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ABSTRACT OF THE THESIS

Graphical Models for Entity Coreference Resolution

By

Priya Venkateshan

Master of Science in Computer Science

University of California, Irvine, 2011

Professor Alexander Ihler, Chair

Entity Resolution, the problem of resolving token sequences in text to discourse enti-

ties, is a key problem in the natural language processing domain to statistical machine

learning techniques are increasingly applied. One of the most common frameworks for

viewing entity resolution as a supervised learning problem is the mention-pair model,

where as a first step, a classifier is trained to make pairwise decisions for every pair

of token sequences, or mentions, regarding whether they refer to the same entity or

not. Then, coreference chains are formed using these pairwise decisions.

In this thesis, we present two supervised learning approaches to Entity Resolution.

The first uses affinity propagation, a message-passing algorithm, to create coreference

chains, taking as input pairwise probabilities of coreference given by a trained classi-

fier. We also seek to incorporate linguistic information like part-of-speech tags. Our

second approach looks at methods that enforce transitivity within coreference chains

while building them, and learns parameters from maximizing a pseudo-likelihood es-

timate of the data conditioned over only the set of valid configurations of pairwise

coreference decisions. Both our methods perform better than the tested baselines, and

on par or better than the other supervised learning approaches to Entity Resolution

published on the Semeval Coreference Resolution Task dataset.
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Chapter 1

Introduction

Most Natural Language Processing work examines the microstructure of language, at

or below the level of individual sentences. However, many tasks would benefit from

information at a more global level, combining and linking different sentences or parts

of the same document, or even multiple documents and document sources. One of

the important subtasks central to understanding natural language at the discourse

level is to find the different entities, events and other abstract notions being discussed

and to identify their interconnectedness and track their references throughout. This

identification of interconnectedness, or of identifying which entities and events are

regarding the same discourse entities (entities being discussed in the document), which

we deal with in this work, is known as Coreference Resolution.

The concept of Coreference Resolution can be explained using the example given in

Figure 1.1. In the example, John, him and himself, all refer to the same entity -

John, and are hence colored similarly, as are the two references to Bob and the three

references to the book. The ARKRef Coreference Resolution system [1] was run on the

given set of sentences. We see that it has correctly identified those noun-phrases that
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Figure 1.1: Text with entities resolved using ARKRef Coreference Resolution System
[1]

refer to the same discourse entity by using, among other features, word similarity,

gender and word proximity.

The real-world applications of Coreference Resolution are many. The most popular

are document summarization and question answering.

Azzam, et al [7] is an example of using Coreference Resolution for document summa-

rization. In the work, the main topic of a document, for summarization purposes, is

discovered using Coreference Resolution to find the entity with the most number of

references in the document.

Coreference Resolution can be used for question answering, as well. The answer

to a question like How much did Mercury spend on advertising in 1993?, might be

obtained in a sentence like The Corporation spent USD 150,000 on advertising last

year, where The Corporation referred to Mercury, mentioned in a previous sentence.

To extract this additional information, we need Coreference Resolution.

Based on whether we are resolving each reference to an entity (a person, place, organi-

zation or artifact) or to an event or an idea being discussed, there are different flavours

of coreference resolution. Prominently studied among these are Entity Coreference

Resolution, which deals with references to people, places, organizations and Event

Coreference Resolution which tries to resolve references to events being discussed

in the document. Further, Coreference Resolution which attempts to resolve enti-

ties or events that span multiple documents in a corpus is called Cross-Document

2



Coreference Resolution.

The scope of this work covers Single-Document Entity Coreference Resolution,

where we attempt to resolve identified references - known henceforth as mentions -

as referring to entities, which might be people, locations, organizations or artefacts.

The rest of this dissertation is organized as follows. Chapter 2 provides an overview of

the task itself, the datasets we use, and the metrics we use to evaluate our approaches.

In Chapter 3, we provide a brief overview of supervised approaches to Entity Resolu-

tion. Our two contributions are explained in Chapter 5, where we present a learning

method that takes into account the formulation of Entity Resolution as an integer

linear program, and in Chapter 4, where we present a supervised clustering approach

to Entity Resolution that utilizes affinity propagation. We then summarize our con-

tributions and results to conclude.
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Chapter 2

Overview of the Entity Resolution

Task

2.1 Task Definition

Entity Coreference Resolution is the task of identifying expressions of text that refer

to the same discourse entity. These expressions of text that are identified as referring

to any real world entity are known as mentions. The real-world entities that are

being referred to can be Persons, Places or Organizations, and the mentions that refer

to them are usually Noun-Phrases and possessive determiners.

A given document D contains a set of mentions m = m1,m2 . . .mn−1,mn, where each

mention mi specifies a span of tokens in the text of the document.

The goal of the task is to design and implement an automated system capable of

assigning a discourse entity, or a topic of the current conversation which might be

a person, place or organization, to each mention. Concretely, the problem can be
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phrased thus: For a document D containing a set of mentions m, an Entity Resolution

system has to propose a clustering C1, C2 . . . Ck where each Ci ⊆ m, and ∀i, j such

that i 6= j, we have Ci ∩ Cj = ∅.

This proposed clustering C = C1, C2 . . . Ck are known as response entities or re-

sponse clusters. They are evaluated against the true clusters C* = C∗1 , C
∗
2 . . . C

∗
k∗ ,

which are known as the key entities or key clusters. Here, the number of key

clusters, k∗ can possibly be different from the number of response clusters k.

The mentions we resolve into entity clusters can either be gold mentions in which case

we use the same annotated mentions that occur in the key, or they can be system

mentions, which means they are detected and extracted by an automated system [3]

[4]. In case of using gold mentions, the total number of mentions in all the key and

response entities are the same, as they are the same set of mentions. They however

need not be the same in case of system mentions, as the sets of tokens detected by

the mention-detection system can be quite different from the true mentions.

2.2 Dataset

The dataset we used was part of the Coreference Resolution in Multiple Languages

Task at the 5th International Workshop on Semantic Evaluations [31], henceforth

known as the Semeval Dataset. This dataset, specific to the English-Language task,

was taken from the Ontonotes Release 2.0 Corpus, which contains Newswire and

Broadcast News data, which have 300,000 words from the Wall Street Journal, and

200,000 words from the TDT4 collection. It is distributed by the Linguistic Data

Consortium [30]. The Ontonotes corpus builds on the Penn Treebank specification

for syntactic annotations, and Penn Propbank for predicate argument structures.
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The semantic annotations consist of named entities, word senses (which are linked

to ontology), and coreference information. The dataset is split into Training, Devel-

opment and Test datasets, with the Training set consisting of 227 documents, the

Development set consisting of 39, and the Test set having 85 documents.

Each document is tokenized and there are a set of features associated with each token.

These features are of two types - features that are annotated by hand, and features

that are predicted by an automated system. The following features are given for each

word:

1. ID: Numeric identifiers for each token in the sentence

2. Token: The text of the word.

3. Lemma: A coarse identification of the token’s part-of-speech.

4. Feat: These are the morphological features - features which describe mor-

phemes, or meaningful units of language that cannot be divided further. They

include part-of-speech type (noun, verb, etc), number (singlular/plural), gen-

der(male, female, neutral), case (nominative, accusative, etc), and tense (past,

present).

5. Head: This feature is the ID of the syntactic head (0 if the token is the root of

the syntactic dependency tree).

6. DepRel: Dependency relations corresponding to the dependencies described in

the Head column (sentence if the token is the tree root).

