1, λ2, . . . , λk be the sequence from xi to the root λk in

the cluster tree H. We now describe how to compute the marginal for xi (see Figure 4.6 for
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pseudocode). For each factor fj , let ∂j contain neighbors fa and fb of fj (i.e., neighboring

factors at the time fj is eliminated). This information can be obtained easily, since fa

and fb are ancestors of fj in the cluster tree, that is, fa, fb ∈
{
fj+1, fj+2, . . . , fk

}
. For

convenience we state our formulas as if there are two neighbors in the boundary; in the case

of degree-1 clusters, terms associated with one of the neighbors, say fb, can be ignored in

the statements below. First, we compute a downward pass of marginalization functions from

λk to λ1 given by

Mfj =
∑

Y \Xλj

fjMfaMfb

∏

f∈Cj\{fj−1}
f, (4.2)

where Y is the set of variables that appear in the summands and Xλj is the set of variables

that cluster λj depends on. Therefore each marginalization function Mj from parent λj is

computed using only information in the path above λj . Then, the marginal for variable xi

is

gi(xi) =
∑

Y \{xi}
Mf1

∏

f∈C1
f (4.3)

where Y is the set of variables that appear in the summands. Combining this approach with

Lemmas 4.1.1 and 4.2.2, we have the following theorem.

Theorem 4.3.1 Consider a factor graph G with n nodes and let T be an elimination tree

with width w. Then, Equation (4.3) holds for any variable xi and can be computed in

O(d2w log n) time.

Proof: The correctness of Equation (4.3) follows when each marginalization function Mfj

is viewed as a sum-product message in the equivalent tree-decomposition. To prove the

latter, we will show that for ∂j = {(fc, fa), (fd, fb)}, Mfa and Mfb are equal to the tree-

decomposition messages µχa→χc and µχb→χd , respectively. This can be proven inductively

starting with Mfk . First, note that the base case holds trivially. Then, using the inductive

hypothesis, we assume that Mfa = µχa→χc and Mfb = µχb→χd . Now, there has to be a
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descendant λ` of λj such that (fe, fj) ∈ ∂`. By multiplying with the degree-2 clusters in

Cj \
{
fj−1

}
, we can convert the messages µχa→χc and µχb→χd to the messages into fj .

Applying Equation (3.2) then gives Mfj = µχj→χe as desired.

For the running time, we observe that each message computation is essentially the same

procedure as eliminating a leaf factor, therefore each message has size O(dw) and takes

O(d2w) time to compute by Lemma 4.1.1. �

We note that it is also possible to speed-up successive marginal queries by caching the

downward marginalization functions in Equation (4.2). For example, if we query all variables

as described above, we compute O(n log n) many downward marginalization messages. How-

ever, by caching the downward marignalization functions in the cluster tree, we can compute

all marginals in O(d2w · n) time, which is optimal given the elimination ordering. As we

will see in Section 5.1, the balanced nature of the cluster tree allows us to perform batch

operations e�ciently. In particular, for marginal computation, using the caching strategy

above, any set of ` marginals can be computed in O(d2w` log(n/`)) time.
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CHAPTER 5

EFFICIENT UPDATES TO CLUSTER TREES

The preceding chapter described the process of constructing a balanced cluster tree elimi-

nation ordering from a given elimination tree, and how to use the resulting cluster tree to

compute marginal distributions. However, the primary advantage of a balanced ordering

lies in its ability to adapt to changes and incorporate updates to the model. In this chapter,

we describe how to e�ciently update the cluster tree data structure after changes are made

to the input factor graph or elimination tree.

We divide our update process into two algorithmic components. We �rst describe how to

make changes to the factors, whether changing the parameters of the factor or its arguments

(and thus the structure of the factor graph), but leaving the original elimination tree (and

thus the cluster tree) �xed. We then describe how to make changes to the elimination tree

and e�ciently update the cluster tree. In practice these two operations may be combined; for

example when modifying a tree-structured graph such that it remains a tree we are likely to

change the elimination tree to re�ect the new structure. Similarly, for a general input factor

graph we may also wish to change the elimination tree upon changes to factors. Figure 5.1

illustrates such an example, in which changing a dependency in the factor graph makes it

possible to reduce the width of the elimination tree.

5.1 Updating factors with a �xed elimination tree

For a �xed elimination tree, suppose that we change the parameters of a factor fj (but

not its arguments), and consider the new cluster tree created for the resulting graph. As

suggested in the discussion in Chapter 4, the �rst change in the clustering process occurs

when computing λj ; a change to λj changes its parent, and so on upwards to the root. Thus,

the number of a�ected functions that need to be recalculated is at most the depth of the
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Figure 5.1: Modifying the Elimination Tree. If the factor graph in (a) is modi�ed by
removing the edge (y, f1), we can reduce the width of the elimination tree (from 3 to 2) by
replacing the edge (f1, f2) by (f1, f5).
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Figure 5.2: Modifying the arguments of factors. If the factor graph in (a) is modi�ed
by removing the edge (x, f1), we update two paths in the cluster tree, as shown in (b), from
both x and λ1 to the root. The position in which x is eliminated is found by bottom-up
traversing of the factors adjacent to x.

cluster tree. Since the cluster tree is of depth O(log n) by Lemma 4.2.2, and each operation

takes at most O(d3w), the total recomputation is at most O(d3w log n).

If we change the structure of graph G by modifying the arguments of a factor fj by adding

or removing some variable xi, then the point at which xi is removed from the factor graph

may also change. Since xi is eliminated (eg., summed out) once every factor that depends

on it has been eliminated, adding an edge may postpone elimination, while removing an edge

may lead to an earlier elimination. To update the cluster tree as a result of this change, we

must update all clusters a�ected by the change to fj , and we must also identify and update

the clusters a�ected by earlier, or later, removal of xi from the factor graph. In both edge
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addition and removal, we can update clusters from λj to the root in O(d3w log n) time.

We describe how to identify the new elimination point for xi in O(log n) time. Observe

that the original cluster λk at which xi is eliminated is the topmost cluster in the cluster tree

with the property that either fk, the associated factor, depends on xi, or λk has two children

clusters that both depend on xi. The procedure to �nd the new point of elimination di�ers

for edge insertion and edge removal. First, suppose we add edge (xi, fj) to the factor graph.

We must traverse upward in the cluster tree until we �nd the cluster satisfying the above

condition. For edge removal, suppose that we remove the dependency (xi, fj). Then, xi can

only need to be removed earlier in the clustering process, and so we traverse downwards from

the cluster where xi was originally eliminated. At any cluster λk during the traversal, if the

above condition is not satis�ed then λk must have one or no children clusters that depend

on xi. If λk has a single child that depends on xi, we continue traversing in that direction.

If λk has no children that depend on xi, then we continue traversing towards λj . Note that

this latter case occurs only when the paths of xi and λj to the root overlap, and thus is

always possible to traverse toward λj .

Once we have identi�ed the new cluster at which xi is eliminated, we can recalculate

cluster functions upwards in O(d3w log n) time. Therefore the total cost of performing an

edge insertion or removal O(d3w log n). Figure 5.2 illustrates how the cluster tree is updated

after deleting an edge in a factor graph keeping the elimination tree �xed. After deleting

(x, f1) we �rst update the clusters upwards starting from λ1. Then traverse downwards to

�nd the point at which xi is eliminated, which is λ5 because f5 depends on x. Finally, we

update λ5 and its ancestors.

We can also extend the above arguments to handle multiple, simultaneous updates to

the factor graph. Suppose that we make ` changes to the model, either to the de�nition

of a factor or its dependencies. Each change results in a set of a�ected nodes that must

be recomputed; these nodes are the ancestors of the changed factor, and thus form a path
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Figure 5.3: Batch updates. After modifying ` = 3 factors, f1, f5 and f12, we update
the corresponding clusters and their ancestors in a bottom-up fashion. The total number of
nodes visited is O(` log(n` ) + 2log(`)) = O(` log(n` )).

upwards through the cluster tree. This situation is illustrated in Figure 5.3. Now, we count

the number of a�ected nodes by grouping them into two sets. If our cluster tree has branching

factor b, level logb(`) has ` nodes; above this point, paths must merge, and all clusters may

need to be recalculated. Below level logb(`), each path may be separate. Thus the total

number of a�ected clusters is `+ ` logb(n/`).

Note that for edge modi�cations, we must also address how to �nd new elimination points

e�ciently. As stated earlier, any elimination point λk for xi satis�es the condition that it is

the topmost cluster in the cluster tree with the property that either fk depends on xi, or λk

has two children clusters that both depend on xi. As we update the clusters in batch, we can

determine the variables for which the above condition is not satis�ed until we reach the root

cluster. In addition, we also mark the bottommost clusters at which the above condition is

not satis�ed. Starting from these marked clusters, we search downwards level-by-level until

we �nd the new elimination points. At each step λk, we check if there is a variable xi such

that xi 6∼fj and only one child cluster of λk depends on xi. If there is not, we stop the

search; if there is, we continue searching towards those clusters. Since each step takes O(w)

time, the total time to �nd all new elimination points is O(w` log(n/`)). We then update

the clusters upwards starting from the new elimination points until the root, which takes

O(d3w` log(n/`)) time.

Combining the arguments above, we have the following theorem.
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Figure 5.4: Updating the elimination tree. Suppose we modify the input factor graph
by removing (y, f1) from the factor graph and replacing (f1, f2) by (f1, f5) in the elimination
tree as shown in (a). The original cluster tree (b) must be changed re�ect these changes.
We must revisit the decisions made during the hierarchical clustering for the a�ected factors
(in red).

Theorem 5.1.1 Let G = (X,F ) be a factor graph with n nodes and H be the cluster tree

obtained using an elimination tree T with width w. Suppose that we make ` changes to

the model, each consisting of either adding or removing an edge or modifying the parame-

ters of some factor, while holding T �xed. Then, we can recompute the cluster tree H′ in

O(d3w` log(n/`)) time.

5.2 Structural changes to the elimination tree

Many changes to the graphical model will be accompanied by some change to the desired

elimination ordering. For example, changing the arguments of a factor may suggest some

more e�cient ordering that we may wish to exploit. However, changing the input elimination

order also requires modifying the cluster tree constructed from it. Figure 5.4 shows such a

scenario, where removing a dependency suggests an improved elimination tree. In this section

we prove that it is possible to e�ciently reorganize the cluster tree after a change to the

elimination tree.

As in the previous section, we wish to recompute only those nodes in the cluster tree

whose values have been a�ected by the update. In particular we construct the new cluster

tree by stepping through the creation of the original sequence T1, T2, . . ., marking some nodes
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as a�ected if we need to revisit the deferred elimination decision we made in constructing the

cluster tree, and leaving the rest unchanged. We �rst describe the algorithm itself, then prove

the required properties: that the original clustering remains valid outside the a�ected set;

that after re-clustering the a�ected set, our clustering remains a valid maximal independent

set and is thus consistent with the theorems in Chapter 4; and �nally that the total a�ected

set is again only of size O(log n). Since the elimination tree can be arbitrarily modi�ed by

performing edge deletions and insertions successively, for ease of exposition we �rst focus on

how the cluster tree can be e�ciently updated when a single edge in the elimination tree

is inserted or deleted. For the remainder of the section, we assume that the hierarchical

clustering process produced intermediate trees (T1, T2, . . . , Tk) and that (fi, fj) is the edge

being inserted or deleted.

Observe that, to update any particular round of the hierarchical clustering, for any factor

fk we must be able to e�ciently determine whether its associated cluster must be recomputed

due to the insertion or deletion of an edge (fi, fj). A trivial way to check this would be to

compute a new hiearchical clustering (T ′1, T
′
2, . . . , T

′
l ) using the changed elimination tree.

Then, the cluster λk that is generated after eliminating fk depends only on the set of

clusters around fk at the time of the elimination. If Ci(fk) and C′i(fk) are the set of clusters

around fk on Ti and T
′
i , respectively, then fk is a�ected at round i if the sets Ci(fk) and

C′i(fk) are di�erent. Note that we consider Ci(fk) = Ci(fk) if λj ∈ Ci(fk) ⇐⇒ λj ∈ C′i(fk)

and the values of λj are identical in both sets. Clearly, this approach is not e�cient, but

motivates us to (incrementally) track whether or not Ci(fk) and C′i(fk) are identical in a more

e�cient manner. To do this, we de�ne the degree-status of the neighbors of fk, and maintain

it as we update the cluster tree. Given two hierarchical clusterings (T1 = (F1, E1), T2 =

(F2, E2), . . . , Tk = (Fk, ∅)) and (T1 = (F ′1, E
′
1), T2 = (F ′2, E

′
2), . . . , Tl = (F ′l , ∅)), we de�ne
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Figure 5.5: A�ected nodes in the clustering. By rule 2 for marking factors as a�ected,
eliminating f6 in the �rst round makes σ2(f3) = 1, thereby making f1 and f5 a�ected. In
contrast, since σ2(f9) = 0, f12 and f13 are not marked as a�ected. By rule 1, eliminating f7
in the �rst round makes f10 a�ected.

the degree-status σi(f) of a factor f at round i as

σi(f) =





1 if degTi(f) ≤ 2 or degT ′i
(f) ≤ 2 or f /∈ Fi ∩ F ′i

0 if degTi(f) ≥ 3 and degT ′i
(f) ≥ 3

The degree status tells us whether f is a candidate for elimination in either the previous or

the new cluster tree.

At a high level, we step through the original clustering, marking factors as a�ected

according to their degree-status. For a factor fj , if σi(fj) = 1, then fj is either eliminated

or a candidate for elimination at round i in one or both of the previous and new hierarchical

clusterings. Since we must recompute clusters for a�ected factors, if we mark fj as a�ected,

then its una�ected neighbors should also be marked as a�ected in the next round. This

approach conservatively tracks how a�ectedness �spreads� from one round to the next; we

may mark factors as a�ected unnecessarily. However, we will be able to show that any round

of the new clustering has a constant number of factors for which we must recompute clusters.