7. NE: Named Entity types in open-close notation. Open-close notation is when

an opening paranthesis followed by the named entity type denotes the first

token in a sequence of tokens making up a noun-phrase, while the named entity
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type followed by a closing paranthesis denotes the last token in a sequence.

Noun-phrases identified thus might embed but cannot overlap.

8. Pred: The semantic labels (person, object, organization, date, time, etc) for

each predicate.

9. APreds: For each predicate in the Pred column, this feature gives its semantic

roles or dependencies.

10. Coref: This column represents coreference relations in open-close notation. Ev-

ery entity has an ID number. Every mention is marked with the ID of the

entity it refers to. The span of mentions is denoted using open-close notation

as described previously. An opening paranthesis followed by the ID number of

an entity denotes the first token of a mention, while an entity ID followed by a

closing paranthesis denotes the last token of a mention. Mentions can be nested

and embedded within another, but they cannot cross each other. The resulting

annotation is a well-formed nested structure.

Each of these features apart from ID, Token, Coref and Apreds is also additionally

generated by a system. This was intended so as to be able to study the performance

of system-generated features versus hand-labelled features for this task. Of these

features, Lemma and PoS were generated using SVMTagger [4], while the dependency

information (Head) and predicate semantic roles (Pred and Apreds) were generated

with JointParser [3], which is a syntactic-semantic parser.

2.3 Evaluation Settings

The Semeval task, in order to study the effect of the usage of different levels of lin-

guistic information, divided the task into four evaluation settings along two different
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dimensions.

2.3.1 Gold Setting vs Regular Setting

In the gold setting, participants were allowed to use the manually annotated columns

of the dataset, along with the gold (true) mention boundaries. In the regular setting

however, participants were only allowed to use the system-generated columns. This

meant mention detection had to be implemented by the participants for the regular

setting. This was to determine how much high-quality preprocessing information

mattered vis-a-vis machine-generated versions of the same information.

2.3.2 Closed vs Open Setting

In the closed setting, participants were only allowed to use the Semeval datasets for

the task, whereas in the Open setting, the usage of external information sources like

Wordnet and Wikipedia and other datasets were allowed. This was in order to see

whether external information improved Entity Resolution performance.

Our systems presented here have all been evaluated according to the Closed and

Gold settings.

2.4 Evaluation Measures

There are various methods used for evaluating Entity Resolution methods, and no

single method is universally considerded the best. Rather, there is a proclivity to

report results using multiple metrics, as each metric can provide insight that makes
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up for the biases in the others.

In this dissertation, we evaluated our results on these commonly-used metrics - MUC,

B-cubed and CEAF, as well as a new metric BLANC, that was introduced as part of

the Semeval task. We describe each of these metrics below.

2.4.1 MUC

MUC [34] is the oldest and most widely-used measure for evaluating Coreference Res-

olution. It works by calculating the number of links required to be added or removed

from the predicted coreference chains (response chains) to go from the response chains

to the key chains. This method however fails to acknowledge singleton entities (en-

tities with only one mention) and does not give credit for separating singletons from

other entities. In an extreme case, this metric produces an invalid result when calcu-

lated on a document where all the entities are singleton entities. In yet another, if all

the mentions are added to a single cluster, it gets a perfect Recall. Nonetheless, if the

number of response clusters predicted is not very different from the number of key

clusters, the metric is a good indication of the accuracy of the coreference resolution

method used.

2.4.2 B-Cubed

The B-Cubed algorithm [8] computes Precision and Recall for each mention of the

document to be evaluated. These are then combined to produce the final Precision

and Recall for the document and the corpus. The precision for a mention mi is defined

as

Precision(mi) =
|C(mi) ∩ C∗(mi)|

|C(mi)|
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and the recall for a mention mi is defined as

Recall(mi) =
|C(mi) ∩ C∗(mi)|
|C∗(mi)|

where C(mi) is the coreference chain in the response that contains mention mi, and

C∗(mi) is the coreference chain in the key that contains mention mi. As B-cubed is

calculated on each mention, singletons are accounted for, unlike in MUC. However, if

the dataset contains too many singletons, the scores quickly approach 100%, leaving

little room for meaningful comparisons between different methods.

2.4.3 CEAF

The evaluation measure B-Cubed uses each entity more than once while aligning en-

tities in the key and eesponse, due to which counterintuitive results can be obtained.

Luo, et al [26] proposed the Constrained Entity Alignment F-Measure (CEAF) which

uses a similarity function φ to find a one-to-one mapping between the Key and Re-

sponse entities. The CEAF measure considers a similarity measure φ to find an

alignment g∗ between the key and response according to this similarity measure,

such that

g∗ = argmax
g∈Gm

∑
C∗i ∈C∗

φ(C∗, g(C∗)),

where Gm is the set of all one-to-one mappings between the key and response entities,

and each g(C∗i ) maps the entity C∗i in the key to a corresponding entity in the response,

and φ(a, b) is a measure of how similar the clusters a and b are.This similarity metric

is applied on every pair of entities, one from the key, and the other from the response,

to measure the goodness of each possible alignment. The best mappings are used in

order to calculate the CEAF Precision, Recall and F-Measure.
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Luo, et al [26]proposed the following similarity metric which is the most widely used

and on which results have been widely reported. This is the similarity metric we use

in our evaluation. For each pair (C∗i , Cj) originating from the Key C∗ and Response

C,

φ(C∗i , Cj) = |C∗i ∩ Cj|.

The similarity measure is used to find the alignment with the best total similarity,

denoted by φ(g∗)

The Precision is specified as

P =
φ(g∗)∑

i φ(Ci, Ci)

and the Recall as

R =
φ(g∗)∑

i φ(C∗i , C
∗
i )

As gold mentions are used, the Precision and Recall values turn out to be the same

- they both are the number of common mentions for each entity divided by the total

number of mentions. However, the disadvantage of finding an alignment is that if the

appropriate alignment for a response entity is not found in the list of key entities, a

correct link might get ignored.

2.4.4 BLANC

The Bilateral Assessment of Noun-Phrase Coreference (BLANC) metric is based on

two types of decisions taken with Entity Resolution:

1. Coreference Decisions (made by Entity Resolution system)

(a) A Coreference link (c) holds between every two coreferent mentions

11



(b) A Non-Coreference link (n) holds between every two mentions that do not

corefer.

2. Correctness Decisions (made by evaluation system)

(a) A right link (r) that has the same value in both the key and eesponse (i.e.

the System is correct).

(b) A wrong link (w) that does not have the same value in both the key and

response (i.e. the System is not correct).

Using these values, Precision and Recall are defined on Coreference decisions and

Non-Coreference decisions:

Coreference Precision PC =
rc

rc+ wc

Coreference Precision RC =
rc

rc+ wn

Non-Coreference Precision PN =
rn

rn+ wn

Non-Coreference Recall RN =
rn

rn+ wc

The overall BLANC precision P would be the average of PC and PN , and the overall

BLANC recall R would be the average of RC and RN .

P =
PC + PN

2

R =
RC +RN

2

We see that BLANC is similar to other metrics that evaluate the goodness of any

given clustering by taking into account not only putting similar data points in the

same cluster, but also putting dissimilar objects in different clusters. It does not

12



favour one type of decision over the other, and gives equal consideration to both

coreference decisions and non-coreference decisions. Due to this, even if the response

clusters of various methods contain too many singletons, the scores can range over

a wide enough interval, to provide room for meaningful comparisons between the

approaches, unlike B-Cubed and CEAF.
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Chapter 3

Related Work on Supervised

Entity Coreference Resolution

3.1 Introduction

Entity Coreference Resolution is the task of determining which sets of token in text

refer to the same discourse entity. It is a widely-researched problem in the domain of

natural language processing and computational linguistics. This area of research was

heavily influenced by computational discourse analysis concepts like centering [22] and

focussing [21], leading to the development of various centering algorithms in the 1970s

and 1980s. The emergence of statistical techniques for natural language processing

in the 1990s saw a gradual shift of Coreference Resolution approaches from heuristic-

based to more learning-based approaches. Additionally, as Coreference Resolution

can inherently be considered a clustering task, it generates considerable interest from

the Machine Learning community as well.

Our approaches to Entity Resolution presented in this dissertation are based on su-
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pervised learning approaches, and hence in this chapter, we provide a brief overview

of relevant supervised learning approaches to entity resolution.

3.2 Classification of Supervised Methods in Entity

Coreference Resolution

Ng [27] classifies Supervised Entity Resolution methods into three categories - Mention-

Pair Models, Entity-Mention Models and Ranking Models. Our approaches to Entity

Resolution presented in this dissertation are Mention-Pair approaches, and hence we

shall give a more detailed overview of the Mention-Pair model. We also briefly outline

the Entity-Mention and Ranking models in this chapter.

3.2.1 Mention-Pair Models

The Mention-Pair model is a system that, at its core, makes pairwise decisions about

whether two mentions are coreferent. The model was first proposed by Aone and

Bennette [5] and is widely used and researched, due to its inherent simplicity and

flexibility. Despite these advantages, a model consisting of pairwise decisions has the

disadvantage that it is quite possible that these independent decisions will not be con-

sistent with each other. For example, if mentions A and B are deemed coreferent, and

B and C as coreferent, there is no guarantee that the pairwise decision-making sys-

tem will deem A and C as coreferent. Thus, in order to make a Mention-Pair model

consistent, we need to specify a mechanism to create consistent coreference chains

along with the pairwise decision-making system, where the decision-making system

is usually a classifier. Another issue with the Mention-Pair model is the creation of

training instances. The intuitive method to do so would be to create instances of ev-
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ery pair of mentions in each document in the training dataset. However, this results

in a very skewed set of training instances with negative instances constituting more

than 90% of the trainingset. Some way of balancing this skew is essential. Thus, an-

other specification for a Mention-Pair model would be its method of creating training

instances. Additionally, the pairwise classification system also needs to specify the

features it learns from. We delve into the work done in each of these components of

a Mention-Pair model in the below sections.

Creating Training Instances

We need examples of coreferent and non-coreferent pairs of mentions in order to train

a system to take pairwise decisions. This would normally mean considering every

pair of mentions in each training document as an example. However, this is not the

method used in practice, as it would result in a very skewed dataset. The number

of positive examples would be minuscule when compared to the number of negative

examples, as most pairs of mentions are non-coreferent. There are various heuristic

methods of instance-creation that are used to create training instances for Entity

Resolution, with the aim of reducing the skewness. Among these, Soon et al.’s [33]

method is the most widely and popularly used. Given a mention mj, this method

creates a positive instance with mj and its closest preceding coreferent mention mi,

and negative examples with mj and every intervening mention mi+1,mi+2,. . .mj−2,

mj−1. We use this method to create instances for all the approaches implemented in

this work.
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Training the Coreference Classifier

Once a training set is created, we can learn a coreference model using any off-the-

shelf classifier. Decision trees are widely used due to their ability to handle expressive

features. Memory-based learners [14] were popular, especially in early learning-based

Entity Resolution systems. Maximum entropy models [15], logistic regression [17]

voted perceptrons [28] and support vector machines [18] are increasingly being used

because they can provide a confidence value associated with the pairwise decision.

Quite a few techniques used to create coreference chains(Section 3.2.1), including

graph partitioning methods and methods based on integer linear programming, utilize

confidence values in ensuring consistency within the created coreference chains.

Generating Coreference Chains

After obtaining pairwise decisions or probabilities of coreference, there are many ways

to create coherent coreference chains from them. The simplest methods are Closest-

First Clustering and Best-First Clustering.

In Closest-first clustering, we first make a pairwise decision on every pair of mentions,

regarding whether they are coreferent or not. Then, for each mention, we resolve it

to the same entity cluster as the closest preceding mention (in terms of number of

intermediate mentions between the two) which is coreferent with it.

In Best-first clustering, we again make a pairwise coreference decision on every pair

of mentions, along with obtaining a confidence value associated with each decision.

Then, for each mention, we resolve it to the same entity cluster as the preceding

mention which has the highest confidence value of being coreferent with this mention.

These mechanisms are flawed in that a positive pairwise decision is given more con-
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sideration than a negative one by these algorithms. For example, if A and B are two

mentions deemed coreferent, as are B and C, then A and C will also belong to the

same entity cluster even if there is overwhelming evidence that they are not corefer-

ent. Additionally, as negative decisions outnumber positive decisions, the coreference

chains are created based on only a small subset of all the pairwise decisions.

Graph partitioning methods address this problem of consistency. Entity Resolution

is cast as a graph partitioning problem with each mention in a document considered

a vertex of a graph, while an edge between mentions is given a weight equal to the

probability of the two mentions being coreferent. When this graph is partitioned,

each partition can be considered an entity cluster.

There are various approaches using different methods to create these partitions. Bean

and Riloff [10] use the Dempster-Shafer rule to score a partition based on the number

of positive and negative pairwise decisions. Correlation clustering [9] is another algo-

rithm which attempts to produce a partition that respects as many pairwise decisions

as possible.

Denis and Baldridge [15] cast Entity Resolution as an Integer Linear Programming

problem. Finkel and Manning [17] add transitivity constraints to this ILP. These two

methods are explained in more detail in Chapter 5.

3.2.2 Entity-Mention Methods

The Entity-Mention model was introduced for a higher level of expressiveness than

the Mention-Pair model. Let us take an example of an article about democratic

politics. It is possible that using a Mention-Pair model, we obtain a coreference

between ’Mr. Clinton’ and ’Clinton’, and between ’Clinton’ and ’her’. However, we
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know that ’Mr. Clinton’ and ’her’ are not coreferent. This highlights a drawback of

the Mention-Pair model, which is that the later decisions are taken independent of

the earlier decisions, which might result in a lack of consistency among the mentions

in each coreference chain. The Entity-Mention model [12] attempts to build entity

clusters as it goes through the document sequentially. At each mention, it attempts

to decide whether the current mention would belong in one of the hitherto partially-

formed entity cluster, or whether there is a need to create a separate cluster for this

mention. This can be done by having a classifier decide if this mention corefers with

each of the partially-formed entity clusters. For this, cluster-level features are used,

which are more expressive than the features that are obtained from just two mentions

in the Mention-Pair model. The increased expressiveness is because they describe the

levels of consistency within the entity. For example, one such feature might be gender

agreement, which tries to indicate whether the current mention agrees on gender with

all of the mentions in the current entity, or with only some of them, or none.

3.2.3 Ranking-based Methods

The Entity-Mention model does not address the Mention-Pair model’s failure to iden-

tify the most probable candidate antecedent. Thus, Ranking-based methods consider

all candidate antecedents simultaneously, and follow their natural resolution strategy

to resolve each anaphoric mention to the best-ranked antecedent.

The first work to deal with Ranking was Connolly et al [13], which suggested a

Tournament or a Twin-Candidate model. In order to resolve a noun-phrase, every

pair of candidate antecedents are considered in relation to this noun-phrase and each

time, one is classified as better than the other. In the end, the noun-phrase in question

is resolved to that antecedent which is classified as better the maximum number
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of times. Mention rankers [16] rank all candidate antecedents simultaneously. In

practice, they tend to outperform Mention-Pair models, even though they are not

any more expressive, as Mention Rankers don’t use cluster-level features. Rahman

and Ng [29] proposed cluster ranking which takes into account cluster-level features.