We now describe our algorithm for updating a hierarchical clustering after a change to the

elimination tree. We �rst insert or remove the edge (fi, fj) in the original elimination tree and

obtain T ′1 = (V ′1, E
′
1) where E′1 = E1∪

{
(fi, fj)

}
if the edge is inserted or E′1 = E1\

{
(fi, fj)

}

if deleted. For i = 1, 2, . . . , l, the algorithm proceeds by computing the a�ected set Ai, an
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independent set Mi ⊆ Ai of a�ected factors of degree at most 2 in T ′i , and then eliminating

Mi to form T ′i+1. We let A0 =
{
fi, fj

}
, M0 = ∅ and T ′0 = T ′1. For round i = 1, 2, . . . l we do

the following:

• We obtain the new elimination tree T ′i = (F ′i , E
′
i) by eliminating the factors in Mi−1

from Ti−1 via deferred factor elimination subroutine.

• All a�ected factors left in T ′i remain a�ected, namely the set Ai−1 \Mi−1. We mark

a previously una�ected factor f as a�ected if

1. f has an a�ected neighbor g in T ′i−1 such that g ∈Mi−1 or

2. f has an a�ected neighbor g in T ′i such that g ∈ Ai−1 \Mi−1 with σi(g) = 1.

Let Ni be the set of factors that are marked in this round according to these two rules,

then Ai = (Ai−1 \Mi−1) ∪Ni.

• Initialize Mi = ∅ and greedily add a�ected factors to Mi starting with the factors

that are adjacent to an una�ected factor. Let f ∈ Ai be an a�ected factor with an

una�ected neighbor g ∈ V ′i \Ai. If g is being eliminated at round i we skip f , otherwise

f is included in Mi if degT ′i
(f) ≤ 2. We continue traversing the set of a�ected factors

with degree at most two and add as many of them as we can to Mi, subject to the

independence condition.

Observe that a factor f in T ′i becomes a�ected either if an a�ected neighbor of f is

eliminated at round i−1 or if f has neighbor that was a�ected in earlier rounds with degree-

status 1 in T ′i . Once a factor becomes a�ected, it stays a�ected. For an una�ected factor f

at round i, f 's neighbors have to be (i) una�ected, (ii) a�ected with degree-status 0, or (iii)

have become a�ected at round i.

In order to establish that the procedure above correctly updates the hierarchical cluster-

ing, we �rst prove that we are able to correctly identify una�ected factors, and incrementally

maintain maximal independent sets.
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Lemma 5.2.1 Given T = (T1, T2, . . . , Tk), let T ′ = (T ′1, T
′
2, . . . , T

′
l ) be the updated hierar-

chical clustering. For any round i = 1 . . . l, let T ′i = (F ′i , E
′
i), let Pi = F ′i \ Ai be the set of

una�ected factors and Ri = Pi \ F ′i+1 be the ones that are eliminated at round i. Then, the

following statements hold:

• Ri ∪Mi is a maximal independent set among vertices of degree at most two in F ′i .

• For any f ∈ Pi, the set of clusters around f and the set of neighbors of f are the same

in Ti as in T
′
i .

Proof: For the �rst claim, we �rst observe that Ri is an independent since it is contained

inMi. For maximality, assume that Ri∪Mi is not a maximal independent set among degree

≤ 2 vertices of F ′i . Then there must be a factor f with two neighbors g, h with degrees ≤ 2

and none of which are eliminated at round i. This triplet (f, g, h) can not be entirely in

Ai or F
′
i \ Ai, because the sets Ri and Mi are maximal on their domain, namely Ri is a

maximal independent set over F ′i \ Ai and Mi is a maximal independent set over Ai. On

the other hand, the triplet (f, g, h) can not be on the boundary either because the update

algorithm eliminates any factor with degT ′i
≤ 2 if it is adjacent to an una�ected factor that

is not eliminated at round i. Therefore, Ri ∪Mi is a maximal independent set over degree

≤ 2 vertices of F ′i .

We now prove the �rst part of the second claim by induction on i. Let Ci(f) and C′i(f)

be the set of clusters around f in Ti and T ′i , respectively. The claim is trivially true for

i = 1 because Ci(f) = C′i(f) = ∅ for all factors. Assume that Cj(f) = C′j(f) for all una�ected

factors at round j where j = 1, . . . , i − 1. Since f ∈ Pi imples that f ∈ Pi−1, we have

that Ci−1(f) = C′i−1(f). Since the set of clusters around a factor changes only if any of

its neighbors are eliminated, we must prove that if a neighbor of f is eliminated in Ti−1,

then it must be eliminated in T ′i−1 and vice versa; additionally we must prove that they

also generate the same clusters. Since f ∈ Pi−1, the neighbors of f in T ′i can be una�ected,

a�ected with degree-status 0 or newly a�ected in round i. When an una�ected factor g is
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eliminated in Ti−1, it is eliminated in T ′i as well, the resulting clusters are identical since

Ci−1(g) = C′i−1(g). So any change to Ci(f) due to f 's una�ected neighbors is replicated in

C′i(f). On the other hand, by de�nition we cannot eliminate a factor with degree-status 0,

so they do not pose a problem even if they are a�ected. The last case is a newly a�ected

neighbor g of f in Ti−1 with σi−1(g) = 1. But this case is impossible because, if g is

eliminated then we would have marked f as a�ected in Ti via the �rst rule, or if g is not

eliminated then by the second rule and the fact that σi(g) = 1, we would have marked f as

a�ected in Ti. Therefore Ci(f) = C′i(f) for all una�ected factors. This implies that clusters

of una�ected factors are identical and do not have to be recalculated in T ′i .

Let Ni(f) and N ′i (f) be the set of neighbors of f in Ti and T ′i , respectively. Proving

the second part of the second claim (i.e., Ni(f) = N ′i (f)) proceeds similarly to that for

Ci(f) = Ci(f). The only di�erence is the initial round when i = 1. In round 1, the update

algorithm marks all the factors that are incident to the added or removed edges as a�ected,

so for all una�ected factors their neighbor set must be identical in Ti and T
′
i . �

Using this lemma, we can now prove the correctness of our method to incrementally

update a hierarchical clustering.

Theorem 5.2.2 Given a valid hierarchical clustering T , let T ′ = (T ′1, T
′
2, . . . , T

′
l ) be the up-

dated hierarchical clustering, where T ′i = (F ′i , E
′
i). Then, T

′ is a valid hierarchical clustering,

i.e.,

• the set Mi = F ′i \ F ′i+1 is a maximal independent set containing vertices of degree at

most two, and

• T ′i+1 is obtained from T ′i by applying deferred factor elimination to the factors in Mi.

Proof: Recall that Ai is the set of a�ected factors marked and M ′i ∈ Ai be the indepen-

dent set chosen by the algorithm. Let Pi = F ′i \ Ai be the set of una�ected factors and

Ri = Pi \ F ′i+1 be the ones that are eliminated at round i. The fact that Mi is a maximal
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independent set follows from Lemma 5.2.1 because Mi = Ri ∪M ′i . Since the update algo-

rithm keeps the decisions made for the una�ected factors, the set of eliminated vertices are

precisely Mi = Ri ∪M ′i and by Lemma 5.2.1, Mi is a maximal independent set over degree

≤ 2 vertices of T ′i . The update algorithm applies the deferred factor elimination subroutine

on the set M ′i , so what remains to be shown is the saved values for Ri are the same as if

we eliminate them explicitly. By Lemma 5.2.1, the factors in Ri have the same set of clus-

ters around them in Ti and T
′
i , which means that deferred factor elimination procedure will

produce the same result in both elimination trees when una�ected factors are eliminated.

Therefore, we can reuse the clusters in Ri. �

Theorem 5.2.2 shows that our update method correctly modi�es the cluster tree, and thus

marginals can be correctly computed. Note that, by Lemma 4.2.2, we also have that the

resulting cluster tree also has logarithmic depth. It remains to show that we can e�ciently

update the clustering itself. We do this by �rst establishing a bound on the number of

a�ected nodes in each round.

Lemma 5.2.3 For i = 1, 2, . . . , l, let Ai be the set of a�ected nodes computed by our al-

gorithm after inserting or deleting edge (fk, fj) in the elimination tree. Then, |Ai| ≤ 12.

Proof: First, we observe that the edge (fk, fj) de�nes two connected components, that are

either created or merged, in the elimination tree. Since an una�ected node becomes a�ected

only if it is adjacent to an a�ected factor, the set of a�ected nodes forms a connected sub-

tree throughout the elimination procedure. For the remained of the proof, we focus on the

component associated with fk, and show that it has at most 6 a�ected nodes. A similar

argument can be applied to the component associated with fj , thereby proving the lemma.

For round i, let Bi be the set of a�ected neighbors of fk with at least one una�ected

neighbor and let Ni be the set of newly a�ected factors. We claim that |Bi| ≤ 2 and
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|Ni| ≤ 2 at every round i. This can be proven inductively: assume that |Bi| and |Ni| are

at most 2 in round i ≥ 0. Rule 1 for marking a factor a�ected can make only one newly

a�ected factor at round i+ 1, in which case it is eliminated, and hence |Bi| cannot increase.

Rule 2 for marking a factor a�ected can make two newly a�ected factors, as shown in the

example Figure 5.5. What is left to be shown is that if |Bi| = 2, then rule 2 cannot create

two newly a�ected factors and make |Bi| > 2. Let Bi = {fa, fb} and suppose fa can force

two previously una�ected factors a�ected in the next round. For this to happen, the degree-

status of fa has to be 1 in round i+ 1. However, this cannot because fa must have at least

three neighbors in both Ti+1 and T
′
i+1. This is because it has two una�ected neighbors plus

an a�ected neighbor that is eventually connected to another una�ected factor through fb.

Note that Figure 5.5 has |Bi| = 1, so we can increase |Bi| by 1.

We have now established the fact that the number of a�ected nodes can increase at most

by 2 in each round, and it remains to be shown that the number of a�ected nodes is at most

6 in each connected component.

To prove this, we argue that if there are more than 6 a�ected nodes in the connected

component, our algorithm eliminates at least 2 factors. Since a�ected nodes form a sub-tree

that interacts with the rest of the tree on at most 2 factors, what remains to be shown is

that in any tree with at least 4 nodes, the size of a maximal independent set over the nodes

with degree at most 2 is at least 2. To see this, observe that every tree has two leaves, and if

the size of the tree is at least 4, the distance between these two leaves is at least 2 or the tree

is star-shaped. In either case, any maximal independent set must include at least 2 nodes,

proving the claim. �

Combining the above arguments, we now conclude that a cluster tree can be e�ciently

updated if the elimination tree is modi�ed.

Theorem 5.2.4 Let G = (X,F ) be a factor graph with n nodes and H be the cluster tree
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obtained using an elimination tree T . If we insert or delete a single edge from T , it su�ces

to re-compute O(log n) clusters in H to re�ect the changes.

Proof: Since the number of a�ected factors is constant at each round by Lemma 5.2.3 and

the number of rounds is O(log n) by Lemma 4.2.2, the result follows. �

We can easily generalize these results to multiple edge insertions and deletions by sepa-

rately considering each connected component resulting from a modi�cation. As we discussed

in Section 5.1, we only need to recalculate O(` log(n/`)) many clusters where ` is the number

of modi�cations to the elimination tree. We can now state the running time e�ciency of our

update algorithm under multiple changes to the elimination tree.

Theorem 5.2.5 Let G = (X,F ) be a factor graph with n nodes and H be the cluster tree

obtained using an elimination tree T . If we make ` edge insertions or deletions in T , we can

recompute the new cluster tree in O(d3w` log(n/`)) time.

5.3 Experiments

In this section, we evaluate the performance of our approach by comparing the running times

for building, querying, and updating the cluster-tree data structure against (from-scratch or

complete) inference using the standard sum-product algorithm. For the experiments, we

implemented our proposed approach as well as the sum-product algorithms in Python. In

our implementation, all algorithms take the elimination tree as input; when it is not possible

to compute the optimal elimination tree for a given input, we use a simple greedy method

to construct it (the algorithm grows the tree incrementally while minimizing width). We

evaluate the practical e�ectiveness of our proposed approach by considering synthetically

generated graphs to compute marginals (Section 5.3.2). These experiments show that adap-

tive inference can yield signi�cant speedups for reasonably chosen inputs. To further explore
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the limits of our approach, we also perform a more detailed analysis in which we compute

the speedup achievable by our method for a range tree-width, dimension, and size parame-

ters. This analysis allows us to better interpret how the asymptotic bounds derived in the

previous sections fare in practice.

For our experiments, we randomly generate problems consisting of either tree-structured

graphs or loopy graphs and measure the running-time for the operations supported by the

cluster tree data structure and compare their running-times to that of the sum-product

algorithm. Since we perform exact inference, the sum-product algorithm o�ers an adequate

basis for comparison.

5.3.1 Data Generation

For our experiments on synthetically generated data, we randomly generate input instances

consisting of either tree-structured graphs or loopy graphs, consisting of n variables, each

of which takes on d possible values. For tree-structured graphs, we de�ne how a factor fi

(1 ≤ i < n) depends on any particular variable xj (1 ≤ j < n) through the following

distribution:

Pr
{
fi depends on xj

}
=





1 if j = i+ 1

p(1− p)i−j if j = 2, . . . , i

1−∑i
s=2 p(1− p)i−s if j = 1

Here, p is a parameter that when set to 1 results in a linear chain. More generally, the

parameter p determines how far back a node is connected while growing the random tree.

The ith node is expected to connect as far back as the jth node where j = i− 1/p, due to

the truncated geometric distribution. In our experiments we chose p = .2 and d = 25 when

generating trees.

For loopy graphs, we start with a simple Markov chain, where each factor fi depends on
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variables xi and xi+1, where 1 ≤ i < n. Then for parameters w and p, we add a cycle to

this graph as follows: if i is even and less than n − 2(w − 1), with probability p we create

a cycle by adding a new factor gi that depends on xi and xi+2(w−1). This procedure is

guaranteed to produce a random loopy graph whose width along the chain x1, . . . , xn is at

most w; to ensure that the induced width is exactly w we then discard any created loopy

graph with width strictly less than w. In our experiments, we set p = (0.2)1/(w−1) so that

the maximum width is attained by 20% of the nodes in the chain regardless of the width

parameter w. We use an elimination tree T = (F,E) that eliminates the variables x1, . . . , xn

in order. More speci�cally, E includes {(fi, fi+1) : i = 1, . . . , n− 1} and any (fi, gi) with

2 ≤ i ≤ n− 2(w − 1) that is selected by the random procedure above. In our experiments,

we varied n between 10 and 50000.

For both tree-structured and loopy factor graphs, we generate the entries of the factors

(i.e., the potentials) by sampling a log-normal distribution, i.e., each entry is randomly

chosen from eZ where Z is a Gaussian distribution with zero mean and unit variance.

5.3.2 Measurements

To compare our approach to sum- and max-product algorithms when the underlying models

undergo changes, we measure the running-times for build, update, structural update, and

query operations. To perform inference with a graphical model that undergoes changes, we

start by performing an initial build operation that constructs the cluster-tree data structure

on the initial model. As the model changes, we re�ect these changes to the cluster tree

by issuing update operations that change the factors, or structural-update operations that

change the dependencies in the graph (by inserting/deleting edges) accordingly, and retrieve

the updated inference results by issuing query operations. We are interested in applications

where after an initial build, graphical models undergo many small changes over time. Our

goal therefore is to reduce the update and query times, at the cost of a slightly slower initial
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build operation.

Marginal Computations

We consider marginal computation and how we can compute marginals of graphical models

that undergo changes using the proposed approach. To this end we measure the running-

time for the build, update, structural-update and query operations and compare them to

the sum-product algorithm on the junction tree that uses the same elimination tree as our

algorithm. We consider graphs with tree-width one (trees) and three and between 10 and

200, 000 nodes. For trees, we set d = 25, and for graphs we set d = 6.

For the build time, we measure the time to build the cluster tree data structure for graphs

generated for various input sizes. The running-time of sum-product is de�ned as the time

to compute messages from leaves to a chosen root node in the factor graph. To compute the

average time for a query operation, we take the average time over 100 trials to perform a

query for a randomly chosen marginal. To compute the update time, we take the average

over 100 trials of the time required to change a modify a randomly chosen factor (to a new

factor that is randomly generated). To compute the average time required for a structural

updates (i.e, restructure operations), we take the average over 100 trials of the total time

required to remove a randomly chosen edge, update the cluster tree, and to add the same

edge back to the cluster tree.

Figure 5.6 shows the result of our measurements for tree-structured factor graphs and

loopy graphs with tree-width 3. We observe that the running-time for the build operations,

which constructs the initial cluster tree, is comparable to the time required to perform

sum-product. Since we perform exact inference, sum-product is the best we can expect in

general. We observe that all of our query and update operations exhibit running times that

are logarithmic in n, and are between one to four orders of magnitude faster than a from-

scratch inference with the sum-product algorithm. Update and restructuring operations
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Figure 5.6: Marginalization queries and model updates. We measure the run times
for naive sum-product, building the cluster tree, computing marginal queries, updating fac-
tors, and restructuring (adding and deleting edges to the elimination tree) for tree-structured
and loopy factor graphs. Building the cluster tree is slightly more expensive than a single
execution of sum-product, but subsequent updates and queries are much more e�cient than
recomputing from scratch. For both tree-structured and loopy graphs, our approach is about
three orders of magnitude faster than sum-product.

are costlier than the query operation, as predicted by our complexity bounds on updates

(O(d3w log n), Theorem 5.1.1) and queries (O(d2w log n), Theorem 4.3.1). The overall trend

is logarithmic in n, and even for small graphs (100�1000 nodes) we observe a factor of 10�30

speedup. In the scenario of interest, where we perform an initial build operation followed by

a large number of updates and queries, these results suggest that we can achieve signi�cant

speedups in practice.

E�ciency trade-o�s and the constant factors

Our experiments with the computations of marginals (Section 5.3.2) suggest that our pro-

posed approach can lead to e�ciency improvements and signi�cant speedups in practice. In

this section, we present a more detailed analysis by considering a broader range of graphs

and by presenting a more detailed analysis by considering constant factors and realized
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Figure 5.7: Speedup Analysis. The regions where we obtain speedup, de�ned as the
ratio of running time of our algorithm for a single update and query to the running time of
standard sum-product, are shown for loopy graphs with width 2, 3 and 4.

exponents.

For a graph of n nodes with tree-width w and dimension d, inference of marginals using

sum product algorithm requires O(dw+1n) time. With adaptive inference, the preprocessing

step takes O(d3wn) time whereas updates and queries after unit changes require O(d3w log n)

and O(d2w log n) time respectively. These asymptotic bounds imply that using updates and

queries, as opposed to performing inference with sum-product, would yield a speedup of

O( n
d3w log n

), where d is the dimension (domain size) and w and n is the tree-width and

the size of the graphical model. In the case that d and w can be bounded by constants,

this speedup would result in a near linear e�ciency increase as the size of the graphical

model increases. At what point and with what inputs exactly the speedups materialize,

however, depends on the constant factors hidden by our asymptotic analysis. For example

in Figure 5.6, we obtain speedups for nearly all graphs considered.

Speedups for varying input parameters. To assess further the practical e�ectiveness of

adaptive inference, we have measured the performance of our algorithm versus sum-product

for graphical models generated at random with varying values of d, w and n. Speci�cally, for

a given d, w, n we generate a random graphical model as previously described and measure

56



the average time for ten randomly generated updates plus queries, and compare this to

the time to perform from-scratch inference using the sum-product algorithm. The resulting

speedup is de�ned as the ratio of the time for the from-scratch inference to the time for the

random update plus query.

Figure 5.7 illustrates a visualization of this speedup information. For tree-widths 2, 3, 4,

we show the speedup expected for each pair of values (n, d). Given �xed w, d we expect

the speedup to increase as n increases. The empirical evaluation illustrates this trend; for

example, at w = 3 and d = 4, we see a �ve fold or more speedup starting with input

graphs with n ≈ 100. As the plots illustrate, we observe that when the tree-width is 2 or

less, as in Figure 5.7a, adaptive inference is preferable in many cases even for small graphs.

With tree-widths 3 and 4, we obtain speedups for dimensions below 10 and 6 respectively.

We further observe that for a given width w, we obtain higher speedups as we reduce the

dimensionality d and as we increase n, except for small values of n. Disregarding such small

graphs, this is consistent with our theoretical bounds. In small graphs (n < 100) we see

higher speedups than predicted because our method's worst-case exponential dependence is

often not achieved, a phenomenon we examine in more detail shortly.

Constant Factors. The experiments shown in Figures 5.7 and 5.6 show that adaptive

inference can deliver speedups even for modest input sizes. To understand these result

better, it helps to consider the constant factors hidden in our asymptotic bounds. Taking

into account the constant factors, we can write the dynamic update times with adaptive

inference as αad3w log n + βa log n, where αa, βa are constants dependent on the cost of

operations involved. The �rst term αad
2w log n accounts for the cost of matrix computations

(when computing the cluster functions) at each node and the term βa log n accounts for the

time to locate and visit the log n nodes to be updated in the cluster-tree data structure. In

comparison, sum-product algorithm requires αsdw+1n+ βsn time for some constants αs, βs

which again represent matrix computation at each node and the �nding and visiting of the
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nodes. Thus the speedup would be αsd
w+1n+βsn

αad3w log n+βa log n
.

These bounds suggest that for �xed d, w, there will be some n0 beyond which speedups

will be possible. The value of n0 depends on the relationships between the constants. First,

constants αa and αs are similar because they both involve similar matrix operations. Also,

the constants βa and βs are similar because they both involve traversing a tree in memory

by following pointers. Given this relationship between the constants, if the non-exponential

terms dominate, i.e., β � α, then we can obtain speedups even for small n.

Our experiments showing that speedups are realized at relatively modest input sizes

suggest that the βs dominate the αs. To test this hypothesis, we measured separately the

time required for the matrix operations. For an example model with n = 10000, w = 3, d = 6,

the matrix operations (the �rst term in the formulas) consumed roughly half the total time:

8.3 seconds, compared to 7.4 seconds for the rest of the algorithm. This suggests that βs

are indeed larger than the αs. This should be expected: the constant factor for matrix

computation, performed locally and in machine registers, should be far smaller than the

parts of the code that include more random memory accesses (e.g., for �nding nodes) and

likely incur cache misses as well, which on modern machines can be hundreds of times slower

than register computations.

While this analysis compares the dynamic update times of adaptive inference, comparing

the pre-processing (build) time of our cluster tree data structures (Figure 5.6) suggests that

a similar case holds. Speci�cally, in Theorem 4.2.1 we showed that the building the cluster

tree takes in the worst case Θ(d3w ·n) whereas the standard sum-product takes Θ(dw+1 ·n).

Thus the worst-case build time could be d2w = 62·3 = 46656 times slower than standard

sum-product. In our experiments, this ratio is signi�cantly lower. For a graph of size 50,000,

for example, it is only 3.05. Figure 5.6(b) also shows a modest increase in build time as

the input size grows. For example at n = 100, our build time is about 1.20 slower than

performing sum-product. Another 100-fold increase in the size makes our build time about
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Figure 5.8: Cost of cluster computation.The maximum exponent e during the compu-
tation of clusters, which takes O(de) time, is plotted as a function of the input size. As can
be seen, the exponent starts relatively small and increases to reach the theoretical maximum
of three times the tree-width as the graph size increases. Since the cost of computing clusters
in our algorithm is O(de), our approach can yield speedup even for small and medium-sized
models. This shows that our worst-case bound of O(d3w) for computing clusters can be
pessimistic, i.e., it is not tight except in larger graphs.

2.05 slower. As we illustrate in next this section, this is due to our bounds not being tight

in small graphs.

It is also worth noting that the di�erences between the running times of query and update

operations are also low in practice, in contrast to the results of Theorems 5.2.5 and 4.3.1.

According to Theorems 5.2.5 and 4.3.1, the query operation could, in the worst-case, be

dw = 63 = 216 times faster than an update operation. However, in practice we see that,

for example at n = 100, the queries are about 2.5 times faster than updates. This gap does

increase as n increases, e.g., at n = 50000, queries are about 6.7 times faster than updates;

this is again due to our bounds not being tight in small graphs (described in detail next).

Tightness of our bounds in small graphs. Our experiments with varying sizes of graphs

show some unexpected behavior. For example, contrary to our bound that predicts speedup

to increase as the input size increases, we see in Figure 6.4 that speedups occur for very small

graphs (less than 100 nodes) then disappear as the graph size increases. To understand the

reasons for this we calculated the actual exponential factor in our bounds occurring in our
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randomly generated graphs, by building each cluster-tree and calculating the maximum

exponent encountered during the computation. Figure 5.8 shows the measurements, which

demonstrate that for small graphs the worst case asymptotic bound is not realized because

the exponent remains small. In other words, we perform far fewer computations than would

be predicted by our worst-case bound. As the graph size grows, the worst case con�gurations

become increasingly likely to occur, and the exponent eventually reaches the bound predicted

by our analysis. This suggests that our bounds may be loose for small graphs, but more

accurate for larger graphs, and explains why speedups are possible even for small graphs.
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CHAPTER 6

MAINTAINING MAP CONFIGURATIONS

The previous chapters provide for e�cient marginal queries to user-speci�ed variables and

can be extended to compute max-marginals when each sum is replaced with max in the

formulas. While we can query each max-marginal, since we do not know a priori which

entries of the MAP con�guration have changed, in the worst case it may take linear time to

update the entire MAP con�guration. In this chapter, we show how to use the cluster tree

data structure along with a tree traversal approach to e�ciently update the entries of the

MAP con�guration. More precisely, for a change to the model that induces m changes to

a MAP con�guration, our algorithm computes the new MAP con�guration in time propor-

tional to m log(n/m), without requiring a priori knowledge of m or which entries in a MAP

con�guration will change.

6.1 Computing MAP con�gurations using a cluster tree

In Chapter 4, we described how to compute a cluster tree for computing marginals for any

given variable. In this section, we show how this cluster tree can be modi�ed to compute a

MAP con�guration. First, we modify Equation (4.1) for computing a cluster λj to be

λj = max
Vj

fj
∏

λk∈CT (fj)
λk (6.1)

where Vj ⊆ X is the set of children variables of λj and CT (fj) is the set of children clusters

of λj in the cluster-tree. For MAP computations, rather than using boundaries we make use

of the argument set of clusters. The argument set Xλj of a cluster λj is the set of variables

λj depends on at time it was created and it is implicitly computed as we perform hierarchical

clustering.
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Figure 6.1: Updating a MAP con�guration. Factor f1 is modi�ed and no longer
depends on z on the factor graph (left). We �rst update the clusters on the path from
modi�ed clusters to the root, namely, λ1 and λ2. Then, we check for changes to the MAP
con�guration using a top-down traversal in the cluster-tree (right). Here x is assumed to
have a di�erent MAP con�guration than before, which requires us to check for changes to the
MAP con�guration in clusters with x in their argument sets, namely λ4, λ5. The argument
set for each cluster is annotated in the cluster tree.

We now perform a downward pass, in which we select an optimal con�guration for the

variables associated with the root of the cluster tree, then at its children, and so on. During

this downward pass, as we reach each cluster λj , we choose the optimal con�gurations for

its children variables Vj using

V∗j = arg max
X

δ(Xλj = X∗λj ) fj
∏

λk∈CT (fj)
λk (6.2)

where δ(·) is the Kronecker delta, ensuring that λj 's argument setXλj takes on valueX∗λj . By

the recursive nature of the computation, we are guaranteed that the optimal con�guration

X∗λj is selected before reaching the cluster λj . This can be proven inductively: assume

that Xλj has an optimal assignment when the recursion reaches the cluster λj . We are

conditioning on Xλj , which is the Markov blanket for λj , and can therefore optimize the

subtree of λj independently. The value in Equation (6.2) is thus the optimal con�guration

for Vj (which by de�nition includes Markov blanket) for each child cluster λk; see Figure 6.1

for an example.
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Theorem 6.1.1 Let G be a factor graph with n nodes and T be an elimination tree on G

with tree-width w. The MAP con�guration can be computed in O(nd3w) time.