Here, all the preceding clusters are ranked in order of being the cluster to which the

noun-phrase in question is most likely to belong to. Here, we also need to take a

decision on whether a noun-phrase is anaphoric and needs to be resolved, or not. A

couple of different approaches have been suggested for this. Denis and Baldrige [15]

apply an anaphoricity classifier, while Rahman and Ng [29] propose a model that

jointly learns to predict coreference and anaphoricity.

3.3 Participants in the Semeval-2010 Coreference

Resolution Task

This section describes the other systems in the Semeval Task, that participated in the

Closed Gold-Standard evaluation setting in English. Of the four systems that worked

on the Closed Gold-Standard evaluation setting in English, three methods used the

Mention-Pair model with Best-First clustering.

UBIU [35] is a language-independent Coreference Resolution system. It makes use

of the TiMBL classifier [14], which works on the principle of memory-based learning,

for pairwise classification. The pairwise decisions are converted to coreference chains

using Best-First Clustering.

Sucre [24] is an end-to-end coreference resolution tool which introduced a new ap-

proach to the feature engineering of Coreference Resolution based on a relational

database model and a regular feature definition language. While the system has a va-

riety of classifiers to choose from for the Mention-Pair model, a decision-tree classifier
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is found to work best. The coreference chains are created using Best-First clustering.

TANL-1 [6] is based on parse analysis and similarity clustering. It utilizes parse

trees for mention detection, and a maximum-entropy classifier for classification in the

Mention-Pair Model. It too utilizes best-first clustering for creation of coreference

chains.

RelaxCor [32] utilizes a graphical representation of Entity Resolution, where each

vertex of the graph represents a mention, and an edge between two vertices carries the

weight of the probability that the corresponding mentions are coreferent. By using

an algorithm called relaxation labeling [23], RelaxCor reduces entity resolution to a

graph partition problem given a set of weighted constraints. The weighted constraint

satisfaction problem is solved in order to get the final coreference partitions.
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Chapter 4

Entity Resolution using Affinity

Propagation

4.1 Introduction

One of the ways to view Entity Resolution is as a clustering problem. The main dis-

advantage of using most clustering algorithms for this particular task is the necessity

to specify the number or the size of the clusters.

The clustering algorithm called Affinity Propagation [20] [19] however does not require

the number or size of clusters to be explicitly specified. Affinity Propagation is a

clustering algorithm which takes as input the data points as well as a series of pairwise

similarities between the data points. It is an exemplar-based clustering algorithm

like K-Medoids, which ultimately finds data points that can be considered cluster

centers, around which the other points are grouped. Unlike K-Medoids clustering,

however, it does not require the number of clusters to be specified. It also does not

require hard decisions to be taken on cluster centers at each iteration, but propagates
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soft information about the possibility of each data point being a cluster exemplar

by means of message-passing, taking as input pairwise similarities between the data

points. Affinity propagation essentially performs the max-sum algorithm on a factor

graph model of the data in order to find an appropriate configuration of clusters and

exemplars.

We formulate Entity Resolution as an affinity clustering problem. The pairwise sim-

ilarities between every pair of mentions are obtained using logistic Regression. The

clusters output by the affinity propagation algorithm are the coreference chains we

need. Thus we can consider, our formulation to be a Mention-Pair model which uses

logistic regression as its pairwise decision-making system, and affinity propagation as

its chosen method of producing coreference chains.

The rest of the chapter is organized thus: we describe the technique of affinity prop-

agation in 4.2, and go on to describe the Mention-Pair model which uses affinity

propagation in 4.3. We describe the creation of training instances in 4.3.1, the fea-

tures we use in 4.3.2 and the actual usage of affinity propagation in 4.3.3. We then

describe the experiments we conducted and the results we obtained in 4.4.

4.2 Affinity Propagation

Let us assume that we have a set of N data points D = {X1, X2 . . . XN} which need

to be clustered, and a pairwise similarity function s where s(i, j) which represents the

similarity function between data points xi and xj. It could, for instance, be the log

likelihood of xi conditioned on xj, or some such measure that evaluates the likelihood

of xj choosing xi as the exemplar. The self-similarity s(j, j), thus would be the

probability that xj chooses itself as its own exemplar. Concretely, s(j, j) would be
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the probability of xj being chosen as an exemplar. Without prior knowledge, the

self-similarities can be fixed to be constant values.

Let C be an N × N binary-valued matrix where the ith row describes the cluster

assignment of the ith data point. If Cik = 1, that means xk is the exemplar for data

point xj. Like K-medoids clustering, Affinity Propagation seeks to maximize the sum

of similarities between data points and their examplars. The similarity measures are

incorporated by defining a local function

Sij(Cij) = s(i, j).Cij.

To ensure that all configurations on C are valid, two constraint functions {Ii}Ni=1 and

{Ej}Ni=1} are introduced, where

Ii(Ci1 . . . CiN) =

 −∞ if
∑

j Cij 6= 1

0 otherwise

Ej(C1j . . . CNj) =

 −∞ if Cjj = 0 and ∃i 6= j : cij = 1

0 otherwise

I is known as the one-of-N constraint. Ii operates on the ith row of C. It ensures

that each row has only one value assigned to 1, which means that each data point

is assigned only one exemplar. E enforces the exemplar consistency constraint. Ej

operates on the jth column of C. It ensures that if any data point has chosen xj as

its exemplar, then j too has chosen itself as its own exemplar. Thus, we attempt to

find C which maximizes

S(C11 . . . CNN) =
∑
i,j

Si,j(cij) +
∑
i

Ii(Ci1 . . . CiN) +
∑
j

Ei(C1j . . . CNj)
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Affinity propagation uses a particular kind of graphical model called a Factor Graph

to optimize S using the max-sum algorithm. Factor graphs are a way of representing

the factorization of a global fuction g(.) of many variables into smaller local functions.

If g(.) represents a function over the joint distribution over a set of random variables

x1, x2, . . . xN , and if it factors into a set of m local functions fj, j = 1 . . .m, then

log g(x1 . . . xN) =
m∑
j=1

log fj(Xj)

where Xj ⊆ {x1 . . . xN} is the set of random variables over which function fj(.) is

defined.

The graph for g contains a variable node for each variable xi and a factor node

for each local function fj(.). Typically, the variable nodes are represented by circular

nodes, and factor nodes by square nodes. An edge connects every factor node fj with

all the variable nodes belonging to Xj.

We can derive messages for message passing algorithms, which compute the max-

product and sum-product algorithms on a graph, or if we take the logarithm on g,

we can extend the max-product algorithm to the max-sum algorithm. Messages are

only passed between adjacent nodes in the graph. There are five messages at each

variable node:, Sij,αij, βij, ηij and ρij. Although these messages depend on the value

of Cij , only the difference between the two message values can be sent, as Cij is a

binary variable, i.e., Cij = Cij(1)− Cij(0).

Also, since βij and ηij can be expressed in terms of the other messages, we only need

send three messages:

Sij = s(i, j)

ρij = s(i, j)−maxk 6=j(s(i, k) + αik)
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αij =


∑

i 6=j max[ρij, 0] if i = j

min[0, ρjj +
∑

i 6=j max[ρij, 0]] if i 6= j

ρij is known as the Responsibility Message and αij is the Availability message.