Proof: Computation of the formulas in Equations (6.1) and (6.2) takesO(d3w) by Lemma 4.2.2.

Since the algorithm visits each node twice, once bottom-up using Equation (6.1) and once

top-down using Equation (6.2) the total cost is O(nd3w). �

6.2 Updating MAP con�gurations under changes

In this section we show, somewhat surprisingly, that the time required to update a MAP

con�guration after a change to the model is proportional to the number of changed entries

in the MAP con�guration, rather than the size of the model. Furthermore, the cost of

updating the MAP con�guration is in the worst case linear in the number of nodes in the

factor graph, ensuring that changes to model result in no worse cost than computing the

MAP from scratch. This means that, although the extent of any changed con�gurations is

not known a priori, it is identi�ed automatically during the update process. For the sake

of simplicity, we present the case where we modify a single factor. However, with little

alteration the algorithm also applies to an arbitrary number of modi�cations both to the

factors and to the structure of the model.

Let G = (X,F ) be a factor graph and H be its cluster tree. Suppose that we modify a

factor f1 ∈ F and let λ1 be the cluster formed after eliminating f1. Let λ1, λ2, . . . , λk be

the path from λ1 to the root λk in H. As in Chapter 5, we recompute each cluster along the

path using Equation (6.1). We additionally mark these clusters dirty to indicate that they

have been modi�ed. In the top-down phase we search for changes to and update the optimal

con�guration for the children variables of each cluster. Beginning at the root, we move

downward along the path, checking for a MAP change. At each node, we recompute the

optimal MAP con�guration for the children variables and recurse on any children cluster who
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is marked as dirty or whose argument set has a variable with a changed MAP con�guration.

Figure 6.1 shows an example of how a MAP con�guration changes after a factor (f1) is

changed in the factor graph. The bottom-up phase marks λ1 and λ2 dirty and updates

them. The top-down phase starts at the root and re-computes the optimal con�guration for

x and y. Assuming that the con�guration for x is changed, the recursion proceeds on λ1

due to the dirty cluster and λ4 due to the modi�ed argument set. At λ4 we re-compute the

optimal MAP con�gurations for v and w and assuming nothing has changed, we proceed to

λ5 and terminate.

We now prove the correctness and overall running time of this procedure.

Theorem 6.2.1 Suppose that we make a single change to a factor in the input factor graph

G, and that a MAP con�guration of the new model di�ers from our previous result on at

most m variables. Let γ = min(1 + rm, n), where r is the maximum degree of any node in

G. After updating the cluster tree, the MAP update algorithm can �nd m variables and their

new MAP con�gurations in O(γ(1 + log(nγ ))dw) time.

Proof: Suppose that after the modi�ed factor is changed, we update the cluster tree as

described in Chapter 5. To �nd the new MAP, we revisit our decision for the con�guration

of any variables along this path.

Consider how we can rule out any changes in the MAP con�guration of a subtree rooted

at λj in the cluster tree. First, suppose that we have found all changed con�gurations above

λj . The decision at λj is based on its children clusters and the con�guration of its argument

set which is the set of variables on the boundary of the cluster: if none of these variables have

changed, and no clusters used in calculating λj have changed, then the con�guration for all

nodes in the subtree rooted λj remains valid. Thus, our dynamic MAP update procedure

correctly �nds all the changed m variables and their new MAP con�gurations.

Now suppose that m variables have changed the value they take on in the new MAP

con�guration. The total number of paths with changed argument set is then at most rm.
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These paths are of height O(log n), and every node is checked at most once, ensuring that

the total number nodes visited is at most O(γ log(nγ )) where γ = min(1 + rm, n). Each visit

to a cluster λj decodes the optimal con�guration for its children variables Vj using Equa-

tion (6.2). Since we are conditioning on the argument set, this computation takes O(d|Vj|)

time. Using arguments as in the proof of Lemma 4.1.1, we can show that
∣∣Vj
∣∣ ≤ w. There-

fore the top-down phase takes O(γ(1 + n
γ )dw) time. �

It is also possible, using essentially the same procedure, to process batch updates to the

input model. Suppose we modify G or its elimination tree T by inserting and deleting a

total of ` edges and nodes. First, we use the method described in Chapter 5 to update

the clusters. Then, the total number of nodes recomputed (and hence marked dirty) is

guaranteed to be O(` log(n/`)). Note that we also require O(` log(n/`)) time to identify

new points of elimination for at most ` variables. Therefore, the bottom-up phase will

take O(d3w` log(n/`)) time. The top-down phase works exactly as before and can check

an additional O(rm) paths for MAP changes where m is the number of variables with

changed MAP value and r is the maximum degree in G. Therefore the top-down phase takes

O(γ log(nγ )dw) time where γ = min(`+ rm, n).

6.3 Experimental Analysis

We evaluate the e�ectiveness of our approach for synthetically generated graphs as well as two

applications in computational biology. The synthetic examples aim at demonstrating linear

dependence of adaptively computing MAP computations on the number of entries changed

in the MAP con�guration. The �rst computational biology application studies adaptivity in

the context of using an HMM for the standard task of protein secondary structure predic-

tion. For this task, we show how a MAP con�guration that corresponds to the maximum

likelihood secondary structure can be maintained as mutations are applied to the primary
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Figure 6.2: Updates to MAP con�gurations. We report the time required to update a
MAP con�guration after a single change is made to the input model, in both tree-structured
and loopy factor graphs, with 300 variables. Our algorithm takes time that is roughly linear
in the number of changed entries, unlike the standard max-product algorithm, which takes
time that is linear in the size of the model.

sequence. The second application applies our approach to higher-order graphical models that

are derived from three-dimensional protein structure. We show our algorithm can e�ciently

maintain the minimum-energy conformation of a protein as its structure undergoes changes

to local sidechain conformations.

6.3.1 Experiments with Synthetic Data

As described in Section 5.3.1 in detail, we generate two sets of synthetic data: tree-structured

and loopy factor graphs. A random tree-structured graph with n variables and domain size

d is generated with a �chainness� parameter p. When p is set to one, the random graph

becomes a chain, p = 0 creates a random graph where every edge is equally likely. The

second set of generated graphs are loopy graphs where we start with a simple Markov chain.

Then for parameter w, we generate random links between nodes so that the width of the

factor graph along the Markov chain is w.

For these experiments we generated factor graphs with tree-width one (trees) and three
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comprised of n = 300 variables. For trees, we choose d = 25 and for graphs we choose d = 6.

We compute the update time by uniformly randomly selecting a factor and replacing with

another factor, averaging over 100 updates. We compare the update time to the running-

time of the max-product algorithm, which computes messages from leaves to a chosen root

node in the factor graph and then performs maximization back to the leaves.

Figure 6.2 show the results of our experiments. For both tree-structured and loopy

factor graphs, we observed strong linear dependence between the time required to update

the number of changed entries in the MAP con�guration. We note that while there is an

additional logarithmic factor in the running time, it is likely negligible since n was set to be

small enough to observe changes to the entire MAP con�guration. Overall, our method of

updating MAP con�gurations was substantially faster than computing a MAP con�guration

from scratch in all cases, for both tree-structured and loopy graphs.

6.3.2 Sequence Analysis with Hidden Markov Models

HMMs are a widely-used tool to analyze DNA and amino acid sequences; typically an HMM

is trained using a sequence with known function or annotations, and new sequences are

analyzed by inferring hidden states in the resulting HMM. In this context, our algorithm

for updating MAP con�gurations can be used to study the e�ect of changes to the model

and observations on hidden states of the HMM. We consider the application of secondary

structure prediction from the primary amino acid sequence of a given protein. This prob-

lem has been studied extensively [22], and is an ideal setting to demonstrate the bene�ts

of our adaptive inference algorithm. An HMM for protein secondary structure prediction

is constructed by taking the observed variables to be the primary sequence and setting the

hidden variables (i.e., one hidden state per amino acid) to be the type of secondary structure

element (α-helix, β-strand, or random coil) of the corresponding amino acid. Then, a MAP

con�guration of the hidden states in this model identi�es the regions with α helix and β
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Figure 6.3: Secondary structure prediction using HMMs. We applied our algorithm
to perform udpates in HMMs for secondary structure prediction. For our data set, we
can perform MAP updates about 10-100 faster than max-product, and we see a roughly
logarithmic trend as the size of the protein increases. For a single protein, E. coli hemolysin,
we see that the time required to upate the MAP con�guration is linear in the number of
changes to the MAP con�guration, rather than in the size of the HMM.

strands in the given sequence. This general approach has been studied and re�ned [13, 38],

and is capable of accurately predicting secondary structure. In the context of secondary

strucure prediction, our algorithm to adaptively update the model could be used in protein

design applications, where we make �mutations� to a starting sequence so that the result-

ing secondary structure elements match a desired topology. Or, more conventionally, our

algorithm could be applied to determine which residues in the primary sequence of a given

protein are critical to preserving the native pattern of secondary structure elements. It is

also worth pointing out that our approach is fully general and can be used in any application

where biological sequences are represented by HMMs (e.g., DNA, RNA, exon-intron chains

and CpG islands) and we want to study the e�ects of changes to these sequences.

For our experiments, we constructed an HMM for secondary structure prediction by

constructing an observed state for each amino acid in the primary sequence, and a cor-

responding hidden state indicating its secondary structure type. We estimated the model
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parameters using 400 protein sequences labeled by the DSSP algorithm [28], which anno-

tates a three-dimensional protein structure with secondary structure types using standard

geometric criteria. Since repeated modi�cation to a protein sequence typically causes small

updates to the regions with α helices and β strands, we expect to gain signi�cant speedup

by using our algorithm. To test this hypothesis, we compared the time to update MAP

con�guration in our algorithm against the standard max-product algorithm. The results of

this experiment are given in Figure 6.3(a). We observed that overall the time to update

secondary structure predictions were 10-100 times faster than max-product. The overall

trend of running times, when sorted by protein size, is roughly logarithmic. In some cases,

smaller proteins required longer update times; in these cases it is likely that due to the native

secondary structure topology, a single mutation induced a large number of changes in the

MAP con�guration. We also studied the update times for a single protein, E. coli hemolysin

(PDB id: 1QOY), with 302 amino acids, as we apply random mutations (see Figure 6.3(b)).

As in Section 6.3.1 above, we see that the update time scales linearly with the number of

changes to a MAP con�guration, rather than depending on the size of the primary sequence.

6.3.3 Protein Sidechain Packing with Factor Graphs

In the previous section, we considered an application where the input model was a chain-

structured representation of the protein primary sequence. In this section, we consider

a higher-order representation that de�nes a factor graph to model the three-dimensional

structure of protein, which essentially de�nes its biochemical function. Graphical models

constructed from protein structures have been used to successfully predict structural prop-

erties [56] as well as free energy [29]. These models are typically constructed by taking each

node as an amino acid whose states represent a discrete set of local conformations called ro-

tamers [20], and basing conditional probabilities on a physical energy function (e.g., [54, 12]).
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Figure 6.4: Adaptive sidechain packing for protein structures. For 60 proteins from
the SCWRL benchmark, we compared the time to adaptively update a MAP con�guration
against max-product. Since this set of proteins has a diverse set of folds (and thus graph
structures), we order the inputs by the time taken by max-product. The speedup achieved
by our algorithm varies due to the diversity of protein folds, but on average our approach is
6.88 times faster than computation from scratch.

The typical goal of using these models is to e�ciently compute a maximum�likelihood (i.e.

minimum�energy) conformation of the protein in its native environment. Our algorithmic

framework for updating MAP con�gurations allows us to study, for example, the e�ects of

amino acid mutations, and the addition and removal of edges corresponds directly to allowing

backbone motion in the protein. Applications that make use of these kinds of perturbations

include protein design and ligand-binding analysis. The common theme of these applications

is that, given an input protein structure with a known backbone, we wish to characterize

the e�ects of changes to the underlying model (e.g., by modifying amino acid types or their

local conformations), in terms of their e�ect on a MAP con�gurations (i.e. the minimum

energy conformation of the protein).

For our experiments, we studied the e�ciency of adaptively updating the optimal sidechain

conformation after a perturbation to the model in which a random group of sidechains are

�xed to new local conformations. This experiment is meant to mimic a ligand-binding study,

in which we would like to test how introducing ligands to parts of the protein structure af-
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fect the overall minimum-energy conformation. For our dataset, we took about 60 proteins

from the SCWRL benchmark or varying sizes (between 26 and 244 amino acids) and overall

topology.

For each protein, we chose applied updates to a random group within a selected set

amino acids (e.g., to represent an active site) by choosing a random rotameric state for

each. With appropriate preprocessing (using Goldstein dead-end elimination), we were able

to obtain accurate models with an induced width of about 5 on average. For the cluster

tree corresponding to each protein we selected a set of 10 randomly chosen amino acids

for modi�cation, and recorded the average time, over 100 such trials, to update a MAP

con�guration and compared it against computing the latter from scratch. The results of

our experiment are given in Figure 6.4. Due to the diversity of protein folds, and thus the

resulting factor graphs, we sort the results according to the time required for max-product.

We �nd that our approach consistently outperforms max-product, and was on average 6.88

times faster than computation from scratch.

We note that the overall trend for our algorithm versus max-product is somewhat di�erent

than the results in Sections 6.3.1 and 6.3.2. In those experiments we observed a clear

logarithmic trend in running times for our algorithm versus max-product, since the constant-

factor overheads (e.g., for computing cluster functions) grew as a function of a model size. For

adaptive sidechain packing, it is di�cult to make general statements about the complexity of

a particular input model with respect to its size: a small protein may be very tightly packed

and induce a very dense input model, while a larger protein may be more loosely structured

and induce a less dense model.
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CHAPTER 7

PARALLELISM FOR APPROXIMATE INFERENCE

In this chapter, we present an approach to parallelizing dual-decomposition solvers using the

cluster tree data structure that we developed in Chapter 4. The cluster tree can be used in

a way that combines the per-iteration advantages of large subproblems while also enabling a

high degree of parallelism. In addition to being highly parallelizable, the adaptive properties

of the cluster tree allow minor changes to a model to be incorporated and re-solved in far

less time than required to solve from scratch. We show that in dual-decomposition solvers

this adaptivity can be a major bene�t, since often only small portions of the subproblems'

parameters are modi�ed at each iteration.