The Responsibility Message provides information from xi to xj about how suited xi

is suited to be an exemplar of xj. xj responds with the Availability message, which

provides information about how suited xj is to be an exemplar, given the information

it has received from the other data points.

After the algorithm reaches convergence, the values of Cij are found by adding all the

incoming messages at Cij, and setting Cij to 1 if the sum is positive, and 0 otherwise.

4.3 Using Affinity Propagation for Coreference Prop-

agation

Affinity propagation seems an ideal method for the Coreference Resolution task. Pair-

wise similarities for every pair of mentions can be obtained by learning a Mention-Pair

model, and applying it to every pair of mentions in the test document. The advantage

of this method would be that our outputs are consistent cliques which don’t require

further processing in order to make them coreference chains. Additionally, neither

the number of clusters nor the size of the clusters need be specified in this method.

We can view our approach as a Mention-Pair model where we use Affinity Propagation

to consolidate the output of our pairwise classifier. Below, we describe our Mention-

Pair model.
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4.3.1 Creating Training Instances

Our training instances are created by the method specified in Section 3.2.1 . We

consider every mention mj and its closest coreferent antecedent mi as a positive

instance, and every instance in between, i.e. all mentions {mi+1,mi+2 . . .mj−2,mj−1}

and mi with mj as a negative instance.

4.3.2 Features

A training instance consists of a set of composite features extracted from the two

mentions that constitute it. These features can be specific to each mention, like

whether the mentions are Pronouns, or can be a combined feature, like whether the

two mention strings match. The set of features we used are the features specified in

Soon et al [33].

1. Distance: The distance feature counts how many sentences apart the two

mentions are.

2. i/j Pronoun: The i − Pronoun and j − Pronoun features are set to True or

False, depending on whether the corresponding mention is a pronoun or not.

This can be extracted from the ’Feat’ sections of the dataset.

3. String Match: Articles (a, an, the) are removed from the mention strings, as

are demonstrative pronouns like this, that, these, those. If the resulting strings

match, the value is set to True, else, False. Thus, ’the computer’ matches ’a

computer’, and ’the license’ matches ’license’.

4. i/j Definitive Noun-Phrase: A definitive noun-phrase is a noun-phrase which

begins with ’the’. This feature can be either true or false for a mention, de-

27



pending on whether the mention string begins with ’the’ or not.

5. i/j Demonstrative Noun-Phrase: A demonstrative noun-phrase is one which

begins with this, that, these or those. This feature can be either true or false.

6. Number Agreement: If both the mentions are singular or both are plural,

this value is True, and False otherwise. The ’Feat’ field of the head token of

each mention is used to detect the number of each mention.

7. Semantic Class Agreement: The different semantic classes are organized in a

hierarchy. Any noun-phrase can be of two types - ’person’ and ’object’. ’Person’

is divided into ’male’ and ’female’, while ’Object’ is divided into ’organization’,

’percentage’, ’money’, ’location’, ’date’ and ’time’. If there is no agreement in

the hierarchy between the two mentions, this value is set to ’False’, else ’True’.

8. Gender Agreement: The gender of a mention is detected from the ’Feat’ field

of the head token the mention. If both are ’male’ or ’female’, the value is True.

If either one of the Gender values are unknown, this feature takes on the value

’Unknown’. In all other cases, it takes on the value ’False’.

9. Both Proper Names: If both the mentions are Proper Names, as extracted

from the ’feat’ field, this value is set to True, else, False.

10. Alias: This value is True if one of the mentions is an alias of the other, and

False otherwise. There are different ways of determining this, depending on

the semantic class of the mentions. In case of organizations, we first remove

postmodifiers like ’Corp’ and ’Ltd’, and then see if one is an abbreviation of the

other. In case of persons, we compare the last words in the mention phrases to

see if they match. In case of dates, we attempt to extract date, month and year

values from the strings and see if they match
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11. Appositive: An appositive is a noun or noun-phrase that renames another

noun-phrase beside it. To detect if one mention is in apposition to another, we

use the following heuristics. When a noun-phrase is said to be appositive to

another, it usually happens that both the noun-phrases are proper names, with

the appositive mention not containing any verbs, and an appositive usually

is separated by a comma from its closest antecedent, which it refers to. For

example, in the phrase Bill Gates, the chairman of Microsoft Corp., the mention

the chairman of Microsoft Corp. is said to be appositive to Bill Gates.

We train a Logistic Regression classifier on the training examples created as specified

above, and then apply it on every pair of mentions in each document in the Test set,

in order to find the probability of two mentions being coreferent, and thus populate

the Similarity matrix.

4.3.3 Tuning Self-Similarities

The other aspect of this formulation is to find methods to set the Self-Similarities for

test documents. The self-similarities determine the number of entity clusters in each

document. We used a few different heuristics to determine the self-similarity for each

mention.

A good heuristic used for affinity propagation is to set all preferences to the same

value. It is common to set this value to the average of all other similarity values.

s(k, k) =
1

m2 −m

m∑
i=0

m∑
j=0,j 6=i

s(i, j)

However, applying this heuristic results in a large number of singleton clusters, as

it assumes that all mentions have the same high probability of being chosen as an
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exemplar. This assumption is invalid on real data, as different types of mentions

differ in their chance of being chosen as an exemplar.

We know that the likelihood of a mention being considered an exemplar increases

with the number of other mentions that are similar to it. This leads to our second

heuristic where we can set the preference of each point to be the average similarity

of all the other mentions to this mention.

s(k, k) =
1

m− 1

m∑
i=0,i 6=k

s(i, k)

This too, however, leads to a large number of clusters as the absolute probabilty

of each mention being an exemplar is still high. To reduce this value, we opt to

downweight all the self-similarities by a value γ. This value for γ can be obtained

empirically by trying out various values on a small development dataset and choosing

that value for γ which gives the best results on that dataset.

Additionally, we also can use linguistic information to set our self-similarity values.

We know that pronouns have to necessarily be resolved to another mention, and

cannot belong to a singleton cluster. In order to ensure that no pronoun is resolved

as a singleton, we reduce the self-similarity of every pronoun to a low value, as, if a

pronoun cannot be its own exemplar, it cannot be resolved as a singleton.

4.4 Experiments and Results

We compare our approach which performs clustering using affinity propagation against

a baseline of best-first clustering. Additionally, we compare Affinity Propagation

against the other systems whose results are available on the Semeval Gold-standard

Closed Task, which include RelaxCor, UBIU, SUCRE, and TANL-1.
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Our implementation of Best-First clustering using our set of features as described in

section 3.2.1, uses Logistic Regression to obtain pairwise probabilities of coreference.

We then choose that antecedent for each mention which has the highest probability

among those antecedents with a coreference probability greater than 0.5.

We tune the parameter γ empirically by varying it over a broad range of values

while running affinity propagation on the Development dataset, which consists of 39

documents, and picking the optimal value for each of our four metrics. Thus, we find

a value of γ optimal for each metric - γMUC , γBCubed, γCEAF and γBLANC . From this,

we obtain four different set of results - APMUC , APBCubed, APCEAF and APBLANC

each optimized for that particular metric, when we use these four values in an instance

of affinity propagation.

As shown in Figure 4.1, we iterate over different values of γ in order to find the

optimal value for each metric. For all metrics, we find that the F-measure of the

algorithm steeply increases with increasing γ before stabilizing, as we see from the

flat latter half of the curves. The optimal value of γ for all the metrics produces an

F-measure only a little better than nearby γ values. The number of clusters seems

to remain stable and does not increase by very much as it is limited by the reducing

of pronoun self-similarities, i.e., the pronouns in the document always need to be

resolved to some other mention, and thus do not add to the number of exemplars,

irrespective of the value of γ. We find that γMUC and γBLANC are both equal to

6, while both γCEAF and γBCUBED are 10. This can be explained by the fact that

B-Cubed and CEAF are partial to higher number of singletons, which are obtained

with a higher γ value.