7.1 Parallelism without sacri�ce

Parallel calculation of tree-structured formulas has been studied in the algorithms community

using a technique called tree contraction [44]. Algorithms based on this idea have been

applied to speed up exact inference tasks in a variety of settings [42, 55]. The cluster tree

is one such data structure that is based on tree contraction and can be applied e�ectively to

improve dual-decomposition solvers.

As a motivating example, consider a subproblem that consists of a single Markov chain

(Figure 7.1a). A standard solver for this model works by dynamic programming, sequentially

eliminating each fi from leaves to root and computing a message λi, interpreted as a �cost to

go� function, then back-solving from root to leaves for an optimal con�guration of variables.

This process is hard to parallelize, since any exact solver must propagate information from

one end of the chain to the other end and thus requires a sequence of Ω(n) operations in this

framework. Instead, if we use the cluster tree Figure 7.1b, its balanced shape will make it

possible to compute many branches in parallel. Using similar ideas, [42] showed that, with
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Figure 7.1: Markov chain parallelizability. An example cover tree in the form of a
Markov chain (a) subproblem. It is hard to parallelize due to the information that must be
traveled from one end f1 of the chain to the other end f7. When cluster tree is used (b),
the branches can potentially be computed in parallel.

a su�cient number of processors, parallel exact inference requires O(log n) time.

As previously discussed, the bene�t of parallelizing dual-decomposition inference meth-

ods can be lost if the subproblems are not chosen appropriately. For a concrete example,

consider again the Markov chain of Figure 7.1a. A decomposition into edges (Figure 7.2a)

achieves high parallel e�ciency: each edge is optimized independently in parallel and dis-

agreements are successively resolved by parallel independent projected subgradient updates.

Given enough processors, each iteration in this setup requires constant time, but overall

inference still requires Ω(n) iterations for this procedure to converge. Thus there is no sub-

stantial gain from parallelizing inference on even this simple model, since in the sequential

case we reach the solution in O(n) time. Thus, we must balance the degree of parallelism and

the convergence rate to achieve the best possible speedup. In the remainder of this section,

we discuss how the cluster tree data structure permits us to achieve this balance, and how

its adaptive properties provide an additional speedup near convergence.
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Figure 7.2: Parallelism using independent factors vs. cluster tree. (a) Dual-
decomposition using independent factors is highly parallelizable but slow to converge. (b)
The cluster tree is also easily parallelizable, but since the underlying model is a covering
tree, convergence is not compromised.

7.2 Parallelization with a Cluster Tree

A cluster tree structure can manage both long-range in�uence in each iteration (improving

convergence rate) as well as parallelization obtained by exploiting its balanced nature. To

perform parallel computations in a cluster tree with n nodes, we split the tree into a set

of parallel trees and a serial tree, as shown in Figure 7.2. For bottom-up computations,

we can assign a processor to each parallel tree. When these computations are complete,

the remainder of the bottom-up computation is performed on a single processor. Top-down

computations are performed analogously, except that they start with the serial tree and then

continue in parallel on the parallel trees. The number of parallel trees de�nes both the level

of parallelism as well as the depth of the serial tree, and thus these two choices must be

balanced. In practice we choose the depth of the serial tree to be half of the depth of the

cluster tree, to keep synchronization costs low. Then, for a cluster tree with n nodes we

achieve parallelism of
√
n, while preserving a high convergence rate.
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Figure 7.3: Importance of adaptivity in dual-decomposition methods. The number
of changes made to the parameters by the projected subgradient updates, measured on a
stereo matching example (Venus) from the experimental section.

7.3 Adaptivity for subgradient updates

Another major source of improvement in speed is obtained by judiciously reusing solutions at

the previous iteration. In particular, the subgradient update Equation (3.4) depends only

on the optimal con�guration at of each subproblem t, and modi�es only those subproblems

that do not share the optimal value of some xi. Many ψti , then, are not modi�ed from

iteration to iteration; the updates become sparse. This behavior is common in many real-

world models: Figure 7.3 illustrates for a stereo matching problem, showing that in practice

the number of updates diminishes signi�cantly near convergence. The standard approach

recomputes the optimal values for every variable in an updated subproblem ψt.

This observation motivates an adaptive subgradient calculation, in which we leverage the

previous iteration's solution to speed up the next. In collections of very small subproblems,

this is easily accomplished: we can simply preserve the solution of any subproblem whose

potentials ψt were not modi�ed at all. While this may appear hard to use in a cover tree
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representation (in which all variables are present), in this section we show how to use the

cluster tree data structure to leverage update sparsity and give further speedup even if the

underlying subproblem is a cover tree.

Let G be the tree corresponding to the subproblem ψt and T be the associated cluster

tree constructed as described in Chapters 4 and 6. Suppose that the projected subgradient

updates modify singleton potentials ψ1, ψ2, . . . , ψ`. For the next iteration, we must: (i)

update the cluster tree given the new potential values, and (ii) compute any changed entries

in the optimal con�guration.

We use the MAP maintenance method developed in Chapter 6 as a sub-routine to re-

peatedly perform these steps. The subroutine performs step (i) by updating the cluster tree

messages in a bottom-up fashion, starting at nodes that correspond to the changed poten-

tials and updating their ancestors. For each re-computation, it �ags the messages as having

been modi�ed. We showed in Chapter 6 that this step recomputes only O(` log n/`) many

messages. For part (ii), the subroutine computes a new optimal con�guration by traversing

top-down. It begins by selecting an optimal con�guration for the root node xr of the cluster

tree. It then recursively proceeds to any children xi for which either any λj was modi�ed

for which xj ∈ Ci, or the optimal con�guration of the variables in Ei were modi�ed. If

the projected subgradient update Equation (3.4) modi�es k con�gurations, we can solve the

subproblem in O(k log n/k) time: potentially much faster than doing the same updates in

the original tree. For illustration, consider Figure 7.3; between iterations 1700 and 2100, the

re-computation required is about one 1000th of the 1st iteration. This property alone can

provide signi�cant speed-up near convergence.

7.4 Experiments

Our cluster tree representation combines the bene�ts of large subproblems (faster conver-

gence rates) with e�cient parallelization and e�ective solution re-use. To assess its e�ec-
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tiveness, we compare our algorithm against several alternative subproblem representations

on both synthetic and real-world models. We focus on the general case of irregularly con-

nected graphs for our experiments. Note that on very regular graphs, it is often possible to

hand-design updates that are competitive with our approach; for example on grid-structured

graphs, the natural decomposition into rows and columns results in O(
√
n) parallel subprob-

lems of length O(
√
n) and will often attain a similar balance of adaptive, parallel updates

and good convergence rate.

We compared our framework for performing dual-decomposition against three di�erent

algorithms: CoverTree, Edges and Edges-ADP. CoverTree decomposes the graph

using a cover tree and updates the model without any parallelism or adaptivity. On the

other end of the dual-decomposition spectrum, the Edges and Edges-ADP algorithms

decompose the graph into independent edges and update them in parallel. Edges-ADP

is the trivially adaptive version of the Edges algorithm, in which only the edges adjacent

to an modi�ed node are re-solved. We refer to our algorithm as ClusterTree; it uses

the same cover tree graph as CoverTree in all of our experiments. All algorithms were

implemented in Cilk++ [36] without locks. For synchronization we used Cilk++ reducer

objects (variables that can be safely used by multiple strands running in parallel). All

experiments in this section were performed on a 1.87Ghz 32-core Intel Xeon processor.

7.4.1 Synthetic Examples

We �rst test our approach on random, irregular graphical models. We generated graphs over

n variables x1, . . . , xn, each with domain size d = 8. The graph edges were generated at

random by iterating over variables x3, . . . , xn. For node xi, we choose 2 random neighbors

without replacement from the previous nodes {xi−1, xi−2, . . . , x1} using a geometric distri-

bution with probabilities p = 1/2 and q = 1/
√
n, respectively. With these settings, every

node xi is expected to have two neighbors whose indices are close to i and two neighbors
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whose indices are roughly i−√n and i+
√
n. Although highly irregular, the generated graph

has characteristics similar to a grid with raster ordering, where each node xi inside the grid

has four neighbors indexed xi−1, xi+1, xi−√n and xi+
√
n. Node potentials θi(xi) are drawn

from a Gaussian distribution with mean 0 and standard deviation σ = 4. Edge potentials

θij(xi, xj) follow the Potts model, so that θij(xi, xj) = δ(xi 6= xj). We then generate the

factors: fi(xi) = e−θi(xi) for each i ∈ {1, . . . , n} and fij(xi, xj) = e−θij(xi,xj) for every edge

(i, j).

We ran our algorithms for graph sizes ranging from 500 to 100, 000. To control for step size

e�ects, γ was optimized for each algorithm and each problem instance. All algorithms were

run until agreement between variable copies (indicating an exact solution). For CoverTree

and ClusterTree, we used a breadth-�rst search tree as the cover tree. Figure 7.4a�c gives

a comparison of convergence results for a representative model with n = 20000.

As expected, the cover tree has a better convergence rate than using independent edges as

subproblems (see Figure 7.4a). When the algorithms were executed serially (see Figure 7.4b),

although initally slower ClusterTree catches up to �nish faster than CoverTree (due to

adaptivity), and remains faster than Edges-ADP (due to a better convergence rate). With

parallel execution, we observe a speedup of roughly 20× for ClusterTree, Edges-ADP

and Edges; see Figure 7.4c. We can see that with parallelism, although Edges-ADP is

preferable to CoverTree, ClusterTree �nishes roughly two orders of magnitude faster

than the other algorithms.

We also consider the convergence time of each algorithm as the graph size increases

(see Figure 7.6). For relatively small graphs (e.g. n = 500) the di�erence is negligible;

however, as we increase the number of nodes, the ClusterTree converges signi�cantly

more quickly than the other algorithms.
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7.4.2 Stereo matching with super-pixels

The stereo matching problem estimates the depth of objects in a scene given two images, as

if seen from a left and right eye. This is done by estimating the disparity, or horizontal shift

in each object's location between the two images.

It is common to assume that the disparity boundaries coincide with color or image bound-

aries. Thus, one approach estimating stereo depth is to �rst segment the image into super-

pixels, and then optimize a graphical model representing the super-pixels; see [25, 50]. This

approach allows stereo matching to be performed on much larger images. We studied the

performance of our algorithm for the task of stereo matching using a model constructed from

a segmented image in this manner.

To de�ne a graphical model G given super-pixels {si, . . . , sn}, we de�ne a node for each

super-pixel and add an edge (si, sj) if they contain adjacent pixels in the reference image. The

node potentials are de�ned as the cumulative truncated absolute color di�erences between

corresponding pixels for each disparity:

θi(d) =
∑

(x,y)∈si
min {|IL(x, y)− IR(x− d, y)|, 20}

where IL and IR are the intensities of the left and right image, respectively. The edge

potentials are de�ned as

θij(d1, d2) = 5 · E(si, sj) ·min
{
|d1 − d2|1.5, 5

}

where E(si, sj) is the number of adjacent pixel pairs (p, q) where p ∈ si and q ∈ sj . This

is a common energy function for grids, [49], applied to super-pixels by [25]. We then de�ne

factors for each vertex si and edge (si, sj) as follows

fi = e−θi(d) f(i,j) = e−θij(d1,d2)
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We tested our algorithm by constructing the above model for four images (Tsukuba,

Venus, Teddy and Cones) from the Middlebury stereo data set [46, 45], using the SLIC

program [10] to segment each input image into 5000 super-pixels. For CoverTree and

ClusterTree, we used the maximum-weight spanning tree of G (with weights E(si, sj))

as part of the cover tree; this is a common choice for stereo algorithms that use dynamic

programming [51]. Since the model's gap between distinct energies is at least 1, the algo-

rithms are considered converged when their lower bound is within 1 of the optimal energy.

As with synthetic graphs, for the image datasets we observed that ClusterTree in-

herits the improved convergence rate of CoverTree but parallelizes well and thus gives

much better overall performance than Edges or Edges-ADP. Representative serial and

parallel executions of the algorithms are shown for the Venus dataset in Figure 7.5a�c, while

convergence times are shown for all datasets in Figure 7.7. While we still observe that

CoverTree has a better convergence rate than Edges, it is less dramatic than in the

synthetic models (Figure 7.4a vs. Figure 7.5a); this is likely due to the presence of strong

local information in the model parameters ψi. This fact, along with most modi�cations also

being local, means that Edges-ADP manages to outperform CoverTree in the serial case

(Figure 7.5b). In the parallel case, ClusterTree remains ahead, with a speedup of about

2× over Edges-ADP.
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Figure 7.4: Synthetic convergence results. Representative convergence results on a
random graph problem with 20000 nodes (a-c). As expected, the CoverTree requires less
iteration than the Edges algorithm (a) to converge. Without parallelism, bothCoverTree
and ClusterTree outperforms Edges and Edges-ADP (b). With parallelism our algo-
rithm outperforms the others (c).
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Figure 7.5: Stereo matching convergence results. Representative convergence results
on the �Venus� dataset (a-c). The per-iteration advantage of CoverTree over Edges (a)
is lost when the adaptivity is taken into account (b). However in terms of total running
time, our algorithm ClusterTree outperforms both CoverTree and Edges-ADP with
our without parallelism enabled (b-c).
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dataset, we observe the same basic trend as in synthetic data. On average our algorithm is
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CHAPTER 8

IMPLEMENTATION

In this chapter, we provide the python implementation for the algorithms presented in Chap-

ters 4, 5 and 6. The code below skips some general purpose libraries such as graph.py. The

reader should assume that the graph class is e�ciently implemented and supplies Depth-First

Search (DFS) functionality. We present our code in four sections.

Cluster-Tree Class. In our implementation we separated the tree-contraction algorithm

from the inference as much as possible. The interface between these two components

are provided by this class (called RCForest in the code). The cluster-tree implements an

adaptive rooted tree. The tree-contraction part of the code builds and maintains the cluster-

tree, then the inference computation part of the code reads and traverses this cluster-tree

data structure.

Tree-Contraction Algorithm. In our context, the tree-contraction is responsible for

eliminating the factors from the elimination tree. The implementation here is a general tree-

contraction implementation and abstracted out from the application speci�c computations.

The elimination tree is built and modi�ed using link() (to add an edge) and cut() (to

remove an edge) functions. The user of this library then calls commit() function to perform

the elimination algorithm. The subsequent calls of link() and cut() and �nally commit()

is handled adaptively as described in Chapter 5. The code closely follows the exposition in

Chapter 5. In particular the concept of degree status and a�ectedness are clearly de�ned in

functions __determine_degree_status() and __mark_affected().

Base Class for Exact Inference. This code provides the basic interface of the library to

the user. Using this class, one can construct a factor graph with and associated elimination
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tree, can modify the structure of both the factor graph and the elimination tree. This module

provides the framework of bottom-up updates and marginal computations.

Inference, marginalization and computing MAP con�gurations. This class pro-

vides the basic operations on factors such as multiplication and maximization. The library

works for any semi-ring that supplies join and project operations. In the case of marginaliza-

tion we use multiplication of factors as the join and summation of factors as the project oper-

ation. The main class that inherits the base inference class is called ApproximateInference

for a reason. The module in fact approximates the factor multiplications whenever the op-

eration is beyond the computational limits of the program. This feature is not used in the

experiments presented in this thesis. We always solve the exact inference by setting the

computational limit to in�nity.

8.1 Cluster-Tree Class

1 class RCForest:

2 '''

3 There are both python and C implementation:

4 Graph-Theoretical Fields

5 V = ['a', 'b', 'c']

6 __Adj = { 'a':['b','c'] , 'b':['a'], 'c':['a'] }

7 __parent = {'a':None, 'b':'a', 'c':'a'}

8 __children = {'a':set(['b','c']), 'b':set(), 'c':set()}

9 __roots = set(['a'])

10

11 Tree-Contraction Fields, these values are just pointers

12 __height = {'a':2, 'b':1, 'c':1}
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13 __cluster_type = {'a':0, 'b':1, 'c':1}

14 __updates = ['b','c','a']

15

16 Operations used by the inference library

17 RCT.parent(v) returns the parent vertex

18 RCT.children(v) returns the set of children of v

19 RCT.roots() returns the set of roots

20 RCT.height(v) returns the non-negative integer height of v,

21 -1 if unavailable

22 RCT.cluster_type(v) returns the non-negative integer cluster type of v,

23 -1 if unavailable

24 RCT.updates() returns the list of updates

25

26 Operations used by the tree-contraction backend

27 unused (C lib doesn't implement): add_vertex, del_vertex

28 make_root, make_child, push_updates

29 push_updates(v,h,ct) where v = vertex, h = height, ct = cluster_type

30 '''

31 def __init__(self, V, name = 'RCForest'):

32 self.name = name

33 if type(V) == type(1):

34 self.V = range(V)

35 else:

36 self.V = V

37 self.__roots = set(self.V)

38 self.__Adj = {}
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39 self.__parent = {}

40 self.__children = {}

41 for v in self.V:

42 self.__Adj[v] = set()

43 self.__parent[v] = None

44 self.__children[v] = set()

45

46 self.__updates = []

47 self.__height = {}

48 self.__cluster_type = {}

49

50 def parent(self, v):

51 return self.__parent.get(v, None)

52

53 def children(self, v):

54 return self.__children.get(v, [])

55

56 def children_set(self): # this is used for debugging

57 return self.__children

58

59 def roots(self):

60 return self.__roots

61

62 def height(self, v):

63 return self.__height.get(v, -1)

64
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65 def cluster_type(self, v):

66 return self.__cluster_type.get(v, -1)

67

68 def updates(self):

69 return self.__updates

70

71 def add_vertex(self,v):

72 if type(self.V) is type([]):

73 self.V.append(v)

74 elif type(self.V) is type(set()):

75 self.V.add(v)

76 else :

77 return NotImplemented

78 self.__Adj[v] = set()

79 self.__parent[v] = None

80 self.__children[v] = set()

81 self.__roots.add(v)

82

83 def del_vertex(self, v):

84 children_to_loose = list(self.__children[v])

85 self.make_root(v)

86 for u in children_to_loose:

87 self.make_root(u)

88

89 self.__roots.remove(v)

90 self.__Adj.pop(v)
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91 self.__parent.pop(v)

92 self.__children.pop(v)

93 self.V.remove(v)

94

95 def make_root(self, v):

96 self.__roots.add(v)

97 u = self.__parent[v]

98 if u is not None:

99 self.__Adj[u].remove(v)

100 self.__children[u].remove(v)

101

102 self.__Adj[v].remove(u)

103 self.__parent[v] = None

104

105 def make_child(self, u, v):

106 '''make_child(u,v): u becomes v's parent'''

107 pv = self.__parent[v]

108 if pv == u:

109 return

110 pu = self.__parent[u]

111 if pu == v:

112 raise Exception('RCForest.make_child unallowed call')

113 self.make_root(v)

114 self.__roots.remove(v)

115 self.__Adj[u].add(v)

116 self.__children[u].add(v)
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117 self.__Adj[v].add(u)

118 self.__parent[v] = u

119

120 def clear_updates(self):

121 self.__updates = []

122

123 def push_updates(self, v, h, ct):

124 self.__updates.append(v)

125 self.__height[v] = h

126 self.__cluster_type[v] = ct

127

128 def __eq__(self, other):

129 if isinstance(other, RCForest):

130 return self.children_set == other.children_set

131 return NotImplemented

132

133 def __ne__(self, other):

134 result = self.__eq__(other)

135 if result is NotImplemented:

136 return result

137 return not result

8.2 Tree-Contraction Algorithm

1 from copy import deepcopy, copy

2 from graph import Graph, displayDFS

3 from rcforest import RCForest
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4

5 class Contraction:

6 def __init__(self, V, name='H', maximality = False):

7 '''

8 Initialized with the set of vertices V

9 key fields:

10 levels = [T_0, T_1, T_2, ...., T_{k+1}] where T_1 is the original tree

11 and T_k+1 = Graph([]). T_0 is not used usually same as T_1

12 affected_sets = [A_0, A_1, A_2, ...., A_k] where A_i is a subset of

13 vertices of T_i.

14 maximal_independents = [M_0, M_1, M_2, ...., M_k] where M_i \subseteq A_i

15 height[v] = h : height of each vertex v is in T_h but not in T_{h+1}

16 depth = depth of the rc-tree (depth = k)

17 '''

18 self.name = name

19 self.maximality = maximality

20 self.V = set(V)

21 self.N = len(V)

22 T_1 = Graph(self.V, name='T_1')

23 T_2 = Graph(set(), name='T_2')

24 self.levels = [T_1, T_1, T_2]

25 self.affected_sets = [set(),set(), set()]

26 self.frontiers = [set(), set(), set()]

27 self.maximal_independents = [set(), set(), set()]

28 self.height = {}

29 self.cluster_type = {} #0,1,2 for final,rake,compress
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30 if self.maximality:

31 self.degree_threshold = {} # smallest positive round that degree becomes <= 2

32 for v in self.V:

33 self.height[v] = 1

34 self.cluster_type[v] = 0

35 if self.maximality:

36 self.degree_threshold[v] = 1 # this is assigned at the time of switch

37 self.depth = 1

38 self.outstanding_changes = False

39 self.update_depth = 1

40 self.RCT = RCForest(self.V, name='RCF')

41 self.disable_compression = False

42

43 def link(self, edges, v = None):

44 if v is not None:

45 edges = [(edges, v)]

46 T_1 = self.levels[1]

47 A_0 = self.affected_sets[0]

48 for (u,v) in edges:

49 T_1.add_edge(u,v)

50 self.outstanding_changes = True

51 A_0.add(u)

52 A_0.add(v)

53

54 def cut(self, edges, v = None):

55 if v is not None:
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56 edges = [(edges, v)]

57 T_1 = self.levels[1]

58 A_0 = self.affected_sets[0]

59 for (u,v) in edges:

60 T_1.del_edge(u,v)

61 self.outstanding_changes = True

62 A_0.add(u)

63 A_0.add(v)

64

65 def __determine_frontiers(self, cur_lev):

66 T_prev = self.levels[cur_lev-1]

67 A_prev = self.affected_sets[cur_lev-1]

68 F_prev = set()

69 for v in A_prev:

70 for u in T_prev.Adj[v]:

71 if u not in A_prev:

72 F_prev.add(v)

73 break

74 self.frontiers[cur_lev-1] = F_prev

75

76 def __carry_affected(self, cur_lev):

77 if cur_lev == 1:

78 return

79 if len(self.levels) == cur_lev:

80 self.levels.append(Graph(set(), name='T_%d'%(cur_lev+1)))

81 self.frontiers.append(set())
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82 self.affected_sets.append(set())

83 self.maximal_independents.append(set())

84

85 T_prev = self.levels[cur_lev-1]

86 T_next = self.levels[cur_lev]

87 A_prev = self.affected_sets[cur_lev-1]

88 F_prev = self.frontiers[cur_lev-1]

89 M_prev = self.maximal_independents[cur_lev-1]

90

91 for v in A_prev:

92 if v in T_next.V:

93 T_next.clear_undirected_edges(v)

94 else:

95 T_next.add_vertex(v)

96

97 for v in A_prev:

98 for u in T_prev.Adj[v]:

99 if u in T_next.V:

100 T_next.add_edge(u,v)

101 else:

102 padj = T_prev.Adj[u] - set([v])

103 if len(padj) == 1:

104 w = padj.pop()

105 T_next.add_edge(w,v)

106

107 def __contract_vertex(self, cur_lev, v):
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108 '''__contract_vertex(k,v) contracts the vertex at T_k

109 as a side effect it removes the vertex v from

110 T_{k+1}, ..., T_{r+1} as well where r = height[v]

111 assigns height[v] = cur_lev-1 and cluster_type[v]=0,1,2

112 '''

113 T_cur = self.levels[cur_lev]

114 neig = T_cur.Adj[v]

115 self.cluster_type[v] = len(neig)

116 T_cur.del_vertex(v)

117 if self.height[v] > cur_lev:

118 for i in range(cur_lev+1, self.height[v]+1):

119 self.levels[i].del_vertex(v)

120

121 self.height[v] = cur_lev-1

122 if len(neig) == 2: #shortcut (compressing)

123 T_cur.add_edge(*list(neig))

124

125 def __eliminate(self, cur_lev):

126 for v in self.maximal_independents[cur_lev-1]:

127 self.__contract_vertex(cur_lev, v)

128

129 def __determine_degree_status(self, cur_lev):

130 T_prev = self.levels[cur_lev-1]

131 T_next = self.levels[cur_lev]

132 A_prev = self.affected_sets[cur_lev-1]

133 for v in A_prev:
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134 deg_prev = len(T_prev.Adj[v])

135 deg_next = len(T_next.Adj.get(v,[])) # [] is for deleted vertices

136 if (deg_prev > 2 or cur_lev == 1) and deg_next <= 2:

137 self.degree_threshold[v] = cur_lev

138

139 def __mark_affected(self, cur_lev):

140 T_prev = self.levels[cur_lev-1]

141 T_next = self.levels[cur_lev]

142 A_prev = self.affected_sets[cur_lev-1]

143 F_prev = self.frontiers[cur_lev-1]

144 M_prev = self.maximal_independents[cur_lev-1]

145

146 A_next = A_prev - M_prev # uneliminated affected factors from previous round

147

148 if self.maximality:

149 # RULE 2: u becomes affected if (u,v) \in T_next and v \in A_prev-M_prev

150 # with degree_status(v) = 1, we compute degree_status(v) as

151 # degree_threshold[v] <= cur_lev

152 for v in A_next & F_prev:

153 if self.degree_threshold[v] <= cur_lev:

154 for u in T_next.Adj[v]:

155 A_next.add(u)

156 #print 'rule 2:', u

157 else:

158 # RULE 2': u becomes affected if (u,v) \in T_next and v \in A_prev-M_prev

159 # with height[v] == cur_lev ( v was eliminated at this round)
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160 for v in A_next & F_prev:

161 if self.height[v] <= cur_lev:

162 for u in T_next.Adj[v]:

163 A_next.add(u)

164

165

166 # RULE 1: u becomes affected if (u,v) \in T_prev and v \in M_prev

167 # This means v is being eliminated now

168 for v in M_prev & F_prev:

169 for u in T_prev.Adj[v]:

170 A_next.add(u)

171

172 self.affected_sets[cur_lev] = A_next

173

174 def __choose_maximal_independent(self, cur_lev, elimination_set = None):

175 if elimination_set is not None:

176 self.maximal_independents[cur_lev] = set(elimination_set)

177 return

178 T_cur = self.levels[cur_lev]

179 A_cur = self.affected_sets[cur_lev]

180 M_cur = set()

181 rakable = []

182 compressible = []

183 for v in A_cur:

184 degree = len(T_cur.Adj[v])

185 if degree == 0:
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186 M_cur.add(v)

187 elif degree == 1:

188 rakable.append(v)

189 elif degree == 2:

190 compressible.append(v)

191

192 traverse = rakable + compressible

193 if self.disable_compression:

194 traverse = rakable

195

196 for v in traverse :

197 include_v = True

198 for u in T_cur.Adj[v]:

199 if u in M_cur or (u not in A_cur and self.height[u]==cur_lev):

200 include_v = False

201 break

202 if include_v:

203 M_cur.add(v)

204

205 self.maximal_independents[cur_lev] = M_cur

206

207 def contract_tree(self, cur_lev, elimination_set = None):

208 self.__determine_frontiers(cur_lev)

209 self.__carry_affected(cur_lev)

210 self.__eliminate(cur_lev)