We present our results in Table 4.1.We compare the performances of our optimized

systems against our baseline of Best-First clustering as well as against the systems

described in 2.4.
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(a) MUC (b) B-CUBED

(c) CEAF (d) BLANC

Figure 4.1: Varying values of F-Measures of various metrics with γ.The optimal γ
value for each metric is indicated in red.
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Table 4.1: Results on Affinity Propagation

X CEAF MUC B Cubed Blanc
Exp R P F1 R P F1 R P F1 R P F1

Relax 75.6 75.6 75.6 21.9 72.4 33.7 74.8 97 84.5 57 83.4 61.3
Sucre 74.3 74.3 74.3 68.1 54.9 60.8 86.7 78.5 82.4 77.3 67 70.8
Tanl-1 75 61.4 67.6 23.7 24.4 24 74.6 72.1 73.4 51.8 68.8 52.1
UBIU 63.4 68.2 65.7 17.2 25.5 20.5 67.8 83.5 74.8 52.6 60.8 54

Best-First 73.15 73.15 73.15 19.69 56.97 29.27 73.65 95.65 83.22 52.57 77.5 54.38
APMUC 74.14 74.14 74.14 35.97 48.83 41.43 76.75 87.44 81.75 57.05 69.84 60.25

APBcubed 74.18 74.18 74.18 36.76 49.18 41.41 76.65 87.66 81.79 56.88 69.78 60.06
APCEAF 74.18 74.18 74.18 36.76 49.18 41.41 76.65 87.66 81.79 56.88 69.78 60.06

APBLANC 74.14 74.14 74.14 35.97 48.83 41.43 76.75 87.44 81.75 57.05 69.84 60.25

We compare the various approaches on the basis of the F-Measure for each metric.

A higher F-measure is considered better across metrics. CEAF and B-Cubed are

partial to methods that perform well on detecting singletons, whereas MUC is partial

to those that detect coreferent links correctly. BLANC averages both coreference and

non-coreference decisions and does not lean towards either.

Best-first clustering seems better than our optimized methods in detecting singletons,

as seen by the marginally higher B-Cubed scores, but our scores on the MUC metric

are much higher across all our optimized methods, showing that Affinity Propagation

is better than best-first clustering in identifying coreference links. When both coref-

erence and non-coreference decisions are given equal weight during evaluation, as in

the BLANC scores, we see our overall performance evaluates better than Best-first

clustering, on the Semeval dataset.

We further observe that Affinity Propagation does consistently better than TANL-1

and UBIU on all four metrics. While we outperform RelaxCor in identifying coref-

erence links as evidenced by our higher MUC scores, RelaxCor performs better on

identifying non-coreferencce links, and thus has higher B-Cubed and CEAF scores

than Affinity Propagation. Overall, on the Semeval Dataset, RelaxCor outperforms

Affinity Propagation on the BLANC metric.

SUCRE is marginally better than Affinity Propagation on identifying non-coreference
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links, while doing quite significantly better than our and all other methods we compare

against on identifying coreference links. Thus, while our results are similar to that of

RelaxCor, SUCRE significantly outperforms affinity propagation. In order to further

understand the types of errors each algorithm makes, we analyze the effect of the

number of mentions in a document versus the percentage of errors each algorithm

makes in identifying coreference and non-coreference links. We choose to compare

affinity propagation with best-first clustering as well as with RelaxCor and Sucre and

observe what factors might be contributing to the difference in performance between

these algorithms and affinity propagation.

We plot graphs of the attraction precision and repulsion precision for each document

in the test dataset versus the number of mentions to be resolved in that particu-

lar document. Attraction Precision is the ratio of the number of pairs of mentions

correctly deemed coreferent by the algorithm to the number of coreferent pairs of

mentions as given by the set of key mentions. Simlarly, Repulsion Precision is the

ratio of the number of pairs of mentions correctly deemed non-coreferent by the al-

gorithm to the number of non-coreferent pairs of mentions as are given by the set of

key mentions. These are represented as percentages in the graph rather than as a

value between 0 and 1. The higher the values of these figures for each document, the

better its performance is deemed to be.

Our first comparison is between affinity propagation and our baseline, best-first clus-

tering. We can see from a cursory glance of the graphs that affinity propagation

performs better than best-first clustering on documents of all sizes. However, we can

also see that the difference in performance decreases with increase in the number of

mentions in the document. There is little or no difference in non-coreference precision

performance between the two algorithms.

We can also see that affinity propagation’s performance on detecting coreference links
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(a) Best-First Clustering

(b) Affinity Propagation (c) RelaxCor

(d) SUCRE

Figure 4.2: Plots of coreference and non-coreference precision for documents in the
test set for each algorithm
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are consistently better than that of RelaxCor, on an average. There happen to be

several smaller documents where our algorithms do not get even a single coreference

link right. From the graph, we see that affinity propagation produces fewer such

documents when compared to RelaxCor. Affinity propagation shows slightly better

performance in detecting non-coreference links for a few really small documents, but

for most documents, the performance of different algorithms is similar when it comes

to detecting non-coreferent links.

Thus, even though RelaxCor and affinity propagation show similar scores in all met-

rics other than MUC, we see from the graph that this is in large part due to the high

weight the metrics other than MUC place on non-coreference links. On smaller docu-

ments, affinity propagation is clearly the better algorithm when compared to Relax-

Cor, though both algorithms perform similarly on average as the number of mentions

in a document increases, though performance varies for different documents.

When we compare affinity propagation with SUCRE, we see that SUCRE is the

better algorithm, as it has comparable values for non-coreference link precision and

much higher values for coreference precision on documents of all sizes. It is observed

that unlike other documents, SUCRE manages to obtain coreference precisions higher

than 0 for all documents. It is also observed that while SUCRE has high values of

coreference precision for documents of less than 50 mentions, it only gets higher on an

average as the number of mentions increases, unlike the other algorithms where the

coreference precision decreases on average as the number of mentions increases. Thus,

for tasks involving smaller sized documents, like entity resolution on web snippets,

an algorithm like affinity propagation might be a good choice, we need SUCRE for

tasks like document summarization, which involve large documents.
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4.5 Conclusions

We have presented a novel formulation of Entity Resolution as a clustering problem

solved using Affinity Propagation. We also incorporate linguistic knowledge into

setting the self-similarities for each mention, by setting that for each pronoun to a

low value. We achieve reasonably good results which are comparable to that of the

other participants of the Semeval Coreference Resolution Task. Our performance on

detecting singletons needs to be improved, as seen from the CEAF and B-Cubed

results. We also perform quite well on small documents, whereas there is room for

improvement on larger documents with more than 100 mentions.

Further directions for this approach include incorporating Anaphora Resolution to

determine self-similarities, as well as experimenting with a more expressive feature

set like Sucre [24] and classification algorithm in order to obtain improved pairwise

potentials.
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Chapter 5

Constraint-aware Logistic

Regression for Coreference

Resolution

5.1 Introduction

Pairwise methods, as we have seen in Chapter 3, are the most common and best-

researched approaches to Entity Coreference Resolution, where decisions are taken

about whether each pair of mentions corefer or not, following which a method to

derive coreference chains from those pairwise decisions is applied. Often, we see that

learning from data does not affect the Coreference Resolution process beyond the

making of pairwise decisions, i.e., the method to extract coreference chains improves

with better data to learn from only if it improves the pairwise decisions. It would be a

possible improvement if the learning more directly affected the creation of coreference

chains, for example, if the learning method took the method of resolving coreference
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chains into consideration.