211 if self.maximality:
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212 self.__determine_degree_status(cur_lev)

213 self.__mark_affected(cur_lev)

214 self.__choose_maximal_independent(cur_lev, elimination_set)

215

216 def __prepare_output(self):

217 self.RCT.clear_updates()

218 for cur_lev in range(1,self.update_depth):

219 for v in self.maximal_independents[cur_lev]:

220 self.RCT.push_updates(v, self.height[v], self.cluster_type[v])

221

222 for cur_lev in range(self.update_depth,0,-1):

223 T_cur = self.levels[cur_lev]

224 for v in self.maximal_independents[cur_lev]:

225 padj = list(T_cur.Adj[v])

226 if self.cluster_type[v] == 0:

227 self.RCT.make_root(v)

228 elif self.cluster_type[v] == 1:

229 self.RCT.make_child(padj[0], v)

230 else: # has to be cluster_type = 2

231 if self.height[padj[0]] < self.height[padj[1]]:

232 self.RCT.make_child(padj[0], v)

233 else:

234 self.RCT.make_child(padj[1], v)

235

236 def commit(self, enforce_eliminations = None):

237 elimination_set = None
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238 cur_lev = 1

239 while len(self.affected_sets[cur_lev - 1]) > 0 :

240 if enforce_eliminations is not None:

241 elimination_set = enforce_eliminations[cur_lev]

242 self.contract_tree(cur_lev, elimination_set)

243 cur_lev += 1

244 self.update_depth = cur_lev - 1

245 if self.levels[cur_lev-1].V == set(): # otherwise we finished early

246 self.depth = cur_lev - 2

247 self.outstanding_changes = False

248 self.affected_sets[0] = set()

249 self.frontiers[0] = set()

250 self.__prepare_output()

251

252 def touch(self, vertices):

253 updates = []

254 rup = {}

255 for rank in range(self.depth):

256 rup[rank] = set()

257 for v in vertices:

258 rup[self.height[v]-1].add(v)

259 for rank in range(self.depth):

260 for v in rup[rank]:

261 updates.append(v)

262 pv = self.RCT.parent(v)

263 if pv is not None:
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264 rup[self.height[pv]-1].add(pv)

265

266 self.RCT.clear_updates()

267 for v in updates:

268 self.RCT.push_updates(v, self.height[v], self.cluster_type[v])

269

270 def copy_RCT(self):

271 T = deepcopy(self.levels[0])

272 T.BFS()

273 T.bfs_order.reverse()

274

275 self.RCT.clear_updates()

276 for v in T.bfs_order[:-1]:

277 u = T.parent[v]

278 self.RCT.make_child(u, v)

279 self.height[u] = max(self.height[u], self.height[v]+1)

280 self.cluster_type[v] = 1

281 self.RCT.push_updates(v, self.height[v], self.cluster_type[v])

282

283 root = T.bfs_order[-1]

284 self.RCT.make_root(root)

285 self.cluster_type[root] = 0

286 self.RCT.push_updates(root, self.height[root], self.cluster_type[root])
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8.3 Base Class for Exact Inference

1 from rctree.contraction import Contraction

2 from graph import Graph

3 import numpy as np

4

5 class ExactInference:

6 '''Provides methods to compute the exact Inference on graphical models.

7

8 let G = (X+F, E) is the factor graph we are working with.

9 Here is how this class is used

10

11 Initial Run

12

13 * initialize the class

14 * initialize the factors

15 * construct the graph by adding edges via add_nontree_edge(u,v)

16 * give a computation tree (spanning tree) via add_tree_edge (u,v)

17 Note that add_spanning_tree_edge(u,v) is equivalent to

18 add_nontree_edge(u,v) and add_tree_edge(u,v)

19 * run update_boundaries()

20 * run update_cluster_functions()

21 * run MAP_update()

22

23 Dynamic changes and maintainence

24 * make changes on the graph by changing factors or edges

25 * run MAP_update()

102



26 * look MAP_updates variable to see what variables are changed in this round

27 '''

28 def __init__(self, N, num_of_variables):

29 ''' initializes the ExactInference class

30

31 N = the number of variables + factors

32 num_of_variables = number of variables

33

34

35 the module initializes the following variables

36 RCT = the RC-Tree output of the c++ implementation

37 num_of_variables = number of variables, |X|

38 Variables = the dimensions of the variables

39 Factors = List of factors, where each factor is a function

40 (numpy array with the right dimensions)

41 MAP = assignment to variables (MAP configuration)

42 MAP_updates = the set of changes in the MAP configuration

43 represented as a list of pairs (location, assignment).

44 RCTree_roots = the root of the RC-Trees

45

46 current_time = the counter for update_cluster_functions() call,

47 each time it's called this counter is increased

48 update_time = the list of times where the cluster_function is updated

49 initially all the cluster functions are updated at time 1

50 as we change the data/structure some of the cluster functions

51 are updated and their update time are going to be modified
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52 lastMAP_time = the last time we called MAP_update(),

53 this together with update_time list is used to figure

54 out if a cluster needs to be recomputed.

55 '''

56 self.R = Contraction(range(N))

57 self.RCT = self.R.RCT;

58 self.data_dir = './';

59 self.num_of_variables = num_of_variables

60 self.Variables = np.ones(num_of_variables) # user modifies later

61 self.Factors = [0] * N # user modifies later

62 self.Labels = ['F_%d'%el for el in range(N)]# user modifies later

63 self.MAP = np.zeros(num_of_variables, 'int', 'C') - 1

64 self.MAP_updates = []

65 self.RCTree_roots = self.RCT.roots

66 self.current_time = 0

67 self.cf_update_time = [0] * N

68 self.lastMAP_time = -1

69 self.MAP_num_visits = 0

70 self.MAP_updated_variables = []

71 self.MAP_update_time = np.zeros(num_of_variables, 'int', 'C')

72 self.boundary_edges = []

73 self.boundary_tree_edges = []

74 self.boundary_variables = []

75 self.nonboundary_variables = []

76 self.cluster_function = []

77 self.maximizers = []
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78 self.neighbors = []

79 self.tree_neighbors = []

80 self.cf_var = []

81 self.allvar = []

82 self.message_downward = {}

83 self.subtree_size = np.zeros(N, 'int', 'C')

84 self.subtree_cost = np.zeros(N, 'int', 'C')

85 self.node_cost = np.zeros(N, 'int', 'C')

86 self.FG = Graph(range(N))

87 self.ET = Graph(range(N))

88

89 for i in range(N) :

90 self.neighbors.append(set([]))

91 self.tree_neighbors.append(set([]))

92 self.boundary_edges.append(set([]))

93 self.boundary_tree_edges.append(set([]))

94 self.boundary_variables.append(set([]))

95 self.nonboundary_variables.append(set([]))

96 self.cluster_function.append(1)

97 self.maximizers.append({})

98 self.cf_var.append([])

99 self.allvar.append([])

100

101 def isVariable(self, i):

102 return i < self.num_of_variables

103
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104 def isFactor(self, i):

105 return i >= self.num_of_variables

106

107 def add_spanning_tree_edge(self, i, j):

108 self.add_tree_edge(i,j)

109 self.add_nontree_edge(i,j)

110

111 def remove_spanning_tree_edge(self, i, j):

112 self.remove_tree_edge(i,j)

113 self.remove_nontree_edge(i,j)

114

115 def add_tree_edge(self, i, j):

116 ''' adds (i,j) to the computation tree

117 '''

118 self.R.link(i,j)

119 self.tree_neighbors[i].add(j)

120 self.tree_neighbors[j].add(i)

121 self.ET.add_edge(i,j)

122

123 def remove_tree_edge(self, i, j):

124 ''' removes (i,j) from the computation tree

125 '''

126 self.R.cut(i,j)

127 self.tree_neighbors[i].remove(j)

128 self.tree_neighbors[j].remove(i)

129 self.ET.del_edge(i,j)
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130

131 def add_nontree_edge(self, i, j):

132 ''' adds (i,j) to the graph

133 '''

134 self.neighbors[i].add(j)

135 self.neighbors[j].add(i)

136 self.FG.add_edge(i,j)

137

138 def remove_nontree_edge(self, i, j):

139 ''' removes (i,j) from the graph

140 '''

141 self.neighbors[i].remove(j)

142 self.neighbors[j].remove(i)

143 self.FG.del_edge(i,j)

144

145 def update_boundaries(self):

146 ''' computes the boundaries

147 '''

148 for rcn in self.upnodes():

149 id = rcn

150 be = set([])

151 for ne in self.neighbors[id]:

152 if ne < id: be.add((ne,id))

153 else : be.add((id,ne))

154

155 allvar_local = set([])
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156 if self.isVariable(id): allvar_local.add(id)

157 else : allvar_local |= self.neighbors[id] #union update

158

159 for ch in self.children(rcn):

160 be.symmetric_difference_update(self.boundary_edges[ch])

161 allvar_local |= self.boundary_variables[ch]

162

163 self.boundary_edges[id] = be

164

165 bv = set([])

166 bte = set([])

167 for edge in be:

168 bv.add(edge[0])

169 if edge[1] in self.tree_neighbors[edge[0]]:

170 bte.add(edge)

171

172 self.boundary_tree_edges[id] = bte

173 self.boundary_variables[id] = bv

174 self.nonboundary_variables[id] = allvar_local - bv #set diff

175 self.cf_var[id] = list(bv)

176 self.cf_var[id].sort()

177 self.allvar[id] = list(allvar_local)

178 self.allvar[id].sort()

179

180

181 def single_message_update(self, msgfrom, towards, curmsg, dependent_msgs):
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182 self.message_computation_counter = \

183 getattr(self, 'message_computation_counter', 0) + 1

184 return None

185

186 def query(self, varid):

187 rcnvar = varid

188

189 def orient_downward(edge):

190 (u,v) = edge

191 uh = self.RCT.height(u)

192 vh = self.RCT.height(v)

193 if uh > vh :

194 return (u, v)

195 else:

196 return (v, u)

197

198 to_be_called = []

199 msg_direction = {}

200 rcn = rcnvar

201 towards = None

202 while rcn is not None:

203 rid = rcn

204 curmsg = msg_direction.get(rid, (rid,None))

205 if curmsg in self.message_downward:

206 break

207 bted = self.boundary_tree_edges[rid]
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208 rm = []

209 for edge in bted:

210 (mfrom,mto) = orient_downward(edge)

211 if mfrom not in msg_direction:

212 msg_direction[mfrom] = edge

213 rm.append(edge)

214 to_be_called.append([rid, towards, curmsg, rm])

215

216 towards = rid

217 rcn = self.RCT.parent(rcn)

218

219 to_be_called.reverse()

220 #print to_be_called

221 for rid,towards,curmsg,rm in to_be_called[:-1]:

222 self.message_downward[curmsg] = \

223 self.single_message_update(rid, towards, curmsg, rm)

224

225 return self.single_message_update(*to_be_called[-1])

226

227 def update_cluster_functions(self):

228 '''computes all the cluster functions

229 '''

230 self.current_time += 1

231 self.message_downward = {} # query cache is invalid after an update

232 for rcn in self.upnodes():

233 self.single_cf_update(rcn)
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234

235 def uplist(self):

236 return self.RCT.updates()

237

238 def upnodes(self):

239 return self.RCT.updates()

240

241 def rootnodes(self):

242 return self.RCT.roots()

243

244 def children(self, rcnode_ptr):

245 return self.RCT.children(rcnode_ptr)

8.4 Inference, marginalization and computing MAP con�gurations

1 from inference import ExactInference, log

2 from copy import copy

3 import numpy as np

4

5 class SemiRing:

6 def __init__(self, join = np.add, proj = np.max):

7 self.join = join

8 self.proj = proj

9 if self.join == np.multiply :

10 self.unit = 1.0

11 self.invj = np.divide

12 elif self.join == np.add :
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13 self.unit = 0.0

14 self.invj = np.subtract

15 else:

16 raise Exception('SemiRing: unhandeled join operation\n')

17

18 def joinCF(self, cf_out, allvar, dims, cf_in, cfVi):

19 '''computes cf_out = cf_out * cf_in where

20

21 allvar = the list of variables involved in both cf_out and cf_in functions

22 dims = the list of dimensions of allvar

23 cfVi = the list of variables that cf_in depends on

24 allvar = the list of variables that cf_out depends on

25

26 to utilize this function allvar has to be computed in advance and cf_out

27 has to be initialized with allvar dimension.