Denis and Baldridge [15] had proposed a pairwise method where they used a max-

imum entropy classifer for obtaining the pairwise probabilities of coreference. This

probability was then considered the edge-weight in the graph containing all mentions

as nodes. The creation of coreference chains is then cast as an optimization problem

and Integer Linear Programming (ILP) is used to find the coreferent edges, and hence

chains in the graph.

Finkel and Manning [17] improved on this approach adding transitivity constraints

to the ILP, thus enforcing consistency in the coreference chains.

In this chapter, we propose a change to the objective function of logistic regression

used by Finkel and Manning [17] to take into account the fact that we would like the

parameters we are learning to be learned conditioned over only the valid configurations

instead of all possible configurations of the pairwise labels. We use the notion of

pseudo-likelihood to account for learning the probability of each pairwise decision

given the rest of the graph.

The rest of the chapter is organized thus: Section 5.2 gives an overview of the method

proposed by Denis and Baldridge and Finkel and Mannings extension to the idea.

Section 5.3 is where we propose our learning method which we call Constraint-aware

Learning. We describe our baselines and experiments in section and discuss our results

in Section 5.4
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5.2 Enforcing Transitivity on Coreference Chains

Denis and Baldridge [15] cast Entity Resolution as an Integer Linear Programming

problem. Each mentions mi is considered a node in a graph, and an edge exists

between every pair of mentions(nodes), with the edge weight of the edge being the

probability of the two mentions it connects being coreferent. These pairwise prob-

abilities can be obtained using any classifier that provides confidence values for its

decisions. When two mentions mi and mj are deemed coreferent, the weight of the

edge between these nodes in the graph, yij is set to 1, and if not, is set to 0. These

decisions are taken such that they optimize a given objective function, subject to

some constraints. In this case, the objective function is the log likelihood of the data.

The basic formulation of Entity Resolution as an ILP as given by Denis and Baldridge

simply attempts to maximize the log probability of the data, with no added con-

straints. Let our classifier produce probabilities P (yij = 1|mi,mj). The cost of

committing to a coreference link would be

wij = − log(P (yij = 1|mi,mj)).

The cost of choosing not to establish a coreference link would be

w̄i = − log(1− P (yij = 1|mi,mj)).

Thus, the objective function we are trying to minimize here would be

min
∑

<i,j>∈m×m

wij.yij + w̄ij.(1− yij)

subject to

yij ∈ {0, 1}∀ij ∈m×m
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where yij are indicator variables set to 1 if mi and mj are coreferent, and 0 if not.

This objective function is minimized rather than maximized as model probabilities

are transformed by − log.

Using this objective function, the ILP merely tries to find a global assignment which

maximally agrees with the decisions made by the coreference classifier. Concretely,

since the link predictions are not correlated, this simply amounts to predicting that

those links exist (i.e. only those pairs of mentions corefer) for which the pairwise

classifier returns a probability greater than 0.5.

One of the widely cited disadvantages of the Mention-Pair model is that there is little

to ensure consistency within the Response coreference clusters. For example, in a

document, Bill Clinton might be deemed coreferent with Clinton, and Clinton might

be deemed coreferent with Hillary Clinton. It is quite possible that all three of these

mentions might be added to the same coreference chain irrespective of the pairwise

decision between Bill Clinton and Hillary Clinton.

One of the ways to ensure consistency is to require the pairwise decisions to be

transitive: if mention mi is coreferent with mj and mentions mj and mk are coreferent,

it should necessarily mean that mentions mi and mk are coreferent.

Finkel and Mannning [17] use logistic regression as their classifier of choice for the

pairwise decisions to be taken. They add transitivity constraints to the previously

formulated ILP. The additional constraints are:

∀i, j, k ∈m×m×m, (1− yij) + (1− yjk) ≥ (1− yik)

which ensures that the graph gets partitioned into cliques, where every mention is

connected to every other mention by an edge of weight 1, and each clique can be
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considered a response cluster.

5.3 Constraint-aware Logistic Regression

Suppose that we have variables yij that represent each co-reference, so that

yij =


1 if i, j are co-referent

0 otherwise

(5.1)

We use a vector of features Xij for each (i, j) to predict yij. As discussed previously,

the values of Xij may depend on the characteristics of mention i, mention j, or the

two together (such as gender or plurality agreement).

If the {yij} are assumed to be independent, the model can be trained using a maximum

likelihood approach, where the log-likelihood is given by

LL(y ; θ) =
∑
ij

log pij(yij) pij(yij) =
exp(θTXijyij)

1 + exp(θTXij)
(5.2)

Note that yij ∈ {0, 1}, and so pij is the usual logistic likelihood of yij.

However, since we plan to enforce consistency among the individual decisions yij, this

is not the log-likelihood of the model we plan to use in practice. The “correct” model

can be defined using a function C(·) over all y jointly to enforce consistency:

C(y) =


1 ∀i, j, k yik = yjk = 1 ⇒ yij = 1

0 otherwise

(5.3)
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The log-likelihood of this model is then given by

LL(y ; θ) =
∑
ij

log pij(yij)− log
∑
y′

C(y′)
∏
ij

pij(y
′
ij) (5.4)

Note that the observed training data y satisfies consistency automatically, but that

consistency changes the normalization constant of the distribution, making the log-

likelihood a complex and difficult to optimize joint function over all y.

To simplify the optimization, we use a pseudo-likelihood approach [11]. More precisely,

we define a composite likelihood estimate [25] (an extension of pseudo-likelihood),

defined over the sets of edges connected to each mention i. The composite likelihood

is given by

CL(y ; θ) =
∑
i

log p(yi∗ | y¬i) (5.5)

where yi∗ = {yi1, . . . , yin} is the set of edges connected to mention i, and y¬i are those

edges that are not incident to mention i, y¬i = y \ yi∗.

We can then see that

p(yi∗ | y¬i) =

∏
j pij(yij)∑

y′i∗
C(yi∗|y¬i)

∏
j pij(yij)

(5.6)

Note that again, the fact that our observed data satisfies consistency is used in the

numerator. The denominator is simply the sum over all consistent configurations y′.

Denoting this set as Ci, i.e., y′i∗ ∈ Ci if for all i, j, k, we have that if yjk = 1 then

yij = yik (either 0 or 1), and if yjk = 0 then at most one of yij and yik are 1. The

composite likelihood is then

CL(y ; θ) =
∑
i

log
exp

∑
j θ

TXijyij∑
y′i∗∈Ci

exp
∑

j θ
TXijy′ij

(5.7)
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and the composite likelihood estimator can be found by maximizing CL(y ; θ) over θ.

Moreover, CL is a convex function of θ and we optimize it using a Newton-Raphson

update.

5.4 Experiments and Results

We evaluated Constraint-Aware Logistic Regression-based ILP against two baselines.

The first one was Denis and Baldridge’s basic ILP formulation, which basically in-

volved marking pairs of mentions as coreferent if the probability of their coreference

as predicted by the pairwise Logistic Regression classifier exceeded 0.5. The second

one was Finkel and Manning’s ILP formulation with transitivity constraints included,

for which we used Logistic Regression for the pairwise decisions, and Gurobi Opti-

mizer [2] to solve the integer linear program. Constraint-Aware Logistic Regression

was implemented using the L-BFGS optimizer from SciPy’s optimization module.