28

29 The cost of the computation is prod(dims)

30 '''

31 if len(allvar) == 0:

32 return

33 reshape_index = []

34 for i,var in zip(range(len(allvar)), allvar):

35 if var in cfVi:

36 reshape_index.append(dims[i])

37 else :

38 reshape_index.append(1)
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39

40 import lib.stat as stat

41 stat.timerstart()

42 cf_in = cf_in.reshape(reshape_index)

43 self.join(cf_out, cf_in, cf_out)

44 stat.timer('cf')

45

46 def projCF(cf, allvar, cfvar):

47 '''computes the output=max_{allvar - cfvar} cf(allvar)

48

49 allvar = the list of variables that cf depends on

50 cfvar = the list of variables that the output depends on

51 cf = the cluster function with allvar variables

52 '''

53 rv = cf

54 lav = len(allvar)

55 maxix = 0

56 for i in range(lav):

57 var = allvar[i]

58 if var in cfvar:

59 maxix += 1

60 else:

61 rv = self.proj(rv, maxix)

62 return rv

63

64 class Factor:

113



65 def __init__(self, args, func):

66 self.varset = set(args) #set

67 self.args = args #ordered list

68 self.func = func #numpy table

69

70 assert( type(args) is type([]) )

71

72 def isScalar(self):

73 return len(self.varset) == 0

74

75 def project(self, AI, known_argument_set):

76 args = list(self.varset - known_argument_set)

77 args.sort()

78 func = self.func

79 for i in range(len(self.args)):

80 var = self.args[i]

81 if var in known_argument_set:

82 value = AI.MAP[var]

83 func = func.take([value],i)

84 return Factor(args, func.squeeze())

85

86 def __repr__(self):

87 return "Factor(%s, shape=%s)" % (str(self.args), str(self.func.shape))

88

89 class FCollection():

90 def __init__(self, AI):
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91 self.AI = AI

92 self.join_op = AI.semi_ring.join

93 self.joinCF = AI.semi_ring.joinCF

94 self.proj_op = AI.semi_ring.proj

95 self.unit = AI.semi_ring.unit

96 self.invj_op = AI.semi_ring.invj

97

98 self.scalar = Factor([], np.zeros(1) + self.unit)

99 self.flist = [self.scalar]

100 self.allvarset = set([])

101 def allvarlist(self):

102 avl = list(self.allvarset)

103 avl.sort()

104 return avl

105

106 def add_factor(self, f):

107 self.allvarset |= f.varset

108 if f.isScalar():

109 self.join_op(self.scalar.func, f.func, self.scalar.func)

110 else:

111 self.flist.append(f)

112

113 def violating_factor(self, f):

114 '''test if f can be added to the collection without violating the dlimit constraint

115 '''

116 dims = self.AI.Variables.take(list(self.allvarset | f.varset))
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117 cost = dims.prod()

118 return cost > self.AI.dlimit

119

120 def project(self, var):

121 ''' Returns a new collection of factors that contains var

122 '''

123 rv = FCollection(self.AI)

124 excluded = FCollection(self.AI)

125 for f in self.flist :

126 if var in f.varset:

127 rv.add_factor(f)

128 else :

129 excluded.add_factor(f)

130 return (rv, excluded)

131

132 def sort_decreasing(self):

133 a = [(self.AI.Variables.take(f.args).prod(), f.args, f) for f in self.flist]

134 a.sort()

135 a.reverse()

136 self.flist = [el[2] for el in a]

137

138 def partitioning(self):

139 ''' Returns the vlim-partitioning of the fcollection

140 output format is a list of FCollections

141

142 Use First Fit Decreasing Algorithm
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143 '''

144 self.sort_decreasing()

145 rv = []

146 newfl = self.flist

147 while len(newfl) > 0 :

148 fc = FCollection(self.AI)

149 rv.append(fc)

150 oldfl = newfl

151 newfl = []

152 for f in oldfl:

153 if not fc.violating_factor(f):

154 fc.add_factor(f)

155 else:

156 newfl.append(f)

157 return rv

158

159 def join(self):

160 import lib.stat as stat

161 stat.timerstart()

162

163 allv = self.allvarlist()

164 dims = self.AI.Variables.take(allv)

165 rv = np.zeros(dims) + self.unit

166 for f in self.flist:

167 self.joinCF(rv, allv, dims, f.func, f.args)

168
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169 stat.timer('join')

170 return Factor(allv, rv)

171

172 def proj(self, var):

173 ''' returns max_{var} sumation of the factors in the collection

174 output format is a Factor

175 '''

176 sf = self.join()

177 ix = sf.args.index(var)

178 newset = sf.args

179 newset.remove(var)

180 newFactor = Factor(newset, self.proj_op(sf.func, ix))

181 return newFactor

182

183 def assign_maximizers(self, known_arg_set):

184 '''assigns argmax_{unknown} summation of factors projected to known assignments

185 modifies AI.MAP and AI.MAP_update_time

186 '''

187 AI = self.AI

188 fc = FCollection(AI)

189 for f in self.flist:

190 fc.add_factor(f.project(AI, known_arg_set))

191 sf = fc.join()

192 ix = sf.func.argmax()

193 assignment = np.unravel_index(ix, sf.func.shape)

194 for var,new_value in zip(sf.args,assignment):
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195 AI.assign_MAP_value(var,new_value)

196

197 def __repr__(self):

198 output = ["FCollection allvarset=%s, numfactors=%d)" % (str(self.allvarset), len(self.flist))]

199 for f in self.flist:

200 output.append(repr(f))

201 return '\n'.join(output)

202

203 class ApproximateInference(ExactInference):

204 ''' Provides methods to compute the approximate Inference on general graphical models.

205

206 let G = (X+F, E) is the factor graph we are working with. Here is how this class is used

207

208 Initial Run

209

210 * initialize the class

211 * initialize the factors

212 * construct the graph by adding edges via add_nontree_edge(u,v)

213 * give a computation tree (spanning tree) via add_tree_edge (u,v)

214 Note that add_spanning_tree_edge(u,v) is equivalent to

215 add_nontree_edge(u,v) and add_tree_edge(u,v)

216 * run update_boundaries()

217 * run update_cluster_functions()

218 * run MAP_update()

219

220 Dynamic changes and maintainence
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221 * make changes on the graph by changing factors or edges

222 * run MAP_update()

223 * look MAP_updates variable to see what variables are changed in this round

224 '''

225

226 def __init__(self, N, num_of_variables, computation_limit = 2**20, sumprod=False):

227 ExactInference.__init__(self, N, num_of_variables)

228

229 self.dlimit = computation_limit

230 self.sumprod = sumprod

231

232 if sumprod:

233 semi_ring = SemiRing(np.multiply, np.sum)

234 else:

235 semi_ring = SemiRing(np.add, np.max)

236 self.semi_ring = semi_ring

237 self.Factors = [self.semi_ring.unit] * N

238

239 self.ccol = [None] * N

240 self.Hcol = [None] * N

241 self.MAP_lookup_time = np.zeros(self.num_of_variables, 'int', 'C')

242 self.num_of_approximated_variables = np.zeros(N, 'int', 'C') - 1

243 self.minibuckets_approximated_variables = 0

244 self.energy_ub = 0 # final value obtained after minibucket approximations

245 self.energy_lb = 0 # this is modified through MAP configurations

246
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247 self.marginals = []

248

249 self.MAP_value = self.final_value

250 self.likelihood = self.final_value

251

252 def assign_MAP_value(self, var,new_value):

253 self.MAP_lookup_time[var] = self.current_time

254 if new_value != self.MAP[var]:

255 self.MAP_update_time[var] = self.current_time

256 self.MAP[var] = new_value

257 self.MAP_updated_variables.append(var)

258

259 def MAP_fix_for_single_state_variables(self):

260 for var in range(self.num_of_variables):

261 if self.Variables[var] < 2:

262 self.MAP[var] = 0

263

264 def single_cf_update(self, rcn):

265 '''computes the cluster function of the rc-node rcn

266 '''

267 id = rcn

268 self.cf_update_time[id] = self.current_time

269

270 nbvar_set = self.nonboundary_variables[id]

271 nbvar = list(nbvar_set)

272 nbvar.sort()
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273 t = len(nbvar)

274

275 fc = FCollection(self)

276 if self.isFactor(id):

277 cfVi = list(self.neighbors[id])

278 cfVi.sort()

279 fc.add_factor(Factor(cfVi, self.Factors[id]))

280

281 for ch in self.children(rcn):

282 for f in self.ccol[ch].flist :

283 fc.add_factor(f)

284

285 cols = []

286 num_of_approximated_variables = 0

287 max_cost = 0

288

289 for i,var in zip(range(t),nbvar):

290

291 projected_fc, newfc = fc.project(var)

292 par = projected_fc.partitioning()

293 cols.append(projected_fc)

294

295 if len(par) > 1: num_of_approximated_variables += 1

296

297 for col in par:

298 max_cost = max(max_cost, len(col.allvarset)) # TODO: count dimensions
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299 newFactor = col.proj(var)

300 newfc.add_factor(newFactor)

301

302 fc = newfc

303

304 self.ccol[id] = fc

305 self.Hcol[id] = cols

306 self.node_cost[id] = max_cost

307 self.num_of_approximated_variables[id] = num_of_approximated_variables

308

309 def update_cluster_functions(self):

310 import lib.stat as stat

311 stat.timerstart()

312 ExactInference.update_cluster_functions(self)

313 energy_ub = self.MAP_value()

314 stat.timer('ucf')

315

316 def final_value(self):

317 total_value = np.zeros(1) + self.semi_ring.unit

318 for rcn in self.rootnodes():

319 fc = self.ccol[rcn]

320 if fc is not None:

321 for f in self.ccol[rcn].flist:

322 self.semi_ring.join(total_value, f.func, total_value)

323 return total_value

324
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325 def single_message_update(self, msgfrom, towards, curmsg, dependent_msgs):

326 rcn = msgfrom

327

328 fc = FCollection(self)

329 if self.isFactor(msgfrom):

330 cfVi = list(self.neighbors[msgfrom])

331 cfVi.sort()

332 fc.add_factor(Factor(cfVi, self.Factors[msgfrom]))

333

334 for ch in self.children(rcn):

335 cid = ch

336 if cid == towards :

337 continue

338 for f in self.ccol[cid].flist :

339 fc.add_factor(f)

340

341 for msg in dependent_msgs:

342 for f in self.message_downward[msg].flist :

343 fc.add_factor

344

345 if towards is None:

346 if self.isFactor(msgfrom):

347 node_set = set(self.neighbors[msgfrom])

348 else:

349 node_set = set([msgfrom])

350 msgvar_set = node_set & self.nonboundary_variables[msgfrom]
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351 else :

352 msgvar_set = self.boundary_variables[towards] & \

353 self.nonboundary_variables[msgfrom]

354

355 msgvar = list(msgvar_set)

356 msgvar.sort()

357 t = len(msgvar)

358

359 num_of_approximated_variables = 0

360 for i,var in zip(range(t),msgvar):

361

362 projected_fc, newfc = fc.project(var)

363 par = projected_fc.partitioning()

364

365 if len(par) > 1:

366 num_of_approximated_variables += 1

367

368 for col in par:

369 newFactor = col.proj(var)

370 newfc.add_factor(newFactor)

371

372 fc = newfc

373

374 return fc

375

376 def MAP_update(self) :
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377 '''returns a list of variables that have changed in the MAP configuration

378 '''

379 stack = [el for el in self.rootnodes()]

380 self.MAP_updated_variables = []

381 counter = 0

382 visited = []

383 checked = []

384 while len(stack) > 0:

385 counter += 1

386 rcn = stack.pop()

387 id = rcn

388 visited.append(id)

389 need_to_be_updated = self.cf_update_time[id] > self.lastMAP_time

390 for var in self.boundary_variables[id]:

391 need_to_be_updated |= self.MAP_update_time[var] > self.lastMAP_time

392

393 if (need_to_be_updated) :

394

395 checked.append(id)

396 nbvar_set = self.nonboundary_variables[id]

397 nbvar = list(nbvar_set)

398 nbvar.sort()

399 t = len(nbvar)

400 cols = self.Hcol[id]

401

402 known_arg_set = self.boundary_variables[id]
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403 for i in range(t-1,-1,-1):

404 known_arg_set = self.boundary_variables[id] | set(nbvar[i+1:])

405 fc = cols[i]

406 fc.assign_maximizers(known_arg_set)

407

408 for ch in self.children(rcn):

409 stack.append(ch)

410

411 self.lastMAP_time = self.current_time

412 self.MAP_num_visits = counter
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CHAPTER 9

CONCLUDING REMARKS

In this thesis, we have presented an adaptive framework for performing exact inference that

e�ciently handles changes to the input factor graph and its associated elimination tree. Our

approach to adaptive inference requires a linear preprocessing step in which we construct a

cluster-tree data structure by performing a generalized factor elimination; the cluster tree

o�ers a logarithmic depth balanced representation of an elimination tree annotated with

certain statistics. We can then make arbitrary changes to the factor graph or elimination

tree, and update the cluster tree in logarithmic time in the size of the input factor graph.

Moreover, we can also calculate any particular marginal in time that is logarithmic in the

size of the input graph, and update MAP con�gurations in time that is roughly proportional

to the number of entries in the MAP con�guration that are changed by the update.

As with all methods for exact inference, our algorithms carry a constant factor that is

exponential in the width of the input elimination tree. Compared to traditional methods,

this constant factor is larger for adaptive inference; however the running time of critical

operations are logarithmic, rather than linear, in the size of the graph in the common case. In

our experiments, we establish that for any �xed treewidth and variable dimension, adaptive

inference is preferable as long as the input graph is su�ciently large. For reasonable values of

these input parameters, our experimental evaluation shows that adaptive inference can o�er

a substantial speedup over traditional methods. Moreover, we validate our algorithm using

two real-world computational biology applications concerned with sequence and structure

variation in proteins.

We have then applied this framework to dual-decomposition solvers in a way that it

balances the intrinsic trade-o�s between parallelism and convergence rate. For the choice

of subproblems, we use a cover tree to obtain rapid convergence, but use a balanced cluster

tree data structure to enable e�cient subgradient updates. In addition to the bene�ts of
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adaptivity, the cluster tree is also amenable to a high degree of parallelism. Moreover, it

can be used to e�ciently update optimal con�gurations during each subgradient iteration.

We randomly generated models and demonstrated that our approach is up to two orders of

magnitude faster than other methods as the model size becomes large. We also show that

for the real-world problem of stereo matching, our approach is roughly twice as fast as other

methods.

At a high level, our cluster-tree data structure is a replacement for the junction tree in

the typical sum-product algorithm. A natural question, then, is whether our data structure,

can be extended to be used as subroutine for approximate inference techniques other than

dual-decomposition. The approach does appear to be amenable to methods that rely on

approximate elimination (e.g., [18]), since these approximations can be incorporated into

the cluster functions in the cluster tree. Iterative approximate methods that use �xed point

updates (e.g., [52, 53, 58]), however, may be more di�cult, since they often make a large

number of changes to messages in each successive iteration.

Another interesting direction is to tune the cluster tree construction based on computa-

tional concerns. While deferred factor elimination gives rise to a balanced elimination tree, it

also incurs a larger constant factor dependent on the tree width. Our benchmarks show that

this overhead can be pessimistic, but it is also possible to tune the number of deferred factor

eliminations performed, at the expense of increasing the depth of the resulting cluster tree.

It would be interesting to incorporate additional information into the deferred elimination

procedure used to build the cluster tree to reduce this constant factor. For example, we can

avoid creating a cluster function if its run-time complexity is high (e.g., it dimension or the

domain sizes of its variables are large), preferring instead a cluster tree that has a greater

depth but will yield overall lower costs for queries and updates.
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