We present our results below, with Denis and Baldridge’s baseline referred to as DnB,

Finkel and Manning’s baseline referred to as FnM, and our approach as C-Log. We

also compare our approaches to the other systems we had previously described in

Section 2.4

Table 5.1: Comparison of Constraint-Aware Logistic Regression with other baselines

X CEAF MUC B Cubed Blanc
Exp R P F1 R P F1 R P F1 R P F1

Relax 75.6 75.6 75.6 21.9 72.4 33.7 74.8 97 84.5 57 83.4 61.3
Sucre 74.3 74.3 74.3 68.1 54.9 60.8 86.7 78.5 82.4 77.3 67 70.8
Tanl-1 75 61.4 67.6 23.7 24.4 24 74.6 72.1 73.4 51.8 68.8 52.1
UBIU 63.4 68.2 65.7 17.2 25.5 20.5 67.8 83.5 74.8 52.6 60.8 54
DnB 73.9 73.9 73.9 30.58 61.01 40.74 76.75 87.07 81.59 55.56 77.45 59
FnM 73.45 73.45 73.45 35.51 46.03 40.09 76.84 86.12 81.26 56.74 67.94 59.66
C-log 74.23 74.23 74.23 35.76 47.74 40.97 75.17 93.76 83.44 56.78 68.88 59.84
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Method ILP solve time
Denis and Baldridge 0.64
Finkel and Manning 47
C-log 38

Table 5.2: Comparison of ILP-solve time (in seconds) between the different ILP-based
methods, over the test set of 85 documents

Our method C-Log does consistently better than our baselines Denis and Baldridge

and Finkel and Manning on the F-measures of all the four metrics. While it outper-

forms the baselines on these metrics marginally, we observed that the ILPs generated

by our method took lesser time to solve as compared to Finkel and Manning, as we

show in Table 5.2. This, we speculate, can be attributed to our method’s ability to

accept a relatively small set of strong predictions in lieu of a large number of correct

predictions, which results in an ILP that is simpler to solve.

We also compare our performance with that of other approaches published on the

Semeval datset. We perform consistently better than TAN-L1 and UBIU on all four

metrics. However, SUCRE performs better than us on all metrics except B-cubed.

From its high MUC scores, we can infer that it identifies coreference links better than

our method, while performing similarly on non-coreference links and singletons, as

seen by our CEAF and B-Cubed scores being similar. Our performance in identifying

coreference links is better than that of RelaxCor, as evidenced by our higher MUC

scores, but RelaxCor performs a little better on identifying non-coreference links

and singletons, as seen by the slightly higher B-Cubed and CEAF scores. Overall,

RelaxCor performs a little better than us, as can be seen by our similar BLANC

scores, where both types of decisions are given equal weightage during evaluation.

In order to further understand the types of errors each algorithm makes, we analyze

the effect of the number of mentions in a document versus the percentage of errors

each algorithm makes in identifying coreference and non-coreference links. We choose
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(a) C-Log

(b) SUCRE (c) RelaxCor

Figure 5.1: Plots of coreference and non-coreference precision for documents in the
test set for each algorithm

to compare C-Log with AffProp as well as with RelaxCor and SUCRE and observe

what factors might be contributing to the difference in performance between these

algorithms and C-Log. We plot graphs of the attraction precision and repulsion

presicion for each document in the test dataset versus the number of mentions to

be resolved in that particular document. Attraction Precision is the ratio of the

number of pairs of mentions correctly deemed coreferent by the algorithm to the

number of coreferent pairs of mentions as given by the set of key mentions. Simlarly,

Repulsion Precision is the ratio of the number of pairs of mentions correctly deemed

non-coreferent by the algorithm to the number of non-coreferent pairs of mentions as

are given by the set of key mentions.

46



These are represented as percentages in the graph rather than as a value between

0 and 1. The higher the values of these figures for each document, the better its

performance is deemed to be.

Our first comparison is between C-Log and RelaxCor. There is very little margin to

compare the two algorithms on non-coreference precision, and we can say that both

algorithms perform comparably on that metric except for a few smaller documents

where RelaxCor seems to perform better. When we compare on the basis of coref-

erence precision, we see that the value of this metric is zero for fewer documents

when C-Log is used, than when RelaxCor is used. But we also see that C-Log has

fewer documents on which the performance is better than average, though C-Log

is marginally better on small-sized documents. C-Log shows more consistent per-

formances on documents than RelaxCor does. Thus, the consistent performance of

C-Log on coreference precision is the reason C-Log is better on MUC than RelaxCor

is, while the better performance of RelaxCor on smaller documents is why it is the

better algorithm on the B-Cubed and CEAF metrics.

We then compare C-Log to SUCRE and note the differences in the performances.

When we compare C-Log with SUCRE, we see that SUCRE is the better algorithm,

as it has comparable values for non-coreference link precision and much higher values

for coreference precision on documents of all sizes. It is observed that unlike other

algorithms, SUCRE manages to obtain coreference precisions higher than 0 for all

documents. It is also observed that while SUCRE has high values of coreference

precision for documents of less than 50 mentions, it only gets higher on an average as

the number of mentions increases, unlike the other algorithms where the coreference

precision decreases on average as the number of mentions increases.
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5.5 Conclusions

We presented a modified likelihood function to learn a classifier, which took into

account the transitivity constraints that would later be imposed on the decisions

made by the classifier. This was done by conditioning the pseudo-likelihood on only

valid configurations of the training labels. The notion of pseudolikelihood was utilized

for this. We demonstrated that our approach performs better than our baselines, as

well as comparably with current systems, and that the integer linear program built

using our probabilities took significantly less time to solve.

We can say that our method shows promising results compared to the current state-

of-the-art in supervised approaches for entity resolution, and has scope for significant

improvement in the future.

48



Chapter 6

Conclusion

This thesis proposed two different graph-based approaches to tackle the problem of

Entity Resolution. Both approaches outperformed baselines on various metrics and

perform comparably to other approaches with results reported on the same datasets.

This chapter summarizes our contributions and suggests future directions for the ideas

presented in this thesis.

6.1 Summary Of Contributions

We utilized the concept of Pseudo-likelihood in order to learn a set of parameters

for Logistic Regression that would keep in mind the method of generating consistent

coreference chains. This method improves on previous approaches that utilize Integer

Linear Programming. It is also a good beginning to explore among approaches that

take into consideration the method of generating coreference chains while learning a

classifier.

Our other contribution was the formulation of Entity Resolution as a clustering prob-
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lem using Affinity Propagation. This solves the problem of ensuring consistency

among the mentions belonging to a culture, as well as the problem faced by most clus-

tering approaches about setting the number or size of clusters. We also demonstrated

the use of linguistic information, like Part-Of-Speech tags, in setting self-similarities

for each mention. We perform significantly better than some of the existing ap-

proaches.

6.2 Future Work

In the near future, it would be interesting to observe the performance of these ap-

proaches on larger, standardized datasets like the MUC and ACE corpora. Addition-

ally, a good direction to explore would be to learn and predict the self-similarities for

Affinity Propagation. It might be a significant step to use Anaphora Resolution to

do so, as mentions that are deemed anaphorae can have their self-similarity set to an

appropriately low value, due to the fact that anaphorae cannot be singleton clusters

and need to be resolved to some antecedent.

Another possible direction to explore for both our approaches would be to experi-

ment with adding more linguistic constraints, like number or gender, to see if they

significantly improve performance. This is a logical next step, as both our approaches

are inherently flexible with respect to addition of more constraints to the process of

creating coreference chains.
